11 Mass Transfer Aspects of
Atmospheric Chemistry

~

11.1 MASS AND HEAT TRANSFER TO ATMOSPHERIC PARTICLES

Mass and energy transport to or from atmospheric particles accompanies their growth or
evaporation. We would like to develop mathematical expressions describing the mass

transfer rates between condensed and gas phases The desired expressions for the vapor
concentrations and temperature re profiles around a growing or evaporating particle can be
obtained by solving the appropriate mass and energy conservation equations.

Let us consider a particle of pure species A in air that also contains vapor molecules of
A. Particle growth or evaporation de dependsuz)hﬁt_ﬁe_c‘hrectlon_E)‘f the net flux of vapor mole-
cules relative to the particle. As we saw in Chapter 7, the mass transfer process will depend
on the particle size relative to the mean free path of A in the surrounding environment. We
will therefore start our discussion from the simpler case of a relatively large particle (mass
transfer in the continuum regime) and then move to the other extreme (mass transfer in the
kinetic regime).
11.1.1 The Continuum Regime {/‘: |

N ¥

The unsteady-state diffusion of species XE(‘)’ the surface of a stationary particle of radius R
is described by

dc 19 ,-
= =350 (111

where ¢(r, 1) is the concentration of A, and J, a.r(7, t) is the molar flux of A (moles area ™!
time ') at any radial position r. This equation is simply an expression of the mass balance
in an infinitesimal spherical cell around the particle. The molar flux of species A through
stagnant air is given by Fick’s law (Bird et al., 1960),

. ~ - dc
JA,r = xA(-IA,r + Jair,r) - Dg E;_’ (11.2)
where x4 is the mole fraction of A, Jalr » the radial flux of air at position r, and D ﬂhe d1f-
_qu1v1ty of A in air, Since air is not transferred to or from the particle, Jalrr = O’at all r.
Assuming dilute condmons an assumption applicable under almost all atmospheric condi-

tions, xa =~ 0 and (11.2) can be rewritten as

. d
Jar =—D, d—: 11.3)
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Combining (11.1) and (11.3), we obtain

aC—D 326+286 (11.4)
t E\ar2 T rar '

which is valid for transfer of A to a particle under dilute conditions. If Coo is the concentra-
tion of A far from the particle, c is its vapor-phase concentration at the particle surface,
and the particle is initially in an atmosphere of uniform A with a cencentration equal to co,
the corresponding initial and boundary conditions for (11.4) are

c(r,0) =cCo, r> R, (11.5)
c(00, 1) = ¢ (11.6)
c(Rp, 1) = ¢ . (11.7)

The solution of (11.4) subject to (11.5) to (11.7) is (Appendix 11)

R 2R (r~R,,)/21/Dgt
€11 = oo = (e — ) + 2 (e — ) f Ve taE s

rJm 0

The time dependence of the concentration at any radial position r is given by the third
term on the right-hand side of (11.8). Note that for large values of ¢, the upper limit of in-
tegration approaches zero and the concentration profile approaches its steady state given by

e(r) = coo — %(coo ~c) (11.9)

We are going to show in Section 11.2.1 that the characteristic time for relaxation to the

steady-state value is on the order of 107° s or smaller for all particles of atmospheric
m@hﬁﬁﬁgiﬁg"'(l 1.9), at steady state,

cr) —co _ R,y (11.10)

Cs — Cxo r

The total flow of A (moles time ~1) toward the particle is denoted by @he subscript ¢

referring to the continuum regime, and is given by
Jo =47 R (Ja)=r, (11.11)

or using (11.9) and (11.3),

Jo = 4R, Dy (Cop — C5) (11.12)

[ S
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If coo > cy, the flow of molecules of A is toward the particle and if ¢, < ¢, Vice versa.
The above result was first obtained by Maxwell (1877) and (11.12) is often called the
n flux. Note that as ¢ is the molar concentration of A, the units of J, are moles
mme On the contrary, the units of J4 are moles per surface per time.

