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Chapter 4 

 

A chemical kinetic model for reactive transformations 
of aerosol particles 
 

Previous models of heterogeneous interactions have focused on reactive trace gas depletion in 

cloud or aerosol particles and droplets.1,2,3 However, recent laboratory studies have demonstrated 

that reactive trace gas uptake can significantly transform the chemical composition of condensed 

phase species, as is evident from recent work on organic aerosols.4,5 This model focuses on 

transformation rates within the particle itself.  In limiting cases, the model leads to simple 

analytical expressions for the condensed phase species depletion as a function of aerosol/gas 

interaction time.  The model takes into account gas phase diffusion, mass accommodation, bulk 

phase chemical reactions, surface reactions and particle phase reactant diffusion from the aerosol 

interior toward the surface.  In this way, five limiting regimes of aerosol chemical kinetic 

processing are identified, quantified, and united to form a single comprehensive mathematical 

model of particle phase species kinetics.  The presentation stresses the information to be gained 

from observing the size dependence of the particle phase decay rate.   Indeed, decay rates 

exhibiting size dependence spanning particle radius, r0 through r-2 are theoretically feasible, and 

rates going as r0 and r-1 have been experimentally observed1,4. 

In addition, an appendix is provided in which existing characteristic times are 

summarized or new ones are derived for each of the five relevant regimes of chemical 

processing.    Characteristic times can be quickly compared to both time-scales of observed 

changes in laboratory or field studies and apparent size dependence of reaction rates.  Such time 
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scales offer a reliable indicator of the fundamental processes most likely to govern the overall 

reaction rate. They also reveal what combinations of physico-chemical parameters will be 

obtained in studying the time dependence of that process.  In this way they form a useful 

compliment to the resistor model described below.  The method of characteristic times applied to 

cloud droplets was first described by Schwartz6.   

 

4.1 Modeling interactions between aerosols and reactive trace gases 

An aerosol of known size and initial composition is exposed to a reactive trace gas for a known 

period of time, t.  The experimentally observed quantity to be modeled here is the loss rate of 

particle phase species, as opposed to the disappearance of gas phase reactants, the focus of 

previous studies.  We assume the chemical reaction between the trace gas X and particle phase 

species Y is irreversible; that is, X + Y → Z, where Z represents one or more product species.  

The method presented here can nonetheless be extended to more complicated chemical kinetic 

scenarios.   In general, in the absence of convective mixing, the overall kinetic processing will 

depend on the chemical reaction rates as well as the mass transport of both particle and gas phase 

species.  Many parts of the model presented here are taken from our recent paper on the same 

subject7.  

The conceptual strategy 

Our goal is to mathematically describe a general physical system for which all of the relevant 

physics (in the form of partial differential equations) is known, but that cannot be represented by 

any known analytical solution.  To our knowledge, even numerical solutions have not been 

developed over the full range of conditions considered here.  However, the system is well 

described at various limits.  In such limits, the partial differential equations reduce to forms that 
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can be solved analytically by standard methods such as separation of variables or Fourier 

transforms.  Our strategy is to construct a mathematical basis set from a collection of such 

physically limiting regimes, which we conceive as resistances.  To obtain a resistance, we solve 

the equations describing a system as if all other processes were turned off.  Once we have cycled 

through each of the physically limiting processes, with all other processes turned off, we will 

have formed the basis set of resistances required to model the overall process.  The fundamental 

assumption is that we may closely approximate a description of physical reality (almost always 

involving some degree of nonlinear inter-couplings of processes) through a simple decoupled 

superposition of the basis resistances.  In the resistor analogy, used here for mass transfer and 

chemical reaction, processes can add either in series or in parallel.  Series processes are those 

that vanish if any one element vanishes, whereas parallel processes occur along simultaneous 

channels.  For example, gas phase diffusion and mass accommodation (see below) are in series 

with one another since either one’s absence makes mass transfer into the particle impossible.  

