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Chapter 3 

 

AMS signal processing 

 

The AMS signal is formed by electron impact ionization of gas from vaporization of 

single particles at a resistively heated surface near the quadrupole.  In this section we 

develop a framework for converting this signal into aerosol size distributions, accounting 

for instrumental effects including lens transmission efficiency and single particle and/or 

chopper broadening.  This section is especially important for studies of microphysical 

aerosol processes where the size distribution is changing, such as: nucleation of vapor to 

form new particles, condensation and evaporation of gas-phase species interacting with 

the particle surface, and coagulation (or coalescence) of particles to form larger particles.  

 In this treatment we assume that the sampled particles are pure and that only one 

m/z is being monitored.  The approach can be easily generalized to multi-component 

aerosols since the instrument has demonstrated linear mass detection on particles of 

multiple species.  A series of experiments performed on particle mixtures demonstrating 

this important result is presented in an appendix (A3.2) at the end of the chapter. 

 

3.1 Absolute detection of particle size distributions 

Because this section relies on the definition of many new symbols, we have put them all 

in the following table for easy access, including units and typical numerical values. 
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Quantity    Units   Symbol Numerical 

Electron charge   Coulombs  e   1.602 x 10-19 

Avogadro constant   molecules/mole Av  6.022 x 1023 

Density of particle   ug/nm3   ρ  ~ 10-15 

Specific gravity of particle  unitless  s  ~ 1 

Volume flowrate into AMS  (m3 air)/s  Q  ~ 10-4 

Aerodynamic diameter  nm   Da  10-1000 

Geometric diameter   nm   D  10-1000 

Molecular weight    g/mole   M  10-300 

Transmission efficiency  unitless  Tε   0-1 

Ionization / extraction efficiency unitless  ieε   ~ 10-6 

Electron multiplier gain  unitless  g  ~ 106 

Current to voltage conversion  Ohms (volts/amp) R  ~ 106 

Voltage to signal conversion  bits/volt  Ω  212/20 

Chopper period   seconds  T  ~ 7 x 10-3 

Chopper duty cycle   unitless  ∂   ~ 2 x 10-2 

Duration of tf step   seconds  ∆  ~ 10-5 

AMS signal    bits   S  ----- 

Ions per particle measurement ions/particle  ipp  ~ 100 

Total particle mass loading  ug/m3 air  Mtot  ----- 

Total particle number density  1/m3 air  Ntot  ----- 

Threshold counts    1/m3 air  Nc  ----- 

Signal to mass conversion  µg/m3/bitsec  φ  ~1e4 
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Quantity    Units   Symbol Numerical 

Particle flight length   m   l  0.382 

Velocity calibration constant  nm   D*  27.2 

Velocity calibration constant  unitless  b  0.479 

Gas velocity    m/s   Vg  592 

Particle shape factor   unitless  β  ~ 1 

AMS histogram counts  1/cc   H  ----- 

Particle time of flight   seconds  tf  ~ 10-3 

 

3.1.1 TOF signal from a single ion 

The conversion of AMS signal to mass and number distributions was originally 

summarized by Jayne et al., [2000].  In this section we present a more detailed derivation, 

leading to the same general result.   

Particles incident on the heater are vaporized, and their constituent molecules are 

fragmented by electron impact ionization.  These charged fragments are then filtered 

based on their mass to charge ratio.  A single positive ion emerging from the quadrupole 

filter is then incident on the electron multiplier, resulting in a cascade of electrons emitted 

over a short time, τ.  This constitutes an average current, I (Coulombs / s) persisting for 

the same duration: 

τ
geI >=<  

Here g is the multiplier gain and e is the charge of an electron.  In the pre-amplifier this 

current is converted to an average voltage over the same duration: 
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τ
geRV >=<  

Here, R is the resistance representative of the pre-amplifier.  At the A/D board this 

voltage is converted to an average signal, S also persisting for the same time: 

τ
RgeVS Ω

>=<Ω>=<  

Here, Ω is the signal to voltage conversion factor. We can now rearrange and interpret 

the signal area of a single ion pulse measured in bit•seconds: 

RgeSdttSS
n

i
iff Ω=∆≅≡>< ∑∫

=00

)(
τ

τ       (3.1) 

Here n is the number of time steps in the pulse duration, τ, and ∆ is the duration of a 

single time step.  Equivalently, as is delivered by the “info” wave in the AMS software, 

we may write the number of bit•steps per single ion as 
∆

ΩRge .  Since the AMS software 

performs this calculation to deliver the ipp (ions per particle) measurement, a proper 

measurement of 1 ion/ion insures (by definition) that the gain is correct at that particular 

value of the multiplier voltage. 

