Data Analysis II

CU- Boulder
CHEM-4181
Instrumental Analysis Laboratory

Prof. Jose-Luis Jimenez
Spring 2007

Summary of Last Lecture

- Treat data in your lab reports and student choice exp. in a professional way
- Topics covered in lecture I
- Significant figures
- Precision vs. accuracy
- Errors
- E_{a} and RE
- Gross errors -> outliers
- Random errors
- Treat with statistics (Gaussian distribution)
- Systematic errors
- Identify and get rid of them
- Today: treatment of random errors \& Excel

Population and Sample Mean

- Sample Mean (\bar{x})
- Average of a finite set of data
- In general not the same as μ, because of finite error

$$
\bar{x}=\frac{\sum_{i=1}^{N} x_{i}}{N}
$$

- AVERAGE() in Excel
- Population Mean (μ)
- Also "limiting mean"
- It is the true value of the

$$
\mu=\lim _{N \rightarrow \infty} \frac{\sum_{i=1}^{N} x_{i}}{N}
$$ quantity being measured

Standard Deviation and Variance I

- Population Standard Deviation (σ)
- Measure of the precision of a population of data
- STDEVP() in Excel
- Variance (σ^{2})

$$
\sigma=\sqrt{\lim _{N \rightarrow \infty} \frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N}}
$$

- Std. dev. has same units of x, variance as units of x^{2}
- Variance from different effects is often additive
- $\sigma^{2=} \sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}+\ldots$
(INDEPENDENT effects)
- Std. Dev. is not!
- VAR() in Excel

Standard Deviation and Variance II

- Sample Standard Deviation (s)
$-s$ instead of σ
$-\bar{x}$ instead of μ
- ($N-1$) instead of N
- "Number of degrees of freedom", $v=N-1$
- Because \bar{x} is used in the calculation, only $N-1$ values are independent, the last one can be calculated from the mean and the other values
- STDEV() in Excel

$$
S=\sqrt{\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{N-1}}
$$

RSD and CV

- Relative Standard Deviation (RSD)
- Often more informative than absolute SDs

$$
R S D=\frac{s}{\bar{x}} \cdot 10^{z}
$$

$-\mathrm{z}=2=>$ percent
$-\mathrm{z}=3=>$ ppth

- Coefficient of Variation (CV)
- RSD expressed as a percent

$$
C V=\frac{s}{\bar{x}} \cdot 10^{2}
$$

Standard Error of the Mean

- Standard deviation
- estimate of the probable error of a single measurement
- Standard error of the mean
- Estimate of the probable error of the mean of N measurements

$$
\sigma_{m}=\frac{\sigma}{\sqrt{N}} \quad s_{m}=\frac{s}{\sqrt{N}}
$$

- More generally
- The mean of N measurements has a distribution $\mathrm{N}\left(\mu, \sigma_{\mathrm{m}}{ }^{2}\right)$
- This is true in the limit even if error is NOT Gaussian
- "Central limit theorem" of probability

Excel Tutorial - Part 1

http://www.chem.utoronto.ca/coursenotes/analsci/StatsTutorial/ExcelBasics.html 9

Entering Data

- In Excel data are entered in cells
- Cells can be empty or contain data or formulas
- Every cell has coordinates
- A1, B12, etc.
- Absolute coordinates: \$A1 or A\$1 or \$A\$1
- Very important distinctions!

CQ: Do you know how to use relative and absolute references in Excel?
A. yes
B. a little
C. no

- Demo: pasting a series of data
- Useful to create regularly spaced data

Formulas and Equations I

- Numerical operators:

Task	Operator	Example	Result
Multiplication	$*$	$2 * 3$	6
Division	$/$	$4 / 2$	2
Exponent	\wedge	$2 \wedge 3$	8
Order of Operations	$(.)$.	$2 * 3+5$ or $2 *(3+5)$	11 or 16
Power of ten	e or E	$3.2 \mathrm{e}+2$ or $3.2 \mathrm{e}-2$	320 or 0.032

CQ: 10e4 in computer notation equals:
A. 1,000
B. 10,000
C. 100,000
D. Neither
E. I don't know

Formulas and Equations II

- Enter a formula which is calculated based on other cells
- Drag or Copy / Paste
- Note that the result is different if you use absolute or relative references

C16			$=-\mathrm{B} 16^{*} 2+5$	
	A		C	D
1	1	0	5	
2	2	0.1	5.2	
3	3	10.2	5.4	
4	4	10.3	5.6	
5	5	0.4	5.8	
6	6	10.5	6	
7	7	10.6	6.2	
8	8	0.7	6.4	
9	9	0.8	6.6	
10	10	0.9	6.8	
11		1	7	
12		1.1	7.2	
13		1.2	7.4	
14		1.3	7.6	
15		1.4	7.8	
16		1.5	8	
17				
18				

Pre-Programmed Functions

- Excel has lots of pre-programmed functions
- E.g. normal distribution
- Click f_{x} symbol to get a menu
- Also look up the help files

Useful Pre-Programmed Functions

- AVERAGE()
- STDDEV()
- STDEVP()
- MEDIAN()
- MAX()
- MIN()
- VAR()
- NORMDIST()

CQ: I have used
A. all of these
B. most of these
C. a few of these
D. none of these
E. what are these?

These are only a few of the statistical functions, there are lots more!

- NORMDISTINV()
- TDIST()
- TTEST()

Plotting in Excel

- Select data
- Choose Insert -> Chart

Proper Graph Formatting for Reports

- Label axes w/ Units (AU or arb. Units if needed)
- Independent variable on X-axis
- Dependent variable on Y-axis.
- Scatter (not line) plot
- Add a regression line (if appropriate)
- Descriptive title
- Remember Sigfigs!

- Do not plot too many data sets on single graph - make multiple graphs instead

The Normal Error Curve

- Random errors are often distributed according to the normal error law

CQ: the probability that the absorbance is exactly 0.49 is:
A. 0.49
B. 25
C. infinity
D. zero
E. I don't know

The Normal Error Law I

- The fraction of a population of observations whose values are between x and $x+d x$ is:

$$
\frac{d N}{N}=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x
$$

- I.e. the probability that an observation is between x and $x+d x$ is:

$$
P(x, x+d x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x
$$

- Probability density:

$$
P(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

The Normal Error Law II

- Cumulative probability
- The probability that x has a value between x_{1} and x_{2} is:

$$
P\left(x_{1}, x_{2}\right)=\int_{x_{1}}^{x_{2}} \frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x
$$

- Normalized distribution:
- In Excel

$$
z=\frac{x-\mu}{\sigma}
$$

- Can type the whole formula (prone to errors)
- NORMDIST ($x, \mu, \sigma, F A L S E$) for PDF
- E.g. $=$ NORMDIST(3,1,0.23,FALSE)
- NORMDIST($x, \mu, \sigma, T R U E)$ for PDF

PDF vs CDF

- Probability Density vs. Cumulative Probability

CQ: the probability that the absorbance is between 0.48 and 0.49 is:
A. zero
B. It is not defined
C. 0.37
D. 0.56
E. I don't know

Normal Error Curves

With units:

Linear Regression in Excel I

- Easy way (in graph)
- More complex way \& more information (Analysis ToolPak)
- Example: calibration curve for fluorescence
- Input data from table:

Fluorescence Intensities	Concentration $(\mathbf{p g} / \mathbf{m l})$
2.1	0
5.0	2
9.0	4
12.6	6
17.3	8
21.0	10
24.7	12