This formulation has been tested in previous studies, although not encompassing combinations of 

all the various resistances considered here.  Solutions to limiting processes such as gas phase 

diffusion, mass accommodation, solubility, and chemical reactions have been presented in the 

literature8,9.  Using such available analytical solutions to form appropriate resistances, 

approximate expressions for overall processes have been formulated.  This decoupled 

formulation has been shown to be in good agreement (within about 15%) with analytically 

coupled solutions where these are available2,10.  
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4.2 The model 

We envision five fundamental processes that form the basis elements of the model.  1) The gas 

phase molecule must first diffuse to the aerosol surface where it can collide with and thermally 

accommodate onto the surface with probability S called the adsorption or thermal 

accommodation coefficient.  The adsorbed molecule may desorb at a rate governed by the first 

order rate constant kdes or, in the case of a liquid, it may enter the bulk liquid, at a rate governed 

by the rate constant ksolv.  These two rates together with thermal accommodation coefficient, S 

determine the mass accommodation coefficient, α, which is the probability that an atom or 

molecule striking the surface enters into the bulk liquid phase. 2) Reactions of the trace gas may 

also occur specifically on the surface of the aerosol with rates that may be different than those 

found in bulk.  While saturating the surface, the trace species can diffuse into the aerosol bulk as 

it reacts with it.  As the gas enters the particle, a fraction may evaporate back into gas phase due 

to the limited solubility of the species in the liquid (Henry's law).  It is this entrance of the gas 

species into the particle (dependent on gas solubility, diffusivity, and reactivity) that establishes a 

concentration profile within the particle. 3) In the case of slow reaction or fast diffusion it will 

diffuse deep into the aerosol bulk, filling it to saturation. 4) In the case of fast reaction or slow 

diffusion it will tend to be confined to a thin shell near the surface. 5) In this case, the particle 

phase species must diffuse to the surface region in order to react.  In relatively large or highly 

viscous aerosols, one may also have to take into account diffusive transport of particle-phase 

reactant toward the region near the aerosol surface where reactions are occurring.  Each of the 

latter individual processes can be described by independently solving the relevant partial 

differential equation with appropriate boundary and initial conditions. 
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In experiments subject to any of these processes and/or limitations, the measured flux, J 

of trace gas into the surface is expressed in terms of a measured uptake coefficient, γmeas, as: 

4
)( measgx cn

J
γ

=           (4.1) 

Here nx(g) is the bulk concentration of the trace gas molecules (species X) and c  is their average 

thermal speed.  Of course, γmeas is always smaller than or equal to 1 since the flux cannot exceed 

the collision rate per unit area, nx(g) c /4.  The model ensures that this is the case, as will be seen 

below. 

In the case where a trace gas concentration profile has been established within the particle 

(shown below to be typically much faster than other processes), all the reactive gas molecules in 

the flux, J (as in eq. 4.1) through the aerosol surface react with the particle phase species Y.  

Therefore, mass balance allows us to write the volume-averaged particle phase loss rate [Y& ] = 

d[Y]/dt within an aerosol of radius a, as in: 
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In general, a,?γmeas, and nx(g) will vary with time as a result of gas-particle interactions.  

The goal then is to formulate an expression for γmeas by adding the basis resistances 

(taken from the various limiting processes) appropriately.  In this treatment, the resistance of the 

ith process is given by 1/Γi, where Γi represents the normalized rate of process i. More 

specifically, Γi is the ratio of the flux of trace gas to the kinetic collision frequency, assuming a 
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Maxwell-Boltzmann distribution prevails near the aerosol surface.  In the absence of solubility 

limitations, the overall resistance equation from which one obtains γmeas is written as: 

 

diff
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=
1

1
1

1111

α
α
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and shown in fig. 4-1.  Because the adsorption coefficient S, is ≤ 1 the maximum value of γmeas is 

limited to unity.  There is no limit to the value of the Γ terms.a 

The 1/Γ terms in eq. 4.3 (and fig. 4-1) represent gas phase diffusion (Γdiff), surface 

reaction (Γs), mass accommodation (α), chemical reaction within in the particle (Γrxn) and 

diffusion limited mixing within the particle (Γp
diff).  These terms account for process rates (and 

concentration gradients) in the gas phase, at the interface and within the particle.  Taken together, 

they form the basis of the general model.  The term Γp
diff, which accounts for the diffusion 

limited gradient of the reactant Y within the particle, is presented here for the first time.  This 

formulation assumes that the aerosol consists of a single component Y.  We note that in modeling 

multi-component aerosols, separate Γrxn, Γs, and Γp
diff need to be formulated for each component. 

When one is concerned with the depletion of gas phase species or when solubility 

dynamics are expected to influence the overall rate, a time dependent solubility term 1/Γsol is 

added in parallel with the 1/Γrxn term.  Alternatively (see below) this can be included in a more 

complicated form of 1/Γrxn, for which an analytical solution has been derived in the literature. 

We will show below why the term 1/Γsol is not expected to affect particle species reactive loss.  