3.1.2 Aerosol mass concentration (loading) from the time of flight (TOF) signal 

We are now in position to convert the number of bits at a given tf to the appropriate 

dm/dtf value needed for absolute mass detection.  Our strategy will be to work backwards 

from the observed signal area to the mass concentration (loading).   

Numerically, the signal is an array, with an associated TOF array of the same 

dimension. For the ith point we have, it
if ∆= .  The integral of the total signal over the 
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full range of tf values can be converted to the number of ions incident on the multiplier in 

a given chopper period: 

∑
=

∆
Ω

N

i
iS

Rge 0

1  

These ions represent the number of molecules resulting from particle vaporization events 

over one chopper period,  

∑
=

∆
Ω

N

i
i

ie

S
Rge 0

1
ε

  

We can write this in terms of total µg vaporized in T as: 

∑
=

∆
Ω

N

i
i

iev

S
RgeA

M
0ε

         (3.2) 

The mass current incident on the chopper wheel is MtotQ.  Of this, only δTQMtot µg 

passes through the chopper slit in one cycle.  Through mass balance we equate this 

quantity to the quantity given by eq. 3.2 above, such that: 

RgeTAQ
MwhereSM

iev

N

i
itot Ω∂

≡∆= ∑
= ε

φφ
0

   ug m-3 s-1 bit-1  (3.3) 

Eq. 3.3 links the total mass concentration (loading) of particles sampled into the AMS 

inlet to the integrated signal in TOF space.  From here we may generalize to construct the 

mass distribution, dm/dtf, by re-writing the previous expression for total mass loading as: 

∑ ∑∫
= =

∞

∆=∆
∆

==
N

i

N

i
i

i
f

f
tot Smdt

dt
dmM

0 00

φ  

By inspection, we have for the ith tf bin: 

i
i

f

S
m

dt
dm φ=

∆
=          (3.4) 
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This expression links the observed signal in the ith tf bin to the dm/dtf of the aerosol 

ensemble at that corresponding tf.  We note that this mass distribution represents 

ensembles in the instrument after passing through the lens and the chopper.  In many 

applications, this is a sufficient approximation for the true mass distribution present at the 

AMS sampling inlet.  An approach for obtaining more accurate representations of the 

mass distribution is treated in a later section. 

3.1.3 The mass calibration factor for the TOF signal 

Calculating accurate mass or size distributions from the AMS signal requires that we 

know φ  to high accuracy.  Only two parameters, εie and g, in the expression for φ  must 

be experimentally determined.  The gain, g can be found with a series of single ion 

measurements.   To determine the detection efficiency, εie in the absence of a CPC/DMA 

setup, one must sample a significant number of single particles while fulfilling two 

requirements: 1) the particles must be large enough to cross the threshold most of the 

time (typically 100 ions), and 2) the average time between particle arrivals at the heater 

must be greater than the vaporization time.  We can approximate the upper limit number 

density at which coincidence is likely by requiring the inverse arrival frequency of the 

particles to be longer than the particle vaporization time yielding, Nmax ~ (Qτvap)-1.  

Condition 2 is necessary to avoid particle coincidence, which would lead to an 

overestimate of the number of ions per particle.   Also, one cannot insure condition 2 

without first satisfying condition 1.  Bubbling with a frit through a solution of the species 

of interest can produce polydisperse (containing a wide range of particle sizes) 

distributions of most liquid particles, and number densities can be controlled with 

dilution.  The task then is to record ions/particle for a few different particle sizes 
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(typically greater than 300 nm), with a range that is as small as possible (i.e. +/- 5 nm) 

while still allowing acceptable statistics.  The ionization / extraction efficiency, 

representing the number of ions extracted per molecule vaporized will then be given by: 

v
ie AD

Mipp
3

)(6
ρπ

ε =          (3.5) 

 

3.2 Display options for aerosol size distributions 

In the following sections extensive use is made of transformations enabling passage from 

one distribution space to another.  This is not only important from the standpoint of signal 

processing, but also as a general tool to link experimental and modeling outputs.  In 

addition, displaying aerosol distribution dynamics in different ways sometimes reveals 

important aspects of the underlying physics.  Changes that appear insignificant in number 

space for example may be quite dramatic in volume (or mass) space.  Transformations 

can be used to change both the independent and dependent variable.  We may, for 

example wish to convert a distribution of number over sizes (dN/dD) to a distribution of 

number over mass (dN/dm), requiring a change in the independent variable.  At other 

times we may be interested in changing a distribution of number over sizes (dN/dD) to a 

distribution of mass over sizes (dM/dD) requiring a change in the dependent variable.  

