Cooperative Institute for Research in Environmental Sciences

R. Michael Hardesty

R. Michael Hardesty

Research Interests

Lidar remote sensing of the atmosphere; Doppler laser radar; atmospheric propagation; signal processing of Doppler lidar returns, tropospheric aerosols.


Current Research

Characterizing the boundary layer for greenhouse gas emission measurement

Our work focuses on the application of Doppler lidar to characterize the boundary layer in topdown measurement of greenhouse gas emissions from large-area sources. The lidar investigation is one aspect of a multi-year research effort, the Indiana Flux Study (INFLUX), aimed at improving emissions-estimate methodologies at the urban scale. As part of INFLUX, an observational network—including periodic aircraft-based estimates of greenhouse gases and meteorological parameters, in-situ tower-based measurements of carbon dioxide, methane, and carbon monoxide, eddy covariance and radiative flux observations, and a compact scanning Doppler—has been deployed in the Indianapolis urban region. We are using data from these sources to evaluate measurement methodologies and for inverse-modeling studies to estimate the urban area flux.

Information on boundary layer mixing, wind structure, turbulence, and thickness is a key requirement for both top-down emissions estimation and inverse modeling of emissions. During the past decade, we have employed our research High Resolution Doppler Lidar (HRDL) to develop and test Doppler lidar techniques from surface, ship, and airborne platforms for boundary layer investigations. For INFLUX, we are evaluating the effectiveness of a commercial Doppler lidar for continuous measurement of boundary layer wind and aerosol properties. The commercial instrument, which employs components used in the telecommunications industry, operates at significantly lower pulse energy but a higher pulse repetition rate than our well-characterized HRDL system. Because the commercial lidar is designed for continuous operation, it is a good candidate for extended observation of the boundary layer; however, the lower pulse energy makes it susceptible to signal dropouts under low-aerosol conditions.

We have operated the lidar at a site northeast of downtown Indianapolis since April 2013. Since then, the instrument has operated continuously to provide measurements of wind speed and direction, aerosol backscatter signal intensity, and horizontal and vertical velocity variance. We use these observations to investigate nocturnal and seasonal variability in boundary layer mixing, depth, and structure. We also analyze the lidar measurements in combination with numerical models and aircraft observations of greenhouse gas concentrations for comparisons of the flux estimates with those computed from emissions inventories and to assess the feasibility of advanced modeling and measurement techniques for general application to urban areas. The next step in the research is to extend the methodologies developed during INFLUX to more complicated urban areas such as Los Angeles or Paris.

 


