wavestats
Monday, September 03, 2012
2:53 PM

| WaveStats $/ \mathrm{ALPH}=$ val $/ \mathrm{C}=$ method $/ \mathrm{M}=$ moment $/ \mathrm{Q}[/ \mathrm{R}=($ start $X$, end $X)] / \mathrm{Z}$ waveName |  |
| :---: | :---: |
| The WaveStats operation computes several values associated with the named wave. |  |
| Details |  |
| WaveStats uses a two-pass algorithm to produce more accurate results than obtained by computing the binomial expansions of the third and fourth order moments. |  |
| WaveStats returns the statistics in the automatically created variables: |  |
| V_npnts | Number of points. Doesn't include NaN or INF points. |
| V_numNans | Number of NaNs. |
| V_numlNFs | Number of INFs. |
| V_avg | Average of Y values. |
| V_sdev | Standard deviation of Y values, $\quad \sigma=\sqrt{\frac{1}{V_{-} n p n t s-1} \sum\left(Y_{i}-V_{-} \operatorname{avg}\right)^{2}}$ ("Variance" is $\mathrm{V}_{\text {_ }}$ sdev ${ }^{2}$.) |
| V_sem | Standard error of the mean sem $=\sigma / \sqrt{V_{\_} \text {numPnts }}$ |
| V_rms | $\text { RMS of } Y \text { values }=\sqrt{\left(\frac{1}{V_{-n p n t s}} \sum Y_{i}^{2}\right)}$ |
| V_adev | $\text { Average deviation }=\frac{1}{V_{-n p n t s}} \sum_{i=0}^{V_{\text {_npnts }}-1}\left\|Y_{i}-\bar{Y}\right\|$ |
| V_skew | $\text { Skewness }=\frac{1}{V_{-} n p n t s} \sum_{i=0}^{V_{-n p n t s}-1}\left[\frac{Y_{i}-\bar{Y}}{\sigma}\right]^{3}$ |
| V_kurt | $\text { Kurtosis }=\frac{1}{V_{-} n p n t s} \sum_{i=0}^{V_{-} n p n t s-1}\left[\frac{Y_{i}-\bar{Y}}{\sigma}\right]^{4}-3$ |

Statistical Parameters from Ch. 4:
Mean V_avg
Standard Deviation* V_sdev
Standard Deviation (Error) of the Mean V_sem

* Sample sdev with 1/(N-1)

Some discussion with a simulation
http://onlinestatbook.com/stat_sim/sampling_dist/index.html


Some examples from Taylor (Sect. 4.5): (data on course web page)
Area of a Rectangle.
Write a function that calculates area and the uncertainty of the area
a. by finding the mean \& uncertainty of the length and width first. Print your results to the command line.
b. by finding the area for each set of measurements $\left(l_{1} \mathrm{X}_{\mathrm{w}}\right)$ first.
c. by finding mean \& uncertainty of length and width BUT storing them in waves, like this:


Psenclocode for (a)
function version A (length _mm, width. mm)
Wavertats length_mm
variable length- avg $=V$-avg variable length sem $=V$-sem $\longrightarrow I$ wavestats width. mm
$v$, sem
variable Area: length avg. width-avg

$$
\text { print "Area }=\text { ", Area,", uni }=\text { ", Area* frac_unc_area }
$$

for (c)
wavestats length -mm
$\begin{aligned} \text { length } \operatorname{stats}[\phi] & =V-a v g\end{aligned}$
length_ stats (1] $=V-$ sem
sam for width_stats
width_stats $[0]=V_{-}$avg width -stats $[1]=V-\operatorname{sem}$
area $=$ with_stats $[0] *$ length, stats (0]
(mull. means)

Challenge with Sdev and SDOM is what they mean.
Variance (= sdev^2) describes variation from the average

Sdev describes the width (precision) of a set of measurements.

SDOM describes how good the calculated mean estimates the true mean.

