Data Analysis III

CU- Boulder CHEM-4181 Instrumental Analysis Laboratory

Prof. Jose-Luis Jimenez Spring 2007

Lecture will be posted on course web page - based on lab manual, Skoog, web links

26

- Various confidence intervals $\pm 1\sigma(67\%) \pm 2\sigma, 95\%$ CI, 99% CI...
- You have to choose
 - Statistics doesn't answer this question, it depends on the value and use of the information
- E.g.
 - You are a chemist in a steel factory, analyzing for Mn (related to hardness). You add very expensive elements to steel based on this analysis. You get a raise based on how small the confidence interval is ⇒ choose +/-s
 - If you are wrong, you are fired \Rightarrow choose 99% CI
 - Uncertainty in temperature rise for a given increase of CO₂ emissions ⇒ depends on evaluation of risks vs. costs

36

Example
Three measurements give
$-\overline{\mathbf{x}} = 1000$
- s = 17.3
• CQ: The 99% CI for μ is:
A. 1000 ± 100
B. $1000 \pm 17.3/\sqrt{2}$
C. 1000 ± 34.6
D. 1000 ± 50
E. I don't know