View Publications

  • Choukulkar, A, WA Brewer, SP Sandberg, A Weickmann, TA Bonin, RM Hardesty, JK Lundquist, R Delgado, GV Iungo, R Ashton, M Debnath, L Bianco, JM Wilczak, S Oncley and D Wolfe (2017), Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign. Atmos. Meas. Tech. Version: 1 10 (1) 247-264, issn: 1867-1381, ids: EM6BK, doi: 10.5194/amt-10-247-2017
  • Choukulkar, A, Y Pichugina, CTM Clack, R Calhoun, R Banta, A Brewer and M Hardesty (2016), A new formulation for rotor equivalent wind speed for wind resource assessment and wind power forecasting. Wind Energy Version: 1 19 (8) 1439-1452, issn: 1095-4244, ids: DR5YA, doi: 10.1002/we.1929
  • Wulfmeyer, V, SK Muppa, A Behrendt, E Hammann, F Spath, Z Sorbjan, DD Turner and RM Hardesty (2016), Determination of Convective Boundary Layer Entrainment Fluxes, Dissipation Rates, and the Molecular Destruction of Variances: Theoretical Description and a Strategy for Its Confirmation with a Novel Lidar System Synergy. J. Atmos. Sci. Version: 1 73 (2) 667-692, issn: 0022-4928, ids: DH8DW, doi: 10.1175/JAS-D-14-0392.1
  • Banta, RM, YL Pichugina, WA Brewer, JK Lundquist, ND Kelley, SP Sandberg, RJ Alvarez, RM Hardesty and AM Weickmann (2015), 3D Volumetric Analysis of Wind Turbine Wake Properties in the Atmosphere Using High-Resolution Doppler Lidar. J. Atmos. Ocean. Technol. Version: 1 32 (5) 904-914, issn: 0739-0572, ids: CI5DF, doi: 10.1175/JTECH-D-14-00078.1
  • Karion, A, C Sweeney, EA Kort, PB Shepson, A Brewer, M Cambaliza, SA Conley, K Davis, AJ Deng, M Hardesty, SC Herndon, T Lauvaux, T Lavoie, D Lyon, T Newberger, G Petron, C Rella, M Smith, S Wolter, TI Yacovitch and P Tans (2015), Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region. Environ. Sci. Technol. Version: 1 49 (13) 8124-8131, issn: 0013-936X, ids: CM6ZN, doi: 10.1021/acs.est.5b00217, PubMed ID: 26148550
  • Atlas, R, RN Hoffman, ZZ Ma, GD Emmitt, SA Wood, S Greco, S Tucker, L Bucci, B Annane, RM Hardesty and S Murillo (2015), Observing System Simulation Experiments (OSSEs) to Evaluate the Potential Impact of an Optical Autocovariance Wind Lidar (OAWL) on Numerical Weather Prediction. J. Atmos. Ocean. Technol. Version: 1 32 (9) 1593-1613, issn: 0739-0572, ids: CR5EY, doi: 10.1175/JTECH-D-15-0038.1
  • Abari, CF, XZ Chu, RM Hardesty and J Mann (2015), A reconfigurable all-fiber polarization-diversity coherent Doppler lidar: principles and numerical simulations. Appl. Optics Version: 1 54 (30) 8999-9009, issn: 1559-128X, ids: CU1VZ, doi: 10.1364/AO.54.008999, PubMed ID: 26560390
  • Wulfmeyer, V, RM Hardesty, DD Turner, A Behrendt, MP Cadeddu, P Di Girolamo, P Schlussel, J Van Baelen and F Zus (2015), A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Rev. Geophys. Version: 1 53 (3) 819-895, issn: 8755-1209, ids: CU2GY, doi: 10.1002/2014RG000476
  • Baidar, S, RM Hardesty, SW Kim, AO Langford, H Oetjen, CJ Senff, M Trainer and R Volkamer (2015), Weakening of the weekend ozone effect over California's South Coast Air Basin. Geophys. Res. Lett. Version: 1 42 (21) 9457-9464, issn: 0094-8276, ids: DB2KK, doi: 10.1002/2015GL066419
  • Petron, G, A Karion, C Sweeney, BR Miller, SA Montzka, GJ Frost, M Trainer, P Tans, A Andrews, J Kofler, D Helmig, D Guenther, E Dlugokencky, P Lang, T Newberger, S Wolter, B Hall, P Novelli, A Brewer, S Conley, M Hardesty, R Banta, A White, D Noone, D Wolfe and R Schnell (2014), A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver-Julesburg Basin. J. Geophys. Res.-Atmos. Version: 1 119 (11) 6836-6852, issn: 2169-897X, ids: AJ8RK, doi: 10.1002/2013JD021272
  • Baker, WE, R Atlas, C Cardinali, A Clement, GD Emmitt, BM Gentry, RM Hardesty, E Kallen, MJ Kavaya, R Langland, ZZ Ma, M Masutani, W McCarty, RB Pierce, ZX Pu, LP Riishojgaard, J Ryan, S Tucker, M Weissmann and JG Yoe (2014), LIDAR-MEASURED WIND PROFILES The Missing Link in the Global Observing System. Bull. Amer. Meteorol. Soc. Version: 1 95 (4) 543-564, issn: 0003-0007, ids: AI8MK, doi: 10.1175/BAMS-D-12-00164.1
  • Ryerson, TB, AE Andrews, WM Angevine, TS Bates, CA Brock, B Cairns, RC Cohen, OR Cooper, JA de Gouw, FC Fehsenfeld, RA Ferrare, ML Fischer, RC Flagan, AH Goldstein, JW Hair, RM Hardesty, CA Hostetler, JL Jimenez, AO Langford, E McCauley, SA McKeen, LT Molina, A Nenes, SJ Oltmans, DD Parrish, JR Pederson, RB Pierce, K Prather, PK Quinn, JH Seinfeld, CJ Senff, A Sorooshian, J Stutz, JD Surratt, M Trainer, R Volkamer, EJ Williams and SC Wofsy (2013), The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. J. Geophys. Res.-Atmos. Version: 1 118 (11) 5830-5866, issn: 2169-897X, ids: 228TG, doi: 10.1002/jgrd.50331