Specific methods for transforming particle size distributions are also available in Seinfeld 

and Pandis [1998].  In this section, we present a more general method for transforming 

distributions from one form to another while maintaining their initial properties. 

 We define a general distribution fy(x) as the following: 

dx
dYxf y ≡)(           (3.6) 
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All such distributions have the property that fy(x)dx represents the amounta of Y (i.e. 

number, surface area, or mass) located within a given infinitesimal range of x (i.e. 

number, surface area, or mass), from x to x + dx.  It follows that integration of such 

distributions over all space will yield the total amount of Y contained within the 

ensemble, which we denote Y0: 

0
0

)( Ydxxf
x

y =∫
∞

=
         (3.7) 

This might, for example, represent the total number of particles, summed over all 

possible diameters.  Should we desire changing the independent variable, from say x1 to 

x2, the total amount of Y integrated over either space must still equate to Y0.  The equality 

must also hold over each infinitesimal range: 

222111 )()( dxxfdxxf =         (3.8) 

We may therefore write the transformed function as: 

2

1
1122 )()(

dx
dxxfxf =          (3.9) 

It is apparent that we are simply re-affirming the chain rule1 in conserving Y upon 

transforming f1 when we write: 

2

1

12
22 )(

dx
dx

dx
dY

dx
dYxf =≡         (3.10) 

We may generalize a transformation involving both the independent and dependent 

variable using the chain rule in a similar fashion, as in: 

1

2

2

1
1

1

2

2

1

1

1

2

2
2 )()(

12 dY
dY

dx
dxxf

dY
dY

dx
dx

dx
dY

dx
dYxf yy ===      (3.11) 

                                                 
a Were we to normalize such a function, f would represent the fraction of quantity Y contained in 
the same range. 
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Eq. 3.11 simultaneously transforms Y1 to Y2 and x1 to x2 while maintaining the property 

given by eq. 3.8. 

Due to the popularity of the lognormal distribution (see below), it is common to 

display aerosol distributions over x in log-space.  Such plots show symmetric modes 

whenever a log-normal distribution is present.  Since dlnx/dx = 1/x and dlogx/dx = 

1/2.303x, any distribution in x-space can be converted to a distribution in lnx or logx-

space through the following: 

dx
dYx

dx
dY

xd
dx

xd
dY

==
lnln

        (3.12) 

dx
dYx

dx
dY

xd
dx

xd
dY 303.2

loglog
==        (3.13) 

In numerical modeling the choice of distribution on which to carry out 

calculations is sometimes critical.  Numerical coagulation studies, for example, proceed 

from eq. 6.20 (see ch. 6) where dN/dm is the chosen distribution (dN/dlnm is also 

common).  Here, we develop transformations using the method outlined above to pass 

from both of theses quantities to dN/dlogD.  Other transformations can be obtained in a 

similar fashion.  For the case of dN/dlnm we begin with the following: 

md
dN

Dd
md

Dd
dN

lnlog
ln

log
=  

Using eq. 3.12 and 3.13, we have: 

DdD
Dd

mdm
md 303.2logand1ln

==  

and thus: 

303.2
1

log
ln D

mDd
dD

dm
md

=  
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or 

dD
dmD

mDd
md

303.2
1

log
ln

=  with     
2

2D
dD
dm ρπ

=     (3.14)  

such that upon gathering terms: 

md
dN

Dd
dN

ln303.2
3

log
=         (3.15) 

 Another useful conversion is from dN/dm to dN/dlogD.  Once again using eq. 

