Data Analysis III

CU- Boulder
CHEM-4181
Instrumental Analysis Laboratory

Prof. Jose-Luis Jimenez
Spring 2007

Linear Regression II

- Standard regression minimizes sum of squared residuals
- Residual $=\underline{\text { vertical distance }}$ between datapoint and line
- Depending how much scatter there is in the data, the slope and intercept will have more or less error
$-y=\left(m \pm s_{m}\right) * x+\left(b \pm s_{b}\right)$
- Not displayed in simple regression in Excel
- Only gives $y=m^{*} x+b$
- Need to used advanced reg.

Linear Regression IV

- A wealth of information!
- (Displayed with excessive sigfigs)

SUMMARY OUTPUT

The Trouble w/ Standard Regression

- Every point pulls the line towards itself
- With a weight equal to the squared residual
- Noisy points, outliers, can seriously distort fit

Even More Complete Regression

- Nonparametric regression
- Does not assume a distribution
- Typical linear regression assumes no errors on X, Gaussian errors on Y
- More robust in the presence of outliers
- http://www.chem.uoa.gr/Applets/AppletTheil/Appl Theil2.html
- Regression with errors in X and Y
- Weighted linear regression
- Different points have more or less error
- Numerical recipes for explanations
- Chapters 14 \& 15
- http://www.nr.com
- Different regressions in many programs

Confidence Intervals

- In most situations μ cannot be determined
- Can't afford to make lots and lots of measurements
- We will never know the true value
- Cannot make deterministic statements: - "Pb concentration is 4.7 ppb "
- Can and need to make probabilistic statements
- We can say "the probability that the Pb concentration is between 4.5 and 4.9 ppb is 95% "
- Known as "confidence intervals"
- Confidence: 95\%
- Interval: 4.5 to 4.9
- Also expressed as 4.7 ± 0.2

Determining Confidence Intervals

- Width of interval is related to precision (s, σ)
- If measurements are:
- Highly precise: small interval - 0.482, 0.479, 0.488...
- Very imprecise: large interval
$-0.482,0.310,0.650 .$. TABLE a1-3 Confidence Levels for Various Values of z
- Confidence interval when σ is known
- Just use the distrib. of $\bar{x}, \mathrm{~N}\left(\bar{x}, \sigma_{m}\right)$
- CI for $\mu=\bar{x} \pm \frac{z \sigma}{\sqrt{N}}$

Confidence Level, \% $\quad z$

99		2.58
99.7		3.00
99.9	3.29	

Size of CI vs. Number of Measurements

TABLE a1-4 Size of Confidence Interval as a Function of the Number of Measurements Averaged

Number of Measurements Averaged	From Skoog	Relative Size of Confidence Interval
1		1.00
2	\rightarrow as $\frac{1}{\sqrt{N}}$	0.71
3	0.58	
4		0.50
5		0.45
6		0.41
10		

- 2001 Therasan rister Levatoon
- Greatest benefit with first few measurements, then diminishing returns

Example

- From 10 measurements, we determine that the 68% CI of average glucose in the blood of CU students is $1100 \pm 9 \mathrm{mg} / \mathrm{L}$
- Assuming that we have a good estimate of σ
- CQ: how many measurements do we need for the size of the 95% CI to be $4.5 \mathrm{mg} / \mathrm{L}$?
A. 25
B. 100
C. 160
D. 225
E. I don't know

Which Confidence Interval to Report?

- Various confidence intervals
$\pm 1 \sigma(67 \%) \pm 2 \sigma, 95 \%$ CI, 99% CI...
- You have to choose
- Statistics doesn't answer this question, it depends on the value and use of the information
- E.g.
- You are a chemist in a steel factory, analyzing for Mn (related to hardness). You add very expensive elements to steel based on this analysis. You get a raise based on how small the confidence interval is \Rightarrow choose $+/-s$
- If you are wrong, you are fired \Rightarrow choose 99\% CI
- Uncertainty in temperature rise for a given increase of CO_{2} emissions \Rightarrow depends on evaluation of risks vs. costs

How to Estimate σ

- Perform preliminary experiments
- Repeat exp. When developing method, just to estimate σ