A mass balance on the growing or evaporating particle is .

d (4
prﬁ? < nRE) —J, (11.13)

where p, is the particle density and M, the molecular weight of A. Combining (11.12)
with (11.13) gives

dRp DgMA
7 —c 11.14
dt ,opRp (co s) ( )

o h

When ¢ and ¢y are constant, (11.14) can be integrated to give

2D MA

( R =R’ + (Coo = C5) (11.15)

D

The use of the time-independent steady-state profile given by (11.9) to calculate the
change of the particle size with time in (11.15) may seem inconsistent. Use of the steady-
state diffusional flux to calculate the particle growth rate implies that the vapor concentra-
tion profile near the particle achieves steady-state before appreciable growth occurs. Since
growth does proceed hundreds of times more slowly than diffusion, the profile near the par-
ticle in fact remains at its steady -state value at t all times. Growth of atmospheric particles
“for a constant gradient of Ma(coo — ¢5) = l,ug m ~3 between the bulk and surface con-
centrations of A is depicted in Figure 11.1.

Temperature Effects During the condensation/evaporation of a particle latent heat is
released/absorbed at the particle surface. This heat can be released either toward the partlcle
or toward the exterior gas phase. As mass transfer continues, the particle surface temperature
‘changes until the rate of heat transfer balances the rate of heat generation/consumption. The
formation of the external temperature and vapor concentration profiles must be related by a
steady-state energy balance to determine the steady-state surface temperature at all times
during the particle growth.

The steady-state temperature distribution around a particle is governed by

dT  1d (,dT
, — = — 11.16
“ dr rzdr <r dr) ( )

where a = k/pc), is the thermal diffusivity of air and u, is the mass average velocity at ra-
dial position r. The convective velocity u, is the net result of the fluid motion due to the
concentration gradients (Pesthy et al., 1981). Equation (11.16) should be solved subject to
T(Rp) =T,
T(00) =T
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FIGURE 11.1 Growth of aerosol patticles of different initial radii as a function of time for a con-
stant concentration gradient of 1 ttg m ~3 between the aerosol and gas phases (D, = 0.1 em?s!
-3
pp=1gem™).

’

For a dilute system the first term in (11.16) can be neglected and (11.16) is simplified to
the pure conduction equation,

d*T 24T —0 (11.17)
dr?  rdr )
with solution
R,
T =Ty + (T — Ts) (11.18)
r

The criterion for neglecting the convective term in (11.16) is

Z—)E(MA>1n <—1—_ﬁ> «< 1 (11.19)
a \ My 1 — xax0

where M, is the molecular weight of air and xa; and xac are the mole fractions of A at
the particle surface and far away from it. This convective flow is often referred to as Stefan
flow and (11.19) provides a quantitative criterion for determining when it can be neglected.
ﬂ@gs_ggpglicgtigns involving mass and heat transfer to atmospheric particles it can be ne-
glected (Davis, 1983). ‘

" Up to this point we have been avoiding the complications of the coupled mass and en-

ergy balances by treating ¢, and 75 as known. The surface temperature is in general un-
known and ¢; depends on it. To determine 7; we need to write an energy balance on the
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particle

dﬁ) (47 R)  (11.20)
r=R

~ dT
Iar=r, AH,(47R}) = k(;;) . (4rR)) +kp( dr

=R,

where k and k,, are the thermal conductivities of air and the particles, respectively, T and
T, are the air and particle temperatures, and A H,, is the molar heat released. The left-hand
side is the latent heat contribution to the energy balance, while the right-hand side includes
the rates of heat conduction outward into the gas and inward from the particle surface.
Chang and Davis (1974) solved numerically the coupled mass and energy balances. Their
numerical solution shows that the last term in (11.20) can be neglected, indicating that the
energy AH, is transferred entirely to the gas phase. -
Combining (11.18) and (11.9) with (11.20), we obtain

» k(T; — To) = AH, Dy(coo =~ c5) (11.21)

where c; is in general a function of 7. For convenience this equation is often written as

Iy —Tw AH,D

= £ (Coo — 11.
T kT (Coo — €5) (11.22)

If coo >> ¢, then the temperature difference between the particle and the  ambient gas is

