Cooperative Institute for Research in Environmental Sciences

All day
 
 
Before 01
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 
Turning brown in the sun: Aldehydes, aqueous aerosol, and evaporating cloud droplets

Turning brown in the sun: Aldehydes, aqueous aerosol, and evaporating cloud droplets

ANALYTICAL & ENVIRONMENTAL CHEMISTRY DIVISION and
ATMOSPHERIC CHEMISTRY PROGRAM SEMINAR

Jointly sponsored by the Department of Chemistry and Biochemistry, CIRES, and the Environmental Program

Turning brown in the sun: Aldehydes, aqueous aerosol, and evaporating cloud droplets

Prof. David De Haan
University of San Diego

"Much of what we think we know about aqueous aerosol chemistry – reaction rates, products, mechanisms, and photolytic pathways – comes from extrapolating bulk aqueous-phase lab simulations to atmospheric conditions. Based on this approach, it is now commonly assumed that small, water-soluble aldehydes can react at night with ammonium salts to slowly form light-absorbing brown carbon (BrC). These BrC products are thought to be quickly destroyed by sunlight. When aqueous aerosol processes are studied in aqueous aerosol particles, however, this common narrative turns out to be only partially true. In this talk, results will be presented from recent chamber studies on ammonium and amine-containing aerosol particles as they interact with aldehyde species, solar simulator lamps, and clouds. In some cases, sunlight actually accelerates BrC formation during cloud processing. Chemical analysis of the aerosol produced in these experiments suggests that mechanisms initiated by photolytically-produced radical species are the dominant source of oligomers, and by extension, of BrC."

date

Monday, April 24, 2017
12:00pm to 1:00pm

location

Ekeley S274

Event Type

Seminar
2017-04-24