- E.g. COD, do one sample 15 times, then do other samples 3 times
- Pooling data

$$
s_{\text {pooled }}=\sqrt{\frac{\sum_{i=1}^{N_{1}}\left(x_{i}-\bar{x}_{1}\right)^{2}+\sum_{j=1}^{N_{2}}\left(x_{i}-\bar{x}_{2}\right)^{2}+\ldots \sum_{p=1}^{N_{n_{t}}}\left(x_{i}-\bar{x}_{n_{t}}\right)^{2}}{N_{1}+N_{2}+\ldots N_{p}-n_{t}}}
$$

CIs when σ is not known

- Often we only have e.g. 3 measurements
- More common situation
- Limitation of time, of available sample, etc.
- All we know about σ is s estimated from 3 meas.
- Can be very uncertain
- Confidence intervals will be LARGER
- In this situation, we will use t
- For a single measurement $\longrightarrow t=\frac{x-\mu}{s}$
- For the mean of N measurements
- Look up in table, or use Excel
$-t \rightarrow z$ as $\mathrm{N} \rightarrow \infty$
- Comparison:
http://www.econtools.com/jevons/java/Graphics2D/tDist.html

Student's t vs Normal Distribution

- The t distribution has wider tails
- We are less sure about CI, because we don't really know σ
- As N increases, we know more and more about σ, and $t \rightarrow N$

Table for Student's t Distribution

- TDIST($t, v, 2$) in Excel

From Skoog
TABLE a1-5 Values of t for Various Levels of Probability
$-t$ from previous page
$-v$ is degrees of freedom - = N-1

- "2" means prob. of both tails
- TDIST(1.89,2,2) = 20\%
- TDIST(2.36,7,2) = 5\%
- Also TINV(prob, v)
$-\operatorname{TINV}(0.2,2)=1.89$
$-\operatorname{TINV}(0.05,7)=2.36$

Degrees of Freedom	$\mathbf{8 0 \%}$	$\mathbf{9 0} \%$	$\mathbf{9 5} \%$	$\mathbf{9 9 \%}$	$\mathbf{9 9 . 9} \%$
1	3.08	6.31	12.7	63.7	637
2	1.89	2.92	4.30	9.92	31.6
3	1.64	2.35	3.18	5.84	12.9
4	1.53	2.13	2.78	4.60	8.61
5	1.48	2.02	2.57	4.03	6.87
6	1.44	1.94	2.45	3.71	5.96
7	1.42	1.90	2.36	3.50	5.41
8	1.40	1.86	2.31	3.36	5.04
9	1.38	1.83	2.26	3.25	4.78
10	1.37	1.81	2.23	3.17	4.59
15	1.34	1.75	2.13	2.95	4.07
20	1.32	1.73	2.09	2.84	3.85
40	1.30	1.68	2.02	2.70	3.55
60	1.30	1.67	2.00	2.62	3.46
∞	1.28	1.64	1.96	2.58	3.29

Example

- Three measurements give
- $\overline{\mathrm{x}}=1000$
- $s=17.3$
- CQ: The 99\% CI for μ is:
A. 1000 ± 100
B. $1000 \pm 17.3 / \sqrt{2}$
C. 1000 ± 34.6
D. 1000 ± 50
E. I don't know

Outlier Rejection

- Is this data point reasonable?
- It may seem too large or too small compared to the others
- You CANNOT just remove it because "it looks wrong"
- Use statistical test to check whether it can be rejected as an "outlier"
- Include this in lab report
- Dixon's Q test
$-\mathrm{Q}=$ gap / range
- Gap: |outlier - next closest value|
- Range: max - min
- $\mathrm{Q}>\mathrm{Q}_{\text {crit }} \Rightarrow$ datapoint can be reject with 95% confidence

Outlier Rejection Example

- You've measured the following 8 values for Pb in soil (ppb):
- 3.073 .00
3.03
3.05
$3.10 \quad 3.20$
$3.11 \quad 3.02$
- CQ: Can you reject the 3.20 datapoint?
A. Yes
B. No
C. It depends
D. I don't know

N	$\mathrm{Q}_{\text {orit }}$ $(\mathrm{CL}: 90 \%)$	$\mathrm{Q}_{\text {orit }}$ $(\mathrm{CL}: 95 \%)$	$\mathrm{Q}_{\text {orit }}$ $(\mathrm{CL}: 99 \%)$
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.612	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568

Table of critical values of \mathbf{Q}