3.13: 

dm
dN

dD
dmD

dD
dND

Dd
dN 303.2303.2
log

==  

Combining this with eq. 3.14 above, we have: 

dm
dND

Dd
dN

2
303.2

log

3ρπ
=         (3.16) 

 
 
3.3 Estimation of various distributions from TOF signal  

In this section we describe a procedure for obtaining estimates of various distributions 

from the AMS signal, ignoring the effects of single particle and chopper broadening.  A 

more accurate treatment for the signal processing is outlined in the next section.   

Due to non-unity lens transmission, we must modify eq. 3.4 to get a closer 

representation of the mass distribution being sampled into the AMS inlet.  The signal at a 

given tf is proportional to the mass distribution of an aerosol ensemble at that point in tf 

space divided by the lens transmission efficiency (see sec. 2.2): 

)(
)(

fT

f

f t
tS

dt
dM

ε
φ

=          (3.17) 
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Conversion to a mass distribution in geometric diameter space is given by the 

transformation (see eq. 3.11): 

dD
dD

dD
dt

dt
dM

dD
dM a

a

f

f

=          (3.18) 

The aerodynamic diameter is given by: 

DsDa β=   and βs
dD

dDa =        (3.19) 

The aerodynamic diameter is defined as the diameter of a unit density sphere having the 

same settling velocity (the terminal velocity in free fall) as the particle. Particles more 

dense than water will have aerodynamic diameters larger than their geometric diameters. 

Also in eq. 3.19, β represents the shape factor of the particle, with a value of unity for 

spherical particles.  Unless a particle has a needle-like geometry, non-spherical particles 

will typically have β < 1.  Taking the expression for particle velocity as a function of 

aerodynamic diameter2, tf can be written as a function of aerodynamic diameter: 

g

b
a

f V
DDl

t
))/(1( *+

=          (3.20) 

such that  

1
* )(

−= b
ab

ga

f D
DV
lb

dD
dt

        (3.21) 

So the expression for the mass distribution becomes: 

)(
)(1

fT

f
b

a

t
tSDs

dD
dM

ε
βκφ −

=  b
g DV

lb
)( *≡κ       (3.22) 

From here other distributions can be obtained: 
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dD
dM

DdD
dM

mdD
dN

p
3

61
ρπ

==         (3.23) 

dD
dND

dD
dS 2π=          (3.24) 

In eq. 3.24, S represents the total surface area of the aerosol ensemble per unit volume of 

air. 

Histogram counts as a verification of mass calibration 

Processing of the histogram is independent of mass calibration and should match the 

above distributions in the limit of large sizes where the likelihood of crossing a threshold 

is high.  Conversion of the histogram, H which is counts/cc in a given tf bin to a number 

distribution is straightforward (from eq. 3.11): 

dD
dD

dD
dt

dt
dN

dD
dN a

a

f

f

cc =         (3.25) 

The only new term in this expression is readily approximated since the time steps are 

much smaller than the chopper period: 

∆
≅

)( f

f

c tH
dt
dN

          (3.26) 

such that 

∆
=

−1)( b
afc DtHs

dD
dN βκ

        (3.27) 

Comparison of eq. 3.27 and eq. 3.23 (using 3.22) constitutes a check of the mass 

calibration, since in the limit of large sizes with negligible coincidence they should be 

identical. 
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3.4 Chopper and single particle broadening 

As the aerosols impinge upon the chopper, they are sampled through a slit of finite width, 

open for a known duration.  The aerosols passing through the chopper over this duration 

have a range of starting times with respect to their tf.  The result of this effect is to spread 

the signal in tf space leading to a broadened mass distribution compared to the 

distribution actually sampled into the instrument.  We can think of this process as an 

integrated system response to a series of impulses.  Mathematically, we can reconstruct 

the overall system response (output) through superposition of the individual responses to 

each impulse (input) using the convolution3.   In this way, we write the output mass 

distribution, dm/dtf = mAMS(tf) as a function of the input mass distribution, assuming a 

certain chopper response function, c(tf). 

