$\underline{\textbf{Wave Stats}} \ / \text{ALPH=} \textit{val /C=} method \ / \text{M=} moment \ / \text{Q [/R = (startX, endX)]/Z wave Name}$

The WaveStats operation computes several values associated with the named wave.

Details

WaveStats uses a two-pass algorithm to produce more accurate results than obtained by computing the binomial expansions of the third and fourth order moments.

WaveStats returns the statistics in the automatically created variables:

V_npnts Number of points. Doesn't include NaN or INF points.

V_numNans Number of NaNs.
V_numINFs Number of INFs.
V avg Average of Y value

 $V_s dev \qquad \qquad S tandard \ deviation \ of \ Y \ values, \\ \sigma = \sqrt{\frac{1}{V_npnts-1}} \sum (Y_i - V_avg)^2$

("Variance" is V_sdev².)

V_sem Standard error of the mean $sem = \sigma / \sqrt{V_numPnts}$

V_rms $\text{RMS of Y values} = \sqrt{\left(\frac{1}{V_\textit{npnts}}\sum_{Y}Y_i^2\right)}$

V_adev Average deviation = $\frac{1}{V_{NPMT}} \sum_{i=1}^{V_{NPMT}-1} |Y_i - Y_i|^2$

V_skew Skewness = $\frac{1}{\sum_{i=1}^{N_{pymin}-1}} \left[\frac{Y_i - \overline{Y}}{Y_i - \overline{Y}} \right]^3$

V_kurt Kurtosis = $\frac{1}{V \text{ npmts}} \sum_{i=0}^{N-Npmts-1} \left\lceil \frac{Y_i - \overline{Y}}{\sigma} \right\rceil^4 - 3$

Statistical Parameters from Ch. 4:

Mean	V_avg
Standard Deviation*	V_sdev
Standard Deviation (Error) of the Mean	V_sem

* Sample sdev with 1/(N-1)

Some discussion with a simulation

http://onlinestatbook.com/stat_sim/sampling_dist/index.html

Some examples from Taylor (Sect. 4.5): (data on course web page) Area of a Rectangle.

Write a function that calculates area and the uncertainty of the area

- a. by finding the mean & uncertainty of the length and width first. Print your results to the command line.
- b. by finding the area for each set of measurements $(l_1 \times w_1)$ first.
- c. by finding mean & uncertainty of length and width BUT storing them in waves, like this:

Pseudocode for (a)

wave tats length_mm
variable length_aug = V_aug
variable length_sem = V_sem variable length and = V-and variable length sem = V-sem variable Aren = length and width and variable width and variable width sem = V-sem variable width se width-stats

length-stats

for (c)

wowestats length - mm

length_ stats [0] = V-avg

length_ stats (1] = V-sem

sam for width_stats

width_stats (0] = V_avg

width_stats (1] = V-sem

Area = witth_stats(0] * length_stats(0) |

(mult. Means)

Challenge with Sdev and SDOM is what they mean.

Variance (= sdev^2) describes variation from the average

Sdev describes the width (precision) of a set of measurements.

SDOM describes how good the calculated mean estimates the true mean.