Numerical Integration in Igor

Tossing a ball in the air

0ľ

What goes up must come down

Simple Case: Toss a Ball *Straight Up* in the Air • What will the trajectory of the ball look like? x vs. t y vs. t x vs. y

How do we tell the computer how to do this calculation?

- 1. Use the *initial condition* to fill in the first element of the wave.
- 2. For every row in the rest of the wave, calculate $v_i = v_{i-1} + a_i^* dt$
- \succ In the function we can do step 1:
 - Create a variable v_0_m_s
 - make vel_m_s
 - set zeroth point of vel_m_s = v_0_m_s

How can we implement the position calculation?

- A. Position *must* be calculated in a **different** function.
- B. Position can be calculated in a *separate* for loop *before* calculating the velocity.
- C. Position can be calculated in a *separate* for loop *after* the loop for calculating velocity.
- D. Velocity and position can be calculated in the **same** for loop.

Next Steps

- Change v_0 and s_0 and see changes
- Generalize the function with input variables
- Assume that
 - $-s_0 > 0$
 - the ground = 0
 - After the ball hits the ground it stays there for all remaining time