∫
=

=

−=
ft

ffAMS dtcmtm
τ

τ

τττ
0

)()()(        (3.28) 

The response function (i.e. for chopper broadening) links the system response to an 

impulse.  A response function for chopper broadening may be derived from first 

principles, but depends on the detailed interaction between the particle beam and the 

chopper.  In this treatment we only suggest an approximate function, of which a 

parameterized version is appropriate for many applications.  If, for example, an 

infinitesimally small segment of dM/dtf = m(t) centered  on t constitutes the impulse, we 

may estimate the response to be m’(t) given by: 

)()(' tmtm
Λ
∆

=          (3.29) 

Here Λ is the opening time of the chopper slit and ∆ is the tf step size.  So the impulse 

effect of chopper broadening is to take an amount of mass, m(t) at a given tf, t and spread 
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it out across tf space from t - Λ/2 to t + Λ/2 .  The magnitude decreases to m’(t) in order to 

conserve mass.    In practice, we are not constrained to assume that the magnitude of the 

transfer function be any set value, as long as mass is conserved in the overall distribution 

before and after convolution.  Defining the magnitude of the chopper response function to 

be θ, we may now define the chopper broadening function to be used in eq. 3.28 as: 

elseanywherettc

ttttc

f

f

==

Λ+<<Λ−=

0)(

2/2/)( θ
       (3.30) 

3.4.1 Outline of a rigorous approach 

For data analysis we must compare expected mass or number distributions with the data.  

Ideally we would solve eq. 3.28 for m(tf) for comparison with theory.  One strategy for 

obtaining m(tf) involves the use of Fourier and inverse Fourier transforms.  We outline 

that strategy here briefly.  Taking the Fourier transform of both sides of eq. 3.28 we have: 

][])()([)]([
0

cmFdtcmFtmF
ft

ffAMS ⊗=−= ∫
=

=

τ

τ

τττ      (3.31) 

The special notation on the right-hand side is simply used as shorthand for the 

convolution.  An important property of the convolution is that its Fourier transform is 

equal to the product of the Fourier transforms of each convolved function, such that: 

)]([)]([][)]([ fffAMS tcFtmFcmFtmF =⊗=      (3.32) 

or 

)()()( ωωω CMM AMS =         (3.33) 

Eq. 3.33 reflects the fact that functions of time convert to different functions of frequency 

once they are transformed.  We may now rearrange and take the inverse Fourier 

transform: 
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]
)(

)(
[)( 1

ω
ω

C
M

Ftm AMS
f

−=         (3.34) 

It is therefore, in principle, mathematically possible to deconvolve the AMS output and 

recover distributions as sampled into the inlet.  In practice, since c(tf) is difficult to 

derive, it is best obtained empirically.  To do so, one must supply a known function for 

m(tf) (i.e. by using a DMA/CPC arrangement).  The observed mAMS(tf) can then be used as 

in the procedure above to determine c(tf).  Since the chopper broadening function is 

independent of the particular distribution, it can be used for all subsequent determinations 

of m(tf) for different systems.  Also, this procedure would need to be repeated for the 

single particle response functionb.   

Another attractive feature of this approach is its comparatively low computational 

cost.  Once in possession of c(tf) (empirical or derived), the two transforms required to 

extract m(tf) cost on the order of NlnN calculations, where N is the number of time steps 

in mAMS(tf).  By contrast, one convolution costs on the order of N2, and in the case where a 

curve fitting routine such as that described below is used, on the order of 102 

convolutions will be calculated per fit.  The computational cost of brute force convolution 

curve fitting is therefore 102N2/NlnN times that of the Fourier transform approach.  For 

dm/dtf arrays with 103 points, this represents a factor of ~104.  For large data sets such as 

those encountered in field work, use of the Fourier transform method may constitute 

significant computational savingsc.   

                                                 
b Convolution is associative, which means that we may convolve the chopper function first and 
then convolve the output with the single particle function or vice versa and still achieve the same 
result. 
 
c This may be circumvented with faster processing speed. 
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Practical application of the method may however prove difficult, especially in the 

case of data with significant noise, since information having frequencies higher than the 

response function will be lost.  Some recent work done on inversion of DMA data by R. 

Flagan and co-workers may prove applicable in this regardd. 

3.4.2 The curve-fitting method 

If assumptions can be made about the distributions, we may proceed in a more 

straightforward fashion than that outlined in the rigorous approach.  Our fitting procedure 

begins with assuming that the distributions can be represented with a sum of n lognormal 

particle size distributions (see below), with 3n total fitting parameters.  We begin by 

converting the initial guessed mass or number distribution to dM/dtf space. We then 

account for lens transmission losses as the particles are aerodynamically focused into the 

instrument.  The newly obtained dM/dtf is then convolved with the chopper and single 

particle broadening functions.  The final output is then compared to actual data, and the 

process is repeated iteratively to achieve the fit.  An example is shown in fig. 3-1, below. 

