Igor File Vocabulary

- Experiment: an Igor file where you store data and graphs (.pxp) Let's open a new experiment.
- DataFolder: subdirectory in an experiment
- Red Arrow in Data Browser shows current DataFolder
- Notebook: "file" in an experiment where you can write notes, paste graphs
- Windows \rightarrow New \rightarrow Notebook (Formatted Text)
- Procedures: functions written by you (or others)
- Some exist only in the experiment they are in
- Can be shared with friends/colleagues
- "Local" procedure window ($c t r l+m$)

More Igor File Vocabulary

- Data Browser
- Can set Preferences to sort by "Name and Type"
- Help Browser (F1)
- Look for help on functions
- Can also get function help by right-clicking on a function name, choosing "Help on functionName"
- Most functions have Examples
- Many functions have Related Functions

Data is usually stored in Waves

- Wave: a vector (array) containing data
- Exists until you "kill" it (even if you're not looking at it in a graph or table)
- Numbers (single precision by default) or text
- Every wave has some number of "points" (length)
- Waves have inherent " x " values = point number ($0,1,2 \ldots$)
- When you display a wave, it's plotted against the x values (unless you tell it to plot vs. something else)

Wave Names have Rules

- Wave names
- Cannot include spaces, operators (+ - */), special characters
- Can use underscore (_)
- Cannot begin with numbers
- Must be ≤ 32 characters
- Are not case sensitive
- Cannot have the same name as functions, variables, Igor-used terms

Making Waves

- Let's make a really simple waves so that we can practice some simple operations

- Now let's look at the values in the wave in a table:
edit y_vals.id
(special way to see the " x " and "data" values")

Giving values to y_vals

- Now we can take advantage of the inherent " x " values and make y_{-}vals $=f(x)$

Y_vals $=x$
Display y_vals
Fix the axes to have range -10, 40 for x and y
Add "zero lines" (Ticks and Grids tab)
Copy and Paste this plot in your Notebook
Change your line by changing the equation in the command line
(e.g., y_vals $=2^{*} x \quad y_{-}$vals $\left.=2 * x+3\right)$

Copy and Paste a new plot in your Notebook
Note that the y_vals.d changes in the table, too!

Kill the table!

- (Kill the wabbit, kill the wabbit...)
- Check for the wave in the Data Browser
- Waves exist until you kill them, even if you're not looking at the them.
- Very different from Excel, of course!
- Make table again if you want to watch the data change

Can you make the line go into the $x<0$ range?

- Recall from "Getting Started" that you can change the inherent x -scaling

Data \rightarrow Change Wave Scaling

- The command for this change was printed in the History in the Command Window!
- Useful for using this command in a function, since you can't use the pulldown menu in a function.

Make a function for the line

1. Simple version

Our Sample Function

Function Name Function Arguments
Function LineValues()
make/O/N=20 y_vals $=0.1 * x+1$
end
Stuff for the function to do
Gotta end
the function
And let's compile!
And let's run it (from the command line).
Change the values. Does the line change?

Make a function for the line

1. Simple version with variables

Our Sample Function, with Variables

Function LineValues2()
variable $\mathrm{m}=0.1, \mathrm{~b}=1$
make/O/N=20 y_vals $=m * x+b$
end

Make a function for the line

1. Simple version with variables
2. Generalize function with inputs

Our Sample Function, with Inputs

Function LineValues_input(m,b) variable m, b
make $/ \mathrm{O} / \mathrm{N}=20 \mathrm{y}$ _vals $=\mathrm{m} * \mathrm{x}+\mathrm{b}$ end