                                                 
a In the limit of high Γ, the resistance goes to zero. 
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Also, the trace gas (nx) that is simply solvated in the particle phase does not result in particle 

species loss.  Therefore, since the purpose of this presentation is to develop expressions for 

particle species reaction rate [Y& ], the term 1/Γsol has been omitted from eq. 4.3. 

 

 

 

 

Figure 4-1:  Electrical circuit analogue for the gas uptake process governed by gas-phase 
diffusion, mass accommodation, surface reactions, and particle phase reaction and diffusion. 

4.2.1 Gas phase diffusion and mass accomodation 

When gas phase diffusion or mass accomodation is limiting, the rate of processing within the 

aerosol will be governed by how quickly the gas diffuses to and passes through the surface of the 

aerosol.  An empirical formulation of isothermal diffusive transport11 that is in good agreement 

with experimental data12 can be written as the resistance 1/Γdiff  13: 
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where Kn is the Knudsen number defined as λ/a and λ is the gas phase mean free path. The mean 

free path is here expressed as λ=3Dx(g)/ c , where Dx(g) is the gas phase diffusion coefficient of 

α
α

S
S −

rxnΓ
1

diff
pΓ
1

sΓ
1

S
1

diffΓ
1








α
1



Taken from doctoral thesis, Chemical Kinetics and Microphysics of Atmospheric Aerosols, © copyright by James W. Morris, 
2002. 

 

 61

the trace species.  As shown schematically in fig. 4-1, 1/Γdiff represents the “resistance” of gas 

phase diffusion to the gas uptake, accounting for the gradient in gas phase concentration due to 

the flux of gas into the particle. 

As described in detail previously2, interfacial resistance to mass transport can be 

formulated in terms of the mass accommodation coefficient, α, which can be expressed as: 

 11

sol

des
Sk
k

S
+=

α

 

or 
α
α

S
S

Sk
k

sol

des −=          (4.5) 

The ratio ksol /  kdes is the true measure of the interfacial kinetic resistance, though α is often 

quoted as the collision probability coefficient for trace gas uptake into the (liquid) particle.  

4.2.2 Surface reactions 

Once the trace gas X has diffused to the surface, it can react with aerosol species Y directly at the 

surface via a mechanism that is kinetically separable from reaction within the particle.  As shown 

in fig.1, this corresponds to a “resistance” term between 1/S and kdes/Sksol = (S-α)/Sα (see eq. 

4.5), since such surface reactivity competes with mass accommodation of X into the bulk particle 

through the gas/surface interface. We use the same approach here to find Γs as in the case of gas 

phase diffusion. We calculate gas phase flux into the particle, assuming that this specific process 

is solely the one governing the uptake.  

Here we suggest the following expression for the surface reaction rate between species X 

and Y per unit area per second: 

ssgx
s

ss
ssgx YRTHnkYXk

cn
][][][

4 )(22
)( ==

Γ
      (4.6) 

In eq. 4.6 we have assumed that the surface concentration of trace species is in equilibrium with 

the gas phase, analogous to a Henry's law equilibrium for bulk condensed phases.  All surface 
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concentrations are in moles cm-2 and Hs and ks
2 are surface analogs to their bulk counterparts. 

Alternate formulations of eq. 4.6 may be more convenient in some cases (see Hu et al., [1995]14). 

Using the above formulation with the further assumption that [Y]s = Ks[Y], we may write the 

uptake coefficient Γs from eq. 4.6: 

c

YRTKHk ss
s

s
][4 2=Γ          (4.7) 

Here, Ks is an equilibrium constant (with units of L cm-2) linking the surface concentration [Y]s to 

the bulk concentration [Y].  The equilibrium parameters Hs and Ks used in eq. 4.7 can at times be 

obtained experimentally from surface tension measurements for example, or can be estimated by 

extrapolation from bulk phase equilibrium values. 

