
New pseudocode:

$$vrc wv/mess wv$$

for Thesday: Taylor Ch. S
 $for Thesday: Taylor Ch. S$
 $for Thesday: Taylor Ch. S
 $vrc W.R. Ch. 14 intro
 $t. N.R. Ch. 14 intro
 $t. 14.1$
One approach
make fract unclev = Unc Wv/meas Wv
fract Unc Wv
 $sum (fract Unc Wv)$
 $sum (fract Unc Wv)$
 $soft 2
 $soft 2$
 $soft 4$
 $other approach (unc/meas)^2 for (__________) = tor(__________)$
 $for (____________) = tor(___________)$
 $for (_______________) = tor(____________)$
 $wuve [] = point number (row number)$
 $wuve () = p X value$$$$$

Monday, September 03, 2012 2:53 PM

<u>WaveStats</u> /ALPH=val /C=method /M=moment /Q [/R = (startX, endX)]/Z waveName

The WaveStats operation computes several values associated with the named wave.

Details

WaveStats uses a two-pass algorithm to produce more accurate results than obtained by computing the binomial expansions of the third and fourth order moments.

WaveStats returns the statistics in the automatically created variables:

V_npnts V_numNans V_numINFs	Number of points. Doesn't include NaN or INF points. Number of NaNs. Number of INFs.
V_avg	Average of Y values.
V_sdev	Standard deviation of Y values, $\sigma = \sqrt{\frac{1}{V_n p n t s - 1} \sum (Y_i - V_a v g)^2}$ ("Variance" is V_sdev ² .)
V_sem	Standard error of the mean $sem = \sigma / \sqrt{V _ numPnts}$
v_oom	
V_rms	RMS of Y values = $\sqrt{\left(\frac{1}{V_npnts}\sum Y_i^2\right)}$
V_adev	Average deviation $= \frac{1}{V_n pnts} \sum_{i=0}^{V_n pnts - 1} Y_i - \overline{Y} $
V_skew	Skewness = $\frac{1}{V_n pnis} \sum_{i=0}^{V_n pnis} \left[\frac{Y_i - \overline{Y}}{\sigma} \right]^3$
V_kurt	Kurtosis = $\frac{1}{V_npnts} \sum_{i=0}^{V_npnts-1} \left[\frac{Y_i - \overline{Y}}{\sigma} \right]^4 - 3$

Statistical Parameters from Ch. 4:

Mean	V_	_avg
Standard Deviation*		_sdev
Standard Deviation (Error) of the Mean	V_	_sem

* Sample sdev with 1/(N-1)

Some examples from Taylor (Sect. 4.5):

- 1. Area of a Rectangle
- 2. Spring