Conversion of number distributions to mass distributions in TOF space 

For processes whose dynamics are driven by number distributions (such as coagulation), 

we must fit theoretical dN/dlogD to measured dM/dtf.  The transformation proceeds from 

(see eq. 3.11): 

f

a

af dt
dD

dD
dD

dD
dM

dt
dM

=          (3.35) 

Proceeding as before we can show: 

dD
dMD

s
D

lb
v

dt
dM bbg

f

−= 1
*

)(
β

 (ug m-3 s-1)      (3.36) 

                                                 
d Personal communication. 
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We also have: 

Dd
dN

D
D

dD
dND

dD
dNm

dD
dM

p log303.2
1

66

33 ρπρπ
===  

such that upon gathering terms we write: 

Dd
dND

dt
dM b

f log)303.2)(6(
3−= ηπ        (3.37) 

where 

bg

s
D

lb
v

)(
*

β

ρ
η ≡          (3.38)  

We note that the particle shape factor and specific gravity must be known before this 

transformation can be performed. 

 Eq. 3.37 represents the size distribution before sampling into the lens.  Using the 

lens transmission function, written as a function of tf (as described in sec. 2.2.1), we can 

write the distribution actually incident on the chopper as: 

Dd
dNDt

dt
dM b

fT
f log)303.2)(6(

)( 3−= ηπε       (3.39) 

This preliminary dM/dtf is then convolved with chopper and single particle functions and 

compared to the raw dM/dtf taken from the AMS signal (given by eq. 3.4, above). 

Adjustments are then made to the parameters describing dN/dlogD and the process is 

continued until a fit is achieved (see fig. 3-1). 
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Figure 3-1:  Sample fit using the curve-fitting method applied to a distribution of 
coagulating sulfuric acid particles. 
 
 
The fit in fig. 3-1 shows the effect of non-unity transmission as well as that of chopper 

broadening.  The dotted line indicates that there were more particles at smaller sizes than 

were actually observed.  The sharpness of the second peak in the distribution before 

convolution reveals the effect of chopper broadening when it is compared to the raw data 

(thick gray line).     
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Chapter 3 Appendix  

A3.1 Aerosol size distribution functions 

In this section we briefly discuss the properties of two distributions with expected 

applicability to aerosol ensembles.  The curve fitting method described above relies on an 

assumption of the functional form of a distribution, and it is common in field studies as 

well, to simplify aerosol size data potentially involving many species, by exploiting the 

compactness of such distribution functions. 

The log-normal distribution 

A particularly popular functional form for distributions in aerosol studies is the log-

normal4 distribution. Substituting the independent variable in a normal (Gaussian) 

distribution with its log yields the log-normal distribution: 

)
log2

)log(log
exp(

log2log 1
2

2

∑
=

−
−=

n

i i

i

i

i DDN
Dd

dN
σσπ

     (3.40) 

For any given mode, i, there are three parameters describing the distribution within that 

mode: Ni is the total number of particles within mode i, D i , is the median diameter, and 

σi is the geometric standard deviation.  It can be shown that 67% of all the particles in the 

ith mode have diameters between iiD σ/  and iiD σ , and 95% of all the particles lie in the 

range between iiD σ2/  and iiDσ2 5.  Here n is the number of log-normal distributions to 

be superimposed.  Given a function representing the number distribution, the 

distributions in surface area and mass space are given by: 

Dd
dND

Dd
dS

loglog
2π=         (3.41) 
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Dd
dND

Dd
dM

log6log

3πρ=         (3.42) 

An advantage of the lognormal assumption is that it is straightforward to pass from 

number density to both mass and surface area densities, without performing the laborious 

point-by-point transform outlined above.  It can be shown6 (Seinfeld, pg. 425) that if a 

size distribution is log-normally distributed in number, it will also be log-normally 

distributed in both surface area and mass, with the same geometric standard deviation, σ.  