4.2.3 Reactions within the particle interior 

For the simultaneous reaction and diffusion of the trace gas into the aerosol, we hold the trace 

species concentration constant at the surface, while allowing the trace gas to react as it diffuses 

into the aerosol.  Because this process is expected to be important in laboratory and field studies, 

we will derive it here in detail.  We begin with the diffusion equation including an additional 

term for reaction within the particle:  

),]([])[,]([),]([ 2
2

)( trXYtrXktrXD px
&=−∇       (4.8) 

This expression takes into account the full dynamics of trace gas species diffusion, solubility, 

and reaction within the particle.  It does not explicitly account for the loss of Y due to reaction 

with X, which would require a mirror equation of eq. 4.8 for Y.  For now we will make a 

simplifying assumption that we will justify below: The initial profile [X](r) is established so 
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quickly, that we can assume the loss rate of Y to be governed by the pseudo-steady state profile 

of X within the particle.  In other words, after some very brief moment, [X](r) develops, 

establishing a volume-averaged loss rate of particle species given by: 

∫=
a

drrtYtrXk
a

Y
0

2
23 4)]()[,]([

4

3
][ π

π
&        (4.9) 

In this expression we write [X](r,t), explicitly a function of time, not due to the dynamics in eq 

4.13, but because depletion of Y changes the steady state profile of X.  Making the assumption 

that eq. 4.13 is at steady state allows us to write it as: 

0])[]([)]([ 2
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)( =−∇ YrXkrXD px         (4.10) 

or in spherical coordinates: 
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Here, k1 = k2[Y]. 

The analytical solution, describing the trace-gas concentration within the particle as a function of 

radial position and particle species concentration, can be shown to be15: 
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)/sinh()]([)]([
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D
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r
aaXrX px≡=       (4.12) 

The parameter l, is the reacto-diffusive length representing the depth to which solvated trace 

species X diffuses while reacting with Y.  This depth reflects the distance reactant X will diffuse 

in one reactive characteristic time (1/k2[Y]).  We note that the concentration profile of X depends 

on the concentration of Y within the particle; X will diffuse more deeply on average into the 

particle the less Y there is with which it can react.  It is for this reason that we refer to [X](r) as a 

pseudo-steady state profile. 
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At any instant in time, the net rate at which species X enters the particle equals the rate at 

which species Y is depleted.  Also, by definition this must be equal to the volume-averaged 

reaction rate within the particle itself, given by eq. 4.9.  Using Fick’s law to access the net flux of 

reactant gas molecules at the surface we have: 

4
)

)]([ )(
)(

rxngx
argxx

cn

dr
rXd

DJ
Γ

=−= =         (4.13) 

such that we may write Γrxn as: 

[ ])/()/coth(][
4

2)( allaYkD
c

HRT
pxrxn −=Γ       (4.14) 

In this expression, we have replaced [X](a) with the Henry’s law value, HPx=Hnx(g)/RT.  Here 

Dx(p) is the diffusion coefficient of the solvated trace species X in the particle phase, H is its 

Henry's law coefficient (H is in units M atm-1 L-1, R is the gas constant in matching units), and k2 

is the second order rate coefficient for the reaction of X with Y.  In fig. 4-2, we show how this 

function depends functionally on l and a.  This is the same expression as presented in Hanson 

and Lovejoy1, where it was first applied to aerosol kinetics. 
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Figure 4-2: General functional dependence of reactive uptake coefficient on particle radius, a 
and reacto-diffusive depth, l. 
 

4.2.4 Particle phase diffusion 

As we have seen in the case of rapid reaction, it is possible that the trace gas diffuse to a depth 

many times smaller that the particle radius.  Most of the aerosol chemical processing will occur 

within this reacto-diffusive length, l.  If diffusion of particle species to this reaction region is 

sufficiently slow, the overall rate of processing can be expected to decrease due to a depletion of 

particle species concentration in this region. 
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Here we derive an exact expression for the resistance when the diffusion of the particle 

phase species is many times slower than reaction near the surface.  Thus the rate at which 

particle phase molecules disappear from the particle will be governed entirely by how quickly 

they can diffuse to the surface where they immediately react away.  In this case the surface 

concentration of the particle phase species is zero by construction; the particle phase molecule is 

destroyed by reaction the very instant it reaches the surface region.  This process is taken into 

account by the coefficient Γp
diff, the last term shown in eq. 4.3 and fig. 4-1.  We derive an 

expression for Γp
diff  here for the first time. 

 We assume that the reactive gas phase flux into the aerosol is governed by the diffusion 

rate of Y from the particle interior. Matching the trace gas flux through the surface to the flux of 

Y toward the surface we have: 
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A solution to the diffusion equation in spherical coordinates can be found through 

separation of variables.  Subject to the boundary condition that [Y] = 0 at the particle surface and 

[Y] = [Y]0 initially everywhere within the particle, an exact expression for [Y](r,t) is found to be16 

(see fig. 4-3): 
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Through eq. 4.2, (with some work) we may now write: 
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A significantly simpler expression for Γp
diff can be obtained by assuming a linear concentration 

profile for Y, as [Y](r) = [Yc](1 - r/a), where [Yc] = [Y](r=0).  Therefore, d[Y](r)/dr = -[Yc]/a.  