AH,Dgcoo/ k For slowly evaporating specu:s and small heat of vaporization this temper-

_can be used. On the other hand, if thls 1s not valld numerlcal solutlons of (11.4) and (11. 17)
are necessary. T

11.1.2  The Kinetic Regime

For molecules in three-dimensional random motion the number of molecules Zy striking
a unit area per unit time is (Moore, 1962)

Zy = 1Néa (11.23)

where €y is the mean speed of the molecules,

8kT \'/?
EA:< > (11.24)

TTmMmA

Under these conditions the molar flow J; (moles time~!) to a particle of radius R, is

Ji = TRy EAa (Coo — C5) (11.25)
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where « is the molecular accommodation coefficient (not to be confused with the thermal
diffusivity in (11.16)). The ratio of this kinetic regime flow to the continuum regime flow
J. is

Jk OlEA

= 2R
.= ap,fr (11.26)

The accommodation coefficient will be assumed equal to unity in the next section and the
implications of this assumption will be discussed in Section 11.1.4.

11.1.3 The Transition Regime O =

The steady-state flow of vapor molecules to @ sphere, when the particle is sufficiently large
compared to the mean free path of the diffusing vapor molecules, is given by Maxwell’s
equation (11.12). Since this equation is based on the solution of the continuum transport
equation, it is no longer valid when the mean free path of the diffusing vapor molecules be-
comes comparable to the particle diameter. At the other extreme, the expression based on
the kinetic theory of gases (11.25) is also not valid in this intermediate regime where
47 Dp- When Kn % 1, the phenomena are said to lie in the transition regime.

The concentration distributions of the diffusing species and background gas in the tran-
sition regime are governed rigorously by the Boltzmann equation. Unfortunately, there
does not exist a general solution to the Boltzmann equation valid over the full range of
Knudsen numbers for arbitrary masses of the diffusing species and the background gas.
Consequently, most investigations of transport phenomena avoid solving directly the
Boltzmann equation and restrict themselves to an approach based on so-called flux match-
ing. Flux matching assumes that the noncontinuum effects are limited to a region’
_RTS r <A+ R, beyond the particle surface and that continuum theory applies for
r = A+ R, The distance A is then of the order of the mean free path i and within this
inner region the simple kinetic theory of gases is assumed to apply.

Fuchs Theory The matching of continuum and free molecule fluxes dates back to Fuchs
(1964), who suggested that by matching the two fluxes at » = A + R,, one may obtain a
boundary condition on the continuum diffusion equation. This condition is, assuming unity
accommodation coefficient,

d
AT R2(AEMc(Ry + A) — ¢ = D[ == 4m(Ry, + A (11.27)
g arJ,—g,+a

Then solving the steady-state continuum transport equation for a dilute system,

a? 2d
¢ €_o

bt b 11.28
dr?  rdr ( )

using as boundary conditions (11.27) and ¢(c0) = ¢, one obtains the solution

¢(r) = coo — %(cw —¢)Br (11.29)
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where the correction factor Sr is given by

,B _ [1 + (A/R]))]EARp
P GAR, +4D[1 + (A/R))]

(11.30)

Relating the binary diffusivity and the mean free path using D/Aapés = % and letting
Kn = Aap/Rp, one obtains

J — 075 1+KI’ZA/)»AB
Jo 70754+ Kn+ (A/Ang)Kn2

(11.31)

Note that the definition of the mean free path by D/Aapia = % implies, using (11.26),
that, for @ =1,

U

- ke 3 (11.32)
J. 4Kn :
and the Fuchs relation (11.31) also implies, using (11.32),
J 1+ KnA/x
2 + KnA [k (11.33)

Je ~ 1+ KnA /hag +0.75 Kn—1

The value of A used in the expressions above was not specified in the original theory
and must be adjusted empirically or estimated by independent theory. Several choices for
A have been proposed; the simplest, due to Fuchs, is A = 0. Other suggestions include
A = Xpagand A =2D/cp (Davis, 1983).

