Lecture 16: Aerosol Light Scattering and Cloud Nucleation

<u>Required</u> Reading: FP&P Section 9.A.4 and 9.C.1.d

Atmospheric Chemistry CHEM-5151 / ATOC-5151 Spring 2005 Prof. Jose-Luis Jimenez

Outline of Lecture

- We study aerosols because of effects on:
 - Health
 - Ecosystems (acid rain)
 - Visibility
 - Climate
- Today
 - Aerosol light scattering
 - Aerosol water uptake
 - Subsaturated
 - Influence in light scattering
 - Supersaturated: cloud formation

Mie Scattering I
$I(\theta, R) = \frac{I_0 \lambda^2 (i_1 + i_{11})}{8\pi^2 R^2}$ • i_1 and i_{11} are "Mie intensity parameters" • Functions of α , θ , & m • m: refractive index = c/v • Imaginary part of m represents absorption

Rela	ative Importance of Abs. vs. Scat.		. Scat.	
From FP&P				
TABLE 9 Type of atmosphere	8 Contribution of Light Absorption	to Total Light Extinct	tion Due to Particles $b_{ab} \neq (b_{ab} + b_{ab})$	in the Troposphere ^a Reference
Remote	Mauna Loa, Hawaii	6×10^{-8}	0.069	Clarke and Charlson 198
Rural	Allegheny Mts./Laurel Hill Shenandoah Valley/Blue Ridge Mts. Off East Coast of U.S. (Virginia)	$\begin{array}{c} 1.9 \times 10^{-5} \\ 1.0 \times 10^{-5} \\ (0.01 - 1.0) \times 10^{-5} \end{array}$	0.13 0.051 0.029-0.24	Japar <i>et al.</i> , 1986 Ferman <i>et al.</i> , 1981 Novakov <i>et al.</i> , 1997 ^b
Urban/residential	Denver, Nov/Dec. 1978 Detroit, July 1981 Houston, Sept. 1980 Los Angeles Basin, Oct. 1980	$\begin{array}{c} 6.6\times10^{-5}\\ 2.4\times10^{-5}\\ 3.0\times10^{-5}\\ 6.4\times10^{-5} \end{array}$	0.42 0.13 0.18 0.25	Groblicki et al., 1981 Wolff et al., 1982a,b Dzubay et al., 1982 Pratsinis et al., 1984
^a From Japar <i>et a</i> ^b At altitudes from	<i>l.</i> (1986). n 0.2 to 3 km.			

TABLE 9.7 Some Report Common Co	ed Values of the Lig onstituents of Atmo	ht Scattering Coefficients (a _i) for spheric Particles ^a
Compound	$(\mathbf{m}^2 \mathbf{g}^{-1})$	Reference
Elemental (black) carbon	0.45-1.4	Petzold et al., 1997
Sulfate	5.2-13 ^b 3-7 2.1 2.2-3.2 3.2-13.5	Howell and Huebert, 1998 McMurry <i>et al.</i> , 1996 Eatough <i>et al.</i> , 1996 Hegg <i>et al.</i> , 1995 White, 1986
Nitrate	$\begin{array}{c} 1.8\\ 0.5-6.0\end{array}$	Eatough <i>et al.</i> , 1996 White, 1986
Organics	3-7 1.1 0-4.6	McMurry <i>et al.</i> , 1996 Eatough <i>et al.</i> , 1996 White, 1986

TABLE 9.16 Deliquescence Points of Some Salts Commonly Found in Ambient Air at 25°C ^a			
Composition	Deliquescence Relative humidity (%)		
$(\mathrm{NH}_4)_2\mathrm{SO}_4$	79.9		
(NH ₄)HSO ₄	39.0		
$(\mathrm{NH}_4)_3\mathrm{H}(\mathrm{SO}_4)_2$	69.0		
Na ₂ SO ₄	84.2		
$Na_2SO_4 \cdot 10H_2O^b$	93.6		
NH_4NO_3	61.8		
NaCl	75.3		
NaNO ₃	74.3		
NaCl-NaNO ₃	68.0		
KCl	84.2		
NaCl-KCl	72.7		