From the definition of the average concentration, we have: 
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Combining expressions, the simplified expression for Γp
diff emerges as,  
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p ][16
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This simple expression is in a form consistent with the other uptake coefficients and lends itself 

to facile computation.  The accuracy of this expression will be discussed later.  The uptake 

coefficient Γp
diff becomes important (i.e. 1/Γp

diff is large) in the limit of large, highly viscous 

particles, where diffusion of Y from within the bulk of the particle must compete with surface or 

near surface reaction, leading to a gradient in [Y](r) within the particle. 
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Figure 4-3: Particle phase concentration profiles as a function of time in a particle reacting in the 
particle-phase diffusion limited regime. 
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Table 4-1:  Summary of gammas (inverse resistances) and characteristic times (see appendix) 
relevant in aerosol chemical transformations. 
 

4.3 Particle phase loss in limiting cases 

We will now apply eq. 4.2 to calculate the fraction of particle phase species Y remaining 

([Y](t)/[Y]0) given the initial concentration [Y]0, due to interaction with gas phase reactive species 

X in specific limiting cases.  In these calculations we will assume that the overall gas phase 

density nx(g) remains constant throughout the reaction, since atmospheric aerosol mass loadings 

are small, (typically on the order 10 µg m-3) and therefore only a small fraction of the trace gas is 

expected to react. Also, while particle size change due to gas-particle interactions can be 

accounted for, here we will assume that the particle size remains constant.  In each case shown 
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density nx(g), and initial particle phase concentration is clearly evident.  Therefore, it is possible 

to establish the rate limiting process through comparison with data from a controlled experiment 

or well-monitored field study. 

4.3.1 Particle phase loss limited by gas phase diffusion and/or mass accommodation of X 

This is the case for very rapid (non-surface) X-Y reaction, (i.e. Γs << α and Γrxn >> α).  In other 

words, the species X is consumed as rapidly as it enters the bulk and therefore γmeas? = (1/Γdiff +  

1/α)-1.  Upon integration of eq. 4.2 we obtain: 
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)]([ −+Γ−= α        (4.20) 

The loss of Y is particle size dependent in general.  In the case of kinetic flux to the particle 

surface, the incoming mass flow rate goes as the particle surface area (flux independent of 

radius), whereas the reaction takes place throughout the bulk of the aerosol.  In the case of a 

continuum flux into the particle, the mass flow rate goes as the radius (flux going as the inverse 

radius).  Eq. 4.4 will have varying size dependence, depending on the regime applicable, and this 

will manifest in the size dependence of the particle phase loss rate (eq. 4.20). 

4.3.2 Particle phase loss limited by surface reaction 

This may reflect very efficient liquid surface reactivity or be effectively true when 

concentrations near the surface are larger than their bulk values (i.e. Gibb’s surface excess). In 

this case γmeas = Γs
 as given by eq. 4.11 and via integration of eq. 4.2: 
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4.3.3 Particle phase loss limited by reaction within short reacto-diffusive length, l << a 

In this case, reaction of X and Y occurs in a thin shell of depth l below the aerosol surface. When 

l<<a, the coth term in eq. 4.14 approaches 1, and we are left with: 
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c
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pxrxn =Γ          (4.22) 

Now with γmeas ?= Γrxn integration of eq. 4.2 yields:   
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We note that this expression breaks down in the limit where [Y]->0, since here l is no longer 

much less than a.  Realizing this physical limitation obviates concerns of the long time solution 

(leading to increasing  [Y](t)), clearly beyond the domain of applicability of the expression. 

4.3.4 Particle phase loss limited by reaction within long reacto-diffusive length, l >> a 

In the limit where l >> a, the coth term approaches l/a + a/3l.  This is consistent with the trace 

gas having very quickly filled the particle to its Henry’s law concentration (that is, [X] = 

nx(g)HRT).  In this case eq. 4.14 reduces to:  

][
3

4
2 Yk

c
aHRT

rxn =Γ           (4.24) 

Now with γmeas ?= Γrxn, integration of eq. 4.2 yields:     
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Y
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gx 2)(
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)]([
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4.3.5 Particle phase loss limited by diffusion of Y from the aerosol interior toward the 
surface 

In this case γmeas = Γp
diff.  Using the simplified expression for Γp

diff given by eq. 4.19, upon 

integrating eq. 4.2 one obtains: 

t
a

D

Y
tY y

20

12

][
)]([

ln −=           (4.26) 