Fuchs and Sutugin Approach Fuchs and Sutugin (1971) fitted Sahni’s (1966) solution to
the Boltzmann equation for z << 1, where z = M, /M, is the molecular weight ratio of
the diffusing species and air, to produce the following transition regime interpolation
formula T [ ——

J _ 14+ Kn (11.34)
J. 14171 Kn+1.33Kn? ’

Equation (11.34) is based on results for z << 1 and therefore is directly applicable to light
molecules in a heavier background gas. The mean free path included in the definition of the
‘Knudsen number in (11.34) is given by

3D

AAB = —
CA
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For Kn — 0 both (11.31) and (11.34) reduce to the correct limit J/J. = 1. For the kinetic
limit Kn — oo both (11.31) and (11.34) give Jy/J. = 3/(4 Kn).

Dahneke Approach Dahneke (1983) used the flux matching approach of Fuchs but,
assuming that A = Aap and defining D/(Aapéa) = 1, obtained

J 1+ K
. +En (11.35)
J. 142 Kn(l+ Kn)

where Kn = Aag/R,. The mean free path included in the definition of the Knudsen num-
ber in (11.35) is given by

" 2D
AAB = —
CA

Note here that for Kn — 0, J/J. — 1 as expected. On the other hand, for Kn — oo,

J/Je — 1/(2 Kn). This limit is in agreement with (11.26) because D/(ApgCp) = % and

therefore the expressions are consistent.

Loyalka Approach Loyalka (1983) constructed improved interpolation formulas for
mass transfer in the transition regime by solving the BGK model (Bhatnagar, Gross, and

Krook, 1954) of the Boltzmann equation to obtsin

J VTKn(1+1.333Kn) (11.36)
Jo  1+1333Kn+(1.333J7Kn+¢)Kn '
The mean free path used by Loyalka was defined by
4 D
AAB = — — 11.37
aB = ( )

and the mass transfer jump coefficient had a value ¢, = 1.0161. Williams and Loyalka
(1991) pointed out that (11.36) does not have the correct shape near the free-molecule limit.

Sitarski and Nowakowski Approach All the above approaches do not describe the
dependence of the transition regime mass flux on the molecular mass ratio z of the
condensing/evaporating and the surrounding gas. Sitarski and Nowakowski (1979) applied
the 13-moment method of Grad (Hirschfelder et al., 1954) to solve the Boltzmann equation
to obtain
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Jo  b4cKn+dKn?
_ 3B(1+2)? p_ 4O+ 102)
= A3 150 T rrE
(34 5z2) 15(1+2) (11.39)
1 1 2
C:ﬂ(1+2z)+_’ d:9( +2)
n(3+5z) 28 83 +52)

where B =1 for unity accommodation coefficient and}z = My /Ma;; is the molecular
weight ratio. This result is obviously incorrect near the free-molecule regime, because in
the limit Kn — oo, (11.38) yields J — 0.666J;. Therefore we expect (11.38) to be in er-
ror for relatively high values of Kn.

Table 11.1 summarizes the transition regime expressions that we have presented in this
section. Predictions of mass transfer rates of the above four theories are shown as a func-
tion of the particle diameter in Figure 11.2. All approaches give comparable results for par-
ticle diameters larger than 0.2 pum, even if they employ different definitions of the Knudsen
hhwlfﬁﬂggrw)ei’ﬂirlmﬂaifféféht‘“fﬁhéfiraﬁa‘lu"aependencies of the mass transfer rate on the Knudsen
number. This agreement indicates that as long as one uses a mean free path consistent with
the mass transfer theory the final resgml er little from theory to theory. The theory
of Sitarski and Nowakowski (1979), although it is the only one that includes an explicit de-
pendence of the fiiass transfer rate on z, gives erroneous results for particles smaller than

0.2 pum in this case (Figure 11.2). The dependence of the rate itself on z is rather weak and

TABLE 11.1 Transition Regime Formulas for Diffusion of Species A
in a Background Gas B to an Aerosol