Furthermore, the median diameter in each space can be found from the median diameter 

in number space and σ (Seinfeld, p. 425):   

σ2lnlnln kDDx +=         (3.43) 

This equation in ln space is applicable even for standard deviations, σ obtained from fits 

in log space, since dN/dlogD and dN/dlnD differ only by a multiplicative constant.  Here, 

D is the median diameter in number density space, xD is the median diameter in either 

surface area or mass density space, and k is 2 or 3 for surface or mass diameters 

respectively.  We may therefore write each distribution functionally based solely on the 

parameters from the number density distribution: 

)
log2

)log(log
exp(

log2log 1 2

2
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−
−=
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ix
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i DDX
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dX
σσπ

    (3.44) 

Here X is either mass, M or surface area, S, with xD  given by eq. 3.38.  To find M or S 

for a given mode, one needs the average diameter of that mode.  For a lognormal 

distribution, it can be shown that the average diameter in the ith mode is given by: 

)
2

ln
exp(

2
,,

i
ixix DD

σ
>=<         (3.45) 
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The extreme-value function 

A distribution less cited in the aerosol literature but well known from probability theory 

is the extreme value function (also known as the Fisher Tippett function of type I)7.  We 

have found this distribution to be especially useful in fitting soot mass distributions from 

a propane-generated source.  A mass distribution having an extreme-value representation 

is given by: 

)exp( yeyM
dD
dM

−=
β

        (3.46) 

with 

β
α Dy −

≡  

Here, M is the total mass density of the particle ensemble.  The mean mass-weighted 

diameter is given by α + γβ, where γ is Euler’s constant (γ = 0.5772…).  The variance is 

given by: <D2> = (πβ)2/6.  We note that this function needs as many variables to describe 

a distribution as a log-normal, and would only be chosen as a substitute function if it 

enabled a better fit than the lognormal. 

 

A3.2 Mass detection of multi-component particles 

Signal to mass calibration of particles of one component (see above) enables absolute 

detection of size and mass distributions of that species for laboratory and field studies.  

However, particles encountered in the atmosphere rarely consist of only one component.  

Likewise during chemical kinetics experiments (see ch. 5) on aerosols, the particle 

composition is changing, often involving product species for which the identity is 

unknown.  Because the intermolecular forces that hold the particle together (before it is 
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vaporized by the heater) change with composition, the mass calibration (or detection 

efficiency) of a given species may vary with particle composition.  This is especially 

important for particles composed of species with very different thermal properties.  We 

have designed a series of experiments aimed at detecting such matrix effects on the AMS 

mass detection.  The absence of matrix effects must be demonstrated in order to use 

calibration factors from pure species on those same species present in multi-component 

particles. 

 Experiments were performed on particle mixtures consisting of up to four 

components.  Particle ensembles were generated from the atomizer and then size-selected 

using a Differential Mobility Analyzer (DMA).  Mixing known masses of various species 

in the atomizer solution created particle mixtures of varying composition.  Since the 

atomizer solution was well mixed and atomized droplets have large volumes (~10-1 µm3) 

relative to density fluctuation length-scales in solution, the particles reflect the same mole 

fractions as were present in solution.  Examples of some of the mixtures for which 

particles were sampled include:  NH4Br and NH4Cl, (NH4)2SO4 and NH4NO3, and an 

organic/inorganic mixture of oxalic acid and NH4Br.  Experiments were also done on 

particles consisting of four different species of salts.  The error bars in these plots reflect 

the standard deviation in the ions per particle measurement (see ch. 5).  For our present 

purposes, the ions per particle measurement is an indicator of the relative mass of a given 

species that is detected in particles of a given size. 

The results of these experiments are summarized in the plots in figs. A3-1 through 

A3-4. 
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Figure A3-1:  Demonstrated linear detection efficiency for a salt mixture of NH4Br and 
NH4Cl. 
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Figure A3-2:  Demonstrated linear detection efficiency for a salt mixture of (NH4)2SO4 
and NH4NO3. 
 
 

 
 
 
Figure A3-3:  Demonstrated linear detection efficiency for an organic / salt mixture of 
oxalic acid and NH4Br. 
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Figure A3-4:  Demonstrated linear detection efficiency for a mixture of four different 
salts. Here, the error bars are not shown to facilitate viewing. 
 

As is evident in these plots, linear mass detection is demonstrated within experimental 

error on several binary mixtures.  There is some significant error however in the case of 

4-component mixtures, as seen in fig. A3-4, in the case of ammonium bromide.  We 

encourage further experimentation on complicated mixtures, especially those mixtures 

representative of compositions likely to be found in the atmosphere.   Demonstrated 

linear detection efficiency on such particles should precede more ambitious experiments 

aimed at probing the kinetics and microphysics of particles with multiple components. 
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