Dependence on particle size is here second order.  Further, this is the only case where the 

fraction remaining is independent of nx(g).  We anticipate this physically since adding more trace 

gas will not affect the processing rate when mass transfer within the particle is solely rate 

limiting.  Eq. 4.26 reflects the maximum decay rate of Y, dependent only on the rate of diffusion 

of Y within the particle. Thus, in the absence of convective mixing within the particle, eq. 4.26 

sets an overall upper limit for the chemical transformation rate within aerosols.  This case is rate 

controlling in the limit of large or highly viscous particles and in the limit of fast X +Y reaction 

that locally depletes [Y] at or below the surface of the particle. 

A solution for particle phase concentration using the more exact expression for Γp
diff (eq. 

4.17) can also be derived17: 

)exp(6
][

)]([

1 2

22

220
∑
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=
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y
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tDi

iY
tY π

π
        (4.27) 

However, a smooth function requires the summation of about 100 terms.  Eq. 4.26 overestimates 

[Y]/[Y]0 at 0.50 and 0.10 fraction remaining by 32% and 10% respectively.  At 0.05 fraction 

remaining eq. 4.26 is within 1% of the exact solution.  This is shown in fig. 4-5. 
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Figure 4-5: Comparison of kinetics based on straight-line concentration profile and those based 
on analytical solution in the case of the particle phase diffusion limit. 

 

4.4 Simultaneous reaction and particle phase diffusion 

The general problem of combined reaction and diffusion of both the trace gas and the particle 

phase species within the particle is mathematically described through the following system of 

partial differential equations: 
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Taken with four boundary conditions (to satisfy the four spatial derivatives) and two initial 

conditions (to satisfy the two time derivatives) eqs. 4.28 fully define the physical process.  

However, no known analytical solution exists for this system.  We will therefore apply the 
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method of resistances to obtain an approximate solution.  We will couple particle phase diffusion 

with reaction characterized by short reacto-diffusive length.  Once in possession of a solution we 

will compare it to an analytical solution that is expected to approximate the actual solution 

closely.  A more rigorous comparison can be pursued using advanced numerical techniques. 

Particle phase diffusion and thin shell reaction are expected to dominate particle phase 

loss simultaneously when their characteristic times are within an order of magnitude of one 

another while each is at least two orders of magnitude higher (slower) than those for all other 

processes.  Mathematically we expect: 

1~
][

3 )(2

2
,

pxx

y
p

diff

alrxn

Dk
Y

aHP

Dπ

τ

τ
=<<         (4.29) 

It is therefore expected to be important for large particles whose self-diffusion coefficient is very 

low, in the presence of highly soluble and highly reactive trace gas.  In cases where the above 

ratio is near unity, we will need to use the resistor model to approximate the overall particle 

phase loss rate.  We develop an expression for γmeas by combining  Γrxn (with l<<a, eq. 4.34) and  

Γp
diff  (eq. 4.30).  This enables us to use eq. 4.2 and write:  

)][4(

][12
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kDHaPYDa

kDHPDY
Y

pxxy

pxxy

+

−
=&         (4.30) 

Integration of this expression at the limits recovers eq. 4.26 and eq. 4.23 as expected.  The 

general analytical solution of eq. 4.30 is quite cumbersome13, but solving it through numerical 

integration using either Runge-Kutta or Euler schemes is straightforward. 

Comparison of resistor model result with an analytical solution 

In our resistor model formulation, we have allowed for the fact that as the reaction ensues, the 

reacto-diffusive length increases.  Though a general analytical solution for eqs. 4.28 does not 
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exist, in the case where we hold l constant a solution can be found by appropriately changing the 

boundary conditions to a previously solved problem.  Since we confine the reaction to a thin 

shell near the surface, in the particle interior we have simple diffusion, or: 

t
trY

r
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trYDy ∂
∂=

∂
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∂

∂ ),]([)),]([2),]([(
2

2
       (4.31) 

At the boundary, which we for convenience define as the surface lying a constant depth l0 

beneath the surface, we require that the flux of particle phase species from the bulk match the 

rate of disappearance due to reaction in the shell.  Our first boundary condition is therefore: 
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,
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The second boundary condition requires the concentration gradient vanish at r = 0: 
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∂
=rr

Y
           (4.33) 

The initial condition is: 

0][)0,]([ YrY =           (4.34) 

These conditions are analogous to those in the surface evaporation case for which a solution is 

provided in the literature, and a solution can be adapted to our case of thin shell reaction18: 
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Here, the βn must be solved for numerically (i.e. using bisection or the Newton-Raphson 

technique) from: 

01cot =−+ Lnn ββ          (4.36) 

In fig. 4-6 we compare this analytical result to the resistor model approximation. 
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Figure 4-6:  Comparison of resistor model with analytical solution in the case of constant reacto-
diffusive length.  The changing reacto-diffusive length result is also shown for comparison.  
Calculations were performed on a 10 micron particle with physico-chemical parameters yielding 
characteristic times shown.  
 

