Numerical Integration in Igor

Tossing a ball in the air
or
What goes up must come down

Simple Case:
 Toss a Ball Straight Up in the Air

When the ball is in the air, what is the force diagram for the ball?
A) \uparrow
B)

D)
E) None of These

Simple Case:

Toss a Ball Straight $U p$ in the Air

- What will the trajectory of the ball look like?
x vs. t

$$
y \text { vs. } t
$$

x vs. y

Simple Case:
 Toss a Ball Straight $U p$ in the Air

Acceleration is...
A) constant
B) proportional to t
C) proportional to t^{2}
D) none of these

Acceleration is equal to... $-g$
$>$ Let's make a CONSTANT above the function
$>$ Now we can make a wave for accel_m_s2

Simple Case:
 Toss a Ball Straight $U p$ in the Air

Velocity is...
A) constant
B) proportional to t
C) proportional to t^{2}
D) none of these

Velocity is related to acceleration by ... $a=d v / d t$

$$
d v=a^{*} d t
$$

Integrating Acceleration \rightarrow Velocity

We'll use Euler's Method:

Since we already "know" how to calculate the answer...

- Let's make a table to calculate (check) what we expect to get for velocity

Acceleration (m/s2)	Time (s)	Velocity (m/s)
	0	
	1	
	2	
	3	

Since we already "know" how to calculate the answer...

- Let's make a table to calculate (check) what we expect to get for velocity

Acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	Time (s)	Velocity $(\mathrm{m} / \mathbf{s})$
-9.8	0	
-9.8	1	
-9.8	2	
-9.8	3	

Need an initial condition!

Let's just drop the ball. Then $\mathrm{v}_{0}=$?

Since we already "know" how to calculate the answer...

- Let's make a table to calculate (check) what we expect to get for velocity

Acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	Time (s)	Velocity $(\mathbf{m} / \mathbf{s})$
-9.8	0	0.0
-9.8	1	
-9.8	2	
-9.8	3	

Since we already "know" how to calculate the answer...

- Let's make a table to calculate (check) what we expect to get for velocity

Acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	Time (s)	Velocity $(\mathbf{m} / \mathbf{s})$
-9.8	0	0.0
-9.8	1	-9.8
-9.8	2	-19.6
-9.8	3	-28.4

How do we tell the computer how to do this calculation?

1. Use the initial condition to fill in the first element of the wave.
2. For every row in the rest of the wave, calculate
$v_{i}=v_{i-1}+a_{i} * d t$
$>$ In the function we can do step 1:
> Create a variable v_0_m_s
> make vel_m_s
$>$ set zero ${ }^{\text {th }}$ point of vel_m_s $=v _0 _m _s$

Simple Case:
 Toss a Ball Straight $U p$ in the Air

Position is...
A) constant
B) proportional to t
C) proportional to t^{2}
D) none of these

Position is related to velocity by $\ldots \quad v=d s / d t$

$$
d s=v^{*} d t
$$

How can we implement the position calculation?

A. Position must be calculated in a different function.
B. Position can be calculated in a separate for loop before calculating the velocity.
C. Position can be calculated in a separate for loop after the loop for calculating velocity.
D. Velocity and position can be calculated in the same for loop.

Let's make a plot!

- Make your axes like this
- Spacing, alignment
- Axis labels
- Zero line for velocity, position
- Markers are nice, but not necessary

Next Steps

- Change v_{0} and s_{0} and see changes
- Generalize the function with input variables
- Assume that
$-\mathrm{s}_{0}>0$
- the ground $=0$
- After the ball hits the ground it stays there for all remaining time