  • Karion, A, C Sweeney, G Petron, G Frost, RM Hardesty, J Kofler, BR Miller, T Newberger, S Wolter, R Banta, A Brewer, E Dlugokencky, P Lang, SA Montzka, R Schnell, P Tans, M Trainer, R Zamora and S Conley (2013), Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophys. Res. Lett. Version: 1 40 (16) 4393-4397, issn: 0094-8276, ids: 219SI, doi: 10.1002/grl.50811
  • Neely, RR, M Hayman, R Stillwell, JP Thayer, RM Hardesty, M O'Neill, MD Shupe and C Alvarez (2013), Polarization Lidar at Summit, Greenland, for the Detection of Cloud Phase and Particle Orientation. J. Atmos. Ocean. Technol. Version: 1 30 (8) 1635-1655, issn: 0739-0572, ids: 207XM, doi: 10.1175/JTECH-D-12-00101.1
  • Banta, RM, YL Pichugina, ND Kelley, RM Hardesty and WA Brewer (2013), WIND ENERGY METEOROLOGY: Insight into Wind Properties in the Turbine-Rotor Layer of the Atmosphere from High-Resolution Doppler Lidar. Bull. Amer. Meteorol. Soc. Version: 1 94 (6) 883-902, issn: 0003-0007, ids: 175TK, doi: 10.1175/BAMS-D-11-00057.1
  • Langford, AO, J Brioude, OR Cooper, CJ Senff, RJ Alvarez, RM Hardesty, BJ Johnson and SJ Oltmans (2012), Stratospheric influence on surface ozone in the Los Angeles area during late spring and early summer of 2010. J. Geophys. Res.-Atmos. Version: 1 117 , Art. No. D00V06, issn: 2169-897X, ids: 887WB, doi: 10.1029/2011JD016766
  • Banta, RM, CJ Senff, RJ Alvarez, AO Langford, DD Parrish, MK Trainer, LS Darby, RM Hardesty, B Lambeth, JA Neuman, WM Angevine, J Nielsen-Gammon, SP Sandberg and AB White (2011), Dependence of daily peak O-3 concentrations near Houston, Texas on environmental factors: Wind speed, temperature, and boundary-layer depth. Atmos. Environ. Version: 1 45 (1) 162-173, issn: 1352-2310, ids: 699PP, doi: 10.1016/j.atmosenv.2010.09.030
  • Langford, AO, CJ Senff, RJ Alvarez, RM Banta, RM Hardesty, DD Parrish and TB Ryerson (2011), Comparison between the TOPAZ Airborne Ozone Lidar and In Situ Measurements during TexAQS 2006. J. Atmos. Ocean. Technol. Version: 1 28 (10) 1243-1257, issn: 0739-0572, ids: 843FP, doi: 10.1175/JTECH-D-10-05043.1
  • Alvarez, RJ, CJ Senff, AO Langford, AM Weickmann, DC Law, JL Machol, DA Merritt, RD Marchbanks, SP Sandberg, WA Brewer, RM Hardesty and RM Banta (2011), Development and Application of a Compact, Tunable, Solid-State Airborne Ozone Lidar System for Boundary Layer Profiling. J. Atmos. Ocean. Technol. Version: 1 28 (10) 1258-1272, issn: 0739-0572, ids: 843FP, doi: 10.1175/JTECH-D-10-05044.1
  • Langford, AO, CJ Senff, RM Banta, RM Hardesty, RJ Alvarez, SP Sandberg and LS Darby (2009), Regional and local background ozone in Houston during Texas Air Quality Study 2006. J. Geophys. Res.-Atmos. Version: 1 114 , Art. No. D00F12, issn: 2169-897X, ids: 466ED, doi: 10.1029/2008JD011687
  • Huang, WT, XZ Chu, J Wiig, B Tan, C Yamashita, T Yuan, J Yue, SD Harrell, CY She, BP Williams, JS Friedman and RM Hardesty (2009), Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar. Opt. Lett. Version: 1 34 (10) 1552-1554, issn: 0146-9592, ids: 458YB, PubMed ID: 19448818
  • Tucker, SC, WA Brewer, RM Banta, CJ Senff, SP Sandberg, DC Law, AM Weickmann and RM Hardesty (2009), Doppler Lidar Estimation of Mixing Height Using Turbulence, Shear, and Aerosol Profiles. J. Atmos. Ocean. Technol. Version: 1 26 (4) 673-688, issn: 0739-0572, ids: 443ZN, doi: 10.1175/2008JTECHA1157.1
  • Tollerud, EI, F Caracena, SE Koch, BD Jamison, RM Hardesty, BJ McCarty, C Kiemle, RS Collander, DL Bartels, S Albers, B Shaw, DL Birkenheuer and WA Brewer (2008), Mesoscale Moisture Transport by the Low-Level Jet during the IHOP Field Experiment. Mon. Weather Rev. Version: 1 136 (10) 3781-3795, issn: 0027-0644, ids: 361YO, doi: 10.1175/2008MWR2421.1
  • Machol, JL, T Ayers, KT Schwenz, KW Koenig, RM Hardesty, CJ Senff, MA Krainak, JB Abshire, HE Bravo and SP Sandberg (2004), Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor. Appl. Optics Version: 1 43 (15) 3110-3121, issn: 1559-128X, ids: 822GX, doi: 10.1364/AO.43.003110, PubMed ID: 15176200

Compact Doppler lidar deployed on the roof at Ivy Tech Community College outside Indianapolis. The lidar steps through a series of conical and vertical scans and an interval of vertical staring to provide profiles of wind speed and direction, horizontal and vertical velocity variance, and aerosol backscatter signal strength three times per hour. Photo credit: Scott Sandberg/NOAA