From fig. 4-6 it is evident that the resistor model result very closely matches the more 

complicated analytical solution for the case where we hold the reacto-diffusive length constant.  

The resistor model result for l changing matches the analytical solution at early times, but 

delivers smaller fractions remaining at longer times.  This reflects the fact that as the reacto-

diffusive depth increases, the reaction takes place throughout a larger volume, and thus results in 

a higher overall loss rate.  
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4.5 Application of results 

The interest in aerosol particle-phase chemical transformation is relatively recent.  To our 

knowledge there are only a few studies illustrating the reactive regimes discussed above.  In 

laboratory studies of sub-micron (0.2 to 0.6 µm) aerosol ozonolysis, the reactive depletion of 

oleic acid clearly matched Case 4.3.3 (see ch. 5, below), exhibiting the predicted reactant 

concentration and aerosol size dependence5.  In a similar experiment with larger oleic acid 

aerosols (0.68 to 2.5 µm), the Miller research group at the University of North Carolina observed 

transition from Case 4.3.3 to Case 4.3.5 as the aerosol size increased (submitted for publication).  

Both experiments yielded oleic acid/ozone transformation rates much faster than deduced from 

atmospheric field studies19, indicating that atmospheric reactivity depends on the morphology of 

complex particles.  In an earlier study focusing on reactive gas uptake, Hanson and Lovejoy 

[1995] observed uptake kinetics governed by Cases 4.3.2 and 4.3.3.  With the advent of single 

particle aerosol mass spectrometers, field data quantifying the time and/or distance dependence 

of aerosol chemical composition will become much more common, and models incorporating 

particle phase reactions using the formulation presented here will be required to interpret many 

of these studies. 
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Chapter 4 Appendix 

A4.1 Characteristic times for limiting processes 
 
Obtaining characteristic times for these processes is pursued in a manner similar to that used in 

deriving individual resistances.  One solves the partial differential equations relevant to the 

process assuming it alone is acting.  The solution will typically contain an exponential 

summation of the form: 

∑
∞

=

−
1

exp  
j

i )t)jf(p(           (A4.1) 

Here f(pi) is a function of the physico-chemical parameters, pi (i=1,2,3…) characterizing the 

particular process.  The characteristic time is then expressed asb τ = 1/f(pi).  It follows that for t 

>> τ, the exponential terms are vanishingly small, and the dynamics are expectedly very slow 

(very long times are required to see very small changes in the system).  The system here is 

described as being “relaxed”.  On the other hand, for t << τ, the system exhibits very large 

changes in very small increments of time.  The characteristic time then gives us an 

approximation of the relaxation time of the system, dividing the regions of fast and slow 

dynamics.  Given estimates of the characteristic times for various processes, the process with the 

slowest characteristic time is the one most likely to govern the overall rate. 

A4.1.1 Gas phase diffusion and mass accomodation 

The characteristic time for gas phase diffusion in the continuum regime (Kn <<1) is taken from 

the time-dependent solution of the diffusion equation and approximates the time for the 

concentration profile around the aerosol to achieves a steady state value: 

                                                 
b For systems of sufficient simplicity it may not be necessary to solve for eq. A4.1.  For example, first order ordinary 
differential equations describing many kinetic phenomena have characteristic times given by τ=[Y]/[ Y& ].   
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)(
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τ =           (A4.2)   

In this expression Dx(g) is the diffusion coefficient (cm2 s-1) of the trace gas around the particle.  

