For a poisson distribution, does μ have to be an integer?
A) I really think it's yes.
B) I'm pretty sure it's yes.
C) I'm pretty sure it's no.
D) I really think it's no.

A radioactive sample is monitored and undergoes an average of 0.75 decays/min.

What is the probability of observing 2 decays in 2 minutes?
(You are encouraged to use Igor to solve the problem.)
A) 0.19
stats Poisson PDF
B) 0.25
C) 0.27
D) 0.32
I...
E) 0.44
A) think I howe a math problem B) an Igor problem some other problem c) got it.
approaches
print stats poisson Pdt (1)

What is the smallest interger mean for a poisson distribution that appears Gaussian? (Don't calculate the Gaussian -- yet.)
A) 4
B) 5
C) 6
D) 7
E) 9
make/O/N=10 PoissonDist = statsPoissonPDF(x, 1.5)

Standard deviation of the Poisson distribution

$$
\sigma_{\text {poiss }}=\sqrt{\mu}
$$

Not the uncertainty of the counting, but rather the variation due to randomness.

A radioactive sample is monitored and the average decay rate is measured as 150 decays in 10 minutes. A measurement of the background radiation is measured for 3 minutes and detects 12 decay events.

Find the average rate and uncertainty of decays from the source.

$$
\frac{150-3}{10} \times \frac{150-12}{10} \times
$$

A) I have an answer In happy with

B) I have an answer I'm not quite happy $=11 \mathrm{conts} / \mathrm{min} \mathrm{C})$ still working
D) stuck
A) I got this B) didn't

What about uncert?

$$
\begin{aligned}
& \text { uncert? } \\
& \leftrightarrow \text { prop. } \\
& \sum()^{2}
\end{aligned}
$$

What is unc in each?
support: $\sigma=\sqrt{\mu}$

$$
\begin{aligned}
& \text { B) } \sqrt{150} \sqrt{12} \\
& \text { c) } \sqrt{\frac{\sqrt{150}}{10} \mathrm{~min}} \sqrt[{\sqrt{12}}]{3 \mathrm{~min}}
\end{aligned}
$$

support: Taylor did way

