Hypothesis testing

Is something (statistically) different from something else?


Did a treatment have an effect?

Two types of quesitons about means:

1. Is my sample mean different than the true population mean?

$$
2 \text {-sided test }
$$

2. Is my sample mean greater than the true populaiton mean?

$$
\text { (less than) } \quad \mid \text { sided test }
$$

Quesiton about a treatment:
Did a treatment have an effect?

$$
\begin{aligned}
\text { lofted } 1 & \text { sided test }) \\
\text { ski } & \rightarrow \text { faster fertilizer } \rightarrow \text { bigger }
\end{aligned}
$$



## $\mathbf{P}_{\text {data }}$ depends on the type of question $\quad t=\frac{\bar{x}-\text { accept }}{\sigma}$

1. Is my sample mean different than the true population mean?

$P_{x-t} \geq P_{\text {significant }}$ or $P_{x+t} \geq P_{\text {significant }}$
$\mathrm{P}_{\mathrm{N} \geq \text { result }}$ or $\mathrm{P}_{\mathrm{N} \geq \text { result }}$

After several trials, a student finds the concentration of a sample of acetic acid to be 5.6 M .

The data from the entire class show a normal distribution with an average of 5 M and a standard deviation of 0.25 M .

Is the student's result statistcally different than the class data?

Is this
A) a 1 -sided test
B) a 2-sided test $\downarrow$

After several trials, a student finds the concentration of a sample of acetic acid to be 5.6 M .

The data from the entire class show a normal distribution with an average of 5 M and a standard deviation of 0.25 M .

Is the student's result statistcally different than the class data at the $5 \%$ level? At the $1 \%$ level?," "


After several trials, a student finds the concentration of a sample of acetic acid to be 5.6 M .

The data from the entire class show a normal distribution with an average of 5 M and a standard deviation of 0.25 M .

Is the student's result statistcally higher than the class average?

Which is the appropriate null hypothesis?
$\begin{array}{ll}\text { A) } \mu=5 \times & \\ \text { B) } \mu \neq 5 \times \\ \text { C) } \mu \geq 5 \\ \text { D) } \mu \leq 5 \\ & v=2.25\end{array}$
Is the student's result statistcally higher than the class average at the $5 \%$ level?

Is this a 1-sided test or a 2 -sided test?


Is the student's result statistcally higher than the class average at the $5 \%$ level?

What is the equivalent t for the $5 \%$ level for a 1 -sided test?

-- Did my "treatment" have an effect?

Easiest statistical hypothesis you can test is:
I assume my test had no influence --> null hypothesis

Taylor's Ski wax example -- Let's work it in Igor.

- Two skis "race" -- one is treated, one is not.
- Number of races $=10$
- I assume my test had no influence


- Null hypothesis:
$\mathrm{P}_{\text {"better" }}=1 / 2$


Calculate the probability distribution for the number of times the treated ski will win the race. Be sure to label your axes.

You may use statsbinomialPDF.

What is the probability that the treated ski will win 10 races?

If the ski wins 8 races, did the wax have a significant effect? Or could that be random chance?
$\mathrm{P}_{\mathrm{N} \succeq \text { result }}$ Vs. $\mathrm{P}_{\text {significant }}$

What is the probability of winning 8 or more times?