The characteristic time for mass accomodation (sometimes called the characteristic time 

for interfacial equilibrium) indicates the timescale over which the species taken up by the surface 

obtains its equilibrium concentration value there.  We are describing a case where an aerosol 

initially devoid of trace gas is suddenly plunged into a known concentration of trace gas, held 

constant during the uptake process.  The characteristic time c emerging from the time-dependence 

of the analytical solution is20: 

α

π
τ

3

2 RTMaH x
ie =           (A4.3) 

In the special case of highly insoluble trace gas, the characteristic time becomes: 
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,
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insolie
D

a

π
τ =           (A4.4) 

In these expressions, H is Henry’s law solubility coefficient (M atm-1), R is the gas constant (atm 

M-1 K-1), Mx is the molecular weight of the trace species (g mole-1) and Dx(p) is the diffusivity of 

the trace gas in the particles.   

4.2.2 Surface reactions 

In this case we have only to solve an ordinary differential equation, and there is only one term in 

the form given in eq. A4.1.  From the solution (see eq. 4.21), the characteristic time for surface 

reaction is: 

                                                 
c The same expression can be derived much more simply by assuming a constant flux to the surface and calculating 
the time required to fill the particle to its Henry’s law concentration. 
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4.2.3 Reactions within the particle interior  

Here we can go back to eq. 4.8 and take characteristic times from the more general solution, 

describing the approach to steady state.  From the solution to eq. 4.8 in spherical coordinates21, it 

can be shown that the characteristic time as defined through eq. A4.1 is given by: 
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This is the time required for X to approach a pseudo-steady state profile within the particle.  It 

can therefore be thought of as a reacto-diffusive solubility time.  An important question is 

whether the time it takes to form the profile in X can ever be expected to affect the overall rate of 

mass transfer within atmospheric particles.  We will return to this question below. 

 In the case of a very short reacto-diffusive length, l<<a, we can derive a characteristic 

time for reaction of Y within the particle using the expression in footnote (a) above.  Since 

reaction is confined to within the shell of thickness l, the volume averaged loss rate of Y can be 

approximated as: 
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Taking the trace species concentration in the shell to be near its Henry’s law value, this leads to 

an estimated characteristic time for depletion of the liquid species within the liquid shell as: 
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Since the loss rate goes as the inverse of the characteristic time, this expression indicates that 

particle phase loss limited by reaction within the reacto-diffusive length will exhibit inverse 

radius dependence. 

 A similar approach can be used to derive the characteristic time in the case where the 

trace gas fills the entire particle (or by inspection of eq. 4.36 below).  One finds: 

 
x

alrxn HPk2
,

1
=>>τ           (A4.9) 

In this case, the loss rate is independent of size.  From consideration of the characteristic times in 

the limiting regimes of bulk and thin shell reaction, it is apparent that when Γrxn governs the 

overall rate, the size dependence spans a0 to a-1 depending on the extent to which the reacting 

trace gas penetrates into the particle interior.   

We may now return to the question of the importance of reactive solubility of the trace 

gas in determining the overall rate of chemical transformation within particles.  In the limit of 

very small particle radii, the characteristic time for reactive solubility, eq. A4.6, becomes: 
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Whereas in the limit of very large radii, we obtain: 
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In the small particle limit, we may compare eq. A4.10 and eq.  A4.12 below.  Since it is unlikely 

that the trace gas diffusion coefficient within the particle be less than the self-diffusion 
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coefficient of the particle species, it is unlikely that this process limit the overall rate for small 

sizes, since particle phase diffusion will limit instead.  For very large particles, consider 

expressions A4.11 and A4.9 above.  Since it is very unlikely that the trace species concentration 

ever surpass that of the particle phase, it is unlikely that this process ever limit the rate for large 

particles.  We may infer from these limits that the same will hold for intermediary sizes, such 

that solubility of the reactant trace gas is unlikely to limit the overall processing rate in aerosols 

of atmospheric or laboratory interest. 

4.2.4 Particle phase diffusion 

Inspection of eq. 4.27 yields the characteristic time for particle phase diffusion: 

y

p
diff D

a
2

2

π
τ =                   (A4.12) 

We note that characteristic times allow one to quickly assess the relative importance of 

the five rates involved in aerosol processing, while indicating what physical parameters will 

likely be gained from dynamic information of the uptake process (Fig. A4-1).  If for example the 

time for reaction of the liquid species in a thin shell is the greatest of all the characteristic times, 

one can expect the overall reaction rate to depend on the size (slower for larger particles) and to 

extract fundamental information in the form of H(Dx(p)k2)1/2.  Table 4-1 summarizes the results 

presented here. 
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Figure A4-1. Characteristic time plot to assess competing rates. Reaction within a thin shell 
characteristic of the trace gas’ reacto-diffusive length governs the overall rate of reaction from 
0.1 to 5 micron radius particles with anticipated size dependence. 
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