Mean Free
Author J/J. Path Definition
T5a(1
Fuchs (1934) 075a(1 + Kn A/dxp) - 3Das
0.75a + Kn + (A/Aag)Kn? { Ca
Fuchs and 0.75 (1 + Kn) . 3Dap
Sutugin (1971) Kn? + Kn +0.283 Kno + 0.75 o Ca
Dahneke (1983) 1+ Kn 2Das
1+2Kn(l+ Kn)/a A
oMY 413K ' g |
Loyalka (1983) | ¢(= + 1333 Kn 4 Dap
1+ 1.333 Kn + (1.333v/mKn + DKn J7 a
Sitarski and b1 +akn) Dap
Nowakowski (1979) bt ckntdknt ==

(see (11.39) for
a, b, ¢,and d)
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FIGURE 11.2 Mass transfer rate predictions for the transition regime by the approaches of
(a) Fuchs and Sutugin, (b) Dahneke, (c) Loyalka and (d) Sitarski and Nowakowski (z = 15)as a
function of particle diameter. Accommodation coefficient =15

for z =35 to 15, the Fuchs, Dahneke, and Loyalka formulas are in agreement with the
Sitarski and NowaKowski results. Li and Davis (1995) compared the results of the above
theories with measurements of the evaporation rates of dibutyl phthalate (DBP) in air
(Figure 11.3). All theories are in agreement with the data with the exception of the theory
of Sitarski and Nowakowski (1979), which exhibits deviations for Kn > 0.2.

____________ R ﬁ‘ birr)Siony
11.1.4 The Accommodation Coefficient f%&

BVt ar=NaN
A D

particleits probablhty of sticking 1s unity. This assumption can be relaxed by Mggg
an accommodation coefficient «, where 0 <« < 1. The flux of a gas A to a spherical par-
icle in the Kinetic regime is then given by (11.25).

The transition regime formulas can then be extended to account for imperfect accom-
modation by multlplymg the left-hand side of (11.27) by a. The Fuchs expression in
(11.31) becomes

J 1+ KnA/x
.~ 075 + KnA/han (11.40)
T, 0.75¢ + Kn + (A /iap) Kn?
and
Je _ 3 (11.41)
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FIGURE 11.3  Comparison of experimental dibutyl phthalate evaporation data with the theories of
Loyalka et al. (1989), Sitarski and Nowakowski (1979) (for z = 15), and the equation of Fuchs and
Sutugin (1970). Reprinted from Aerosol Science and Technology, 25, Li and Davis, 11-21. Copyright

1995, with kind permission from Elsevier Science Ltd., The Boulevard, Langford Lane, Kidlington
OX5 1GB, UK.

The expression (11.35) by Dahneke (1983) becomes

J_ L+ Kn (11.42)
Jo 14+2Kn(l+Kn)/a
whereas the Fuchs and Sutugin (1971) approach gives
J 0.75a(1 + Kn) (11.43)
Jo  Kn>4+ Kn+0283 Kna +0.75a
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FIGURE 11.4 Mass transfer rates as a function of particle diameter for accommodation coefficient
values 1.0, 0.1, and 0.01 for the approaches of Sitarski and Nowakowski (1979), Fuchs and Sutugin
(1970), and Dahneke (1983).

The formula of Loyalka is_only applicablq for o = 1, but the theory gf Sitarski and _
Nowakowski (1979) can be used for any accommodation Coefficient setting '

o
22—«

B = (11.44)

Figure 11.4 shows mass transfer rates as a function of particle diameter for the three ap-
proaches for accommodation coefficient values of 1, 0.1, and 0.01.

Measurements of accommodation coefficients have recently been made by a series of
investigators. These will be presented later in this chapter in Example 11.1.

11.2 MASS TRANSPORT LIMITATIONS
IN AQUEOUS-PHASE CHEMISTRY

Dissolution of atmospheric species into cloud droplets followed by aqueous-phase reac-
tions involves the following series of steps: T
Diffusion of the reactants from the gas phase to the air—water interface.

Transfer of the species across the interface.

Possible hydrolysis/ionization of the species in the aqueous phase.

Aqueous-phase diffusion of the jonic and nonionic species inside the cloud drop.

sn%s».w.—‘/

Chemical reaction inside the droplet.



