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Chapter 7 

 

Mathematical calculations for aerosol microphysics 
studies 
 
 

In this chapter we present the mathematical detail required to develop the experimental method 

used to separate nucleation, condensation, and coagulation processes, as described in section 6.2.  

We also develop criteria for validating the simplified coagulation model appearing in that 

section. 

 

7.1 Homogeneous nucleation as a source of critical cluster nucleii 

As the sulfuric acid vapor is entrained into the flowtube, the supersaturation increases 

dramatically with the decreasing temperature.  Density fluctuations within the gas are thus 

increasingly likely to lead to clusters of molecules for which the surface vapor pressure is less 

than or equal to the surrounding gas.  The Kelvin effect has a tendency to cause such clusters to 

evaporate quickly as the vapor pressure above the surface of small particles is significantly 

higher than the equilibrium pressure above a flat surface.  Assuming macroscopic quantities such 

as the surface tension are meaningful at molecular length scales, thermodynamics describes the 

critical cluster size required to be stable (with respect to evaporation) at a given supersaturation.  

Since the Kelvin effect decreases as the particle size increases, the stable cluster size can be 

defined as a function of the supersaturation, and as expected the stable cluster size decreases with 

increasing supersaturation (see fig. 7-1).  The rate at which these particles form however is 

outside the realm of thermodynamics.  Despite a formal nucleation rate theory dating back to 



Taken from doctoral thesis, Chemical Kinetics and Microphysics of Atmospheric Aerosols, © copyright by James W. Morris, 
2002. 
 

 129

1926, homogeneous nucleation remains an active field of research with widely discrepant 

experimental results, especially regarding its temperature variation.1  Here we present a model of 

the nucleation process present at early stages of the particle formation process.  This will offer 

insight into the evolving distribution of critical nuclei, providing the seed distribution for our 

coagulation studies. 

 

 

Figure 7-1:  The Kelvin effect links the particle size to the ratio of the partial pressure 
above the particle surface to that above a flat surface.  This defines the supersaturation at 
which a given particle size is stable (neither evaporating nor growing). 
 
 
 
  The nucleation rate function describes how quickly critical clusters of a given size 

appear.   This enables us to define a function of the following form: 
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Here, Cm is the monomer (gas phase) concentration, S is the supersaturation, T is the 

temperature, and vcrit is the volume of a critical cluster, defined by the thermodynamics as 

mentioned above.  Since the supersaturation is increasing with time, different sized 

monomers will appear at different times in the flowtube.  Those appearing at earlier times 

at different rates will persist, and we thus will have a distribution of sizes forming.  This 

distribution of critical cluster sizes will largely depend on the change in supersaturation 

with time.  We describe the dynamics of the size distribution, dN/dv through the following: 

)),((),,()( TSvvSTCJ
dv
dN

dt
d

critmnuc −= δ
  

    (7.2) 

The δ function on the right hand side delivers a spike centered on vcrit whose area is unity 

with units nm-3, such that the overall units are m-3 s-1 nm-3.  The expression describes how 

fast particles of a given size are appearing.  Numerical results for conditions similar to 

those in these flowtube studies are shown in fig. 7-2.  In this particular system the partial 

differential equation shown in eq. 7.2 is simpler than it may appear.  The particles formed 

at time t + dt simply add to those formed at t, independent of the shape of the distribution 

at t.  This contrasts to growth dynamics where the distribution at t + dt depends both on 

flowtube conditions and the shape of the distribution at t.   
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Figure 7-2:  Evolving distribution of critical clusters under conditions of increasing 
supersaturation.   
 

Since the supersaturation is increasing with time, smaller nuclei become stable and form at 

higher rates, so the distribution grows leftward as shown.  In our system, growth on such 

small particles is very rapid (despite the Kelvin effect) and the supersaturation is driven 

very rapidly to 1 as we show below. 

 

7.2 Modeling particle growth in flowtube studies 

Once the supersaturation is greater than some critical value, Scrit, homogeneous nucleation 

produces critical clusters at rates in excess of 103 cm-3 s-1 (see fig. 6-7).  These clusters, initially 

at very high S begin to collect vapor through condensation, in turn reducing S very rapidly such 
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that the nucleation rate is dramatically decreased.  Due to the fast condensation on critical 

clusters, the nucleation rate in our experiments rises and falls very quickly.  Such a nucleation 

“burst” delivers an initial number of critical clusters that grow and coagulate before they are 

sampled into the AMS.  In this section we present the physics of particle growth on submicron 

particles. 

In the absence of chemical reactions, particle size change is driven by the gas phase 

concentration gradient prevailing at the particle surface.  In the case of particles whose radii are 

small enough that fluxes can be considered kinetic (Kn >> 1, a << 300 nm), the net flux of 

molecules to the surface is given by (molecules m-2 s-1): 

TKm
PPcnn

J
B

sa

12
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4
)(

π
α −

=
−

= ∞∞

       
 (7.3)  

Here, m1 is the mass of a single molecule.  The vapor pressures just above the particle surface 

and far from it are denoted by Pa and P∞ respectively.  Formulations for the dynamics of size 

distributions of particles undergoing condensation or evaporation can be found in the literature.  

Analytical solutions are available only for the simplest cases.  Here we present a simplified 

model for the case of a discrete aerosol size. 

The change in the number of molecules composing the particle is given by: 
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while the change in mass is  
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At any moment in time the particle mass is given by: 
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Using the method described in sec. 3.2, the rate of size change can be found through the 

transformation: 

ρ
Jm

dm
dD

dt
dm

dt
dD

D pp
p

12
===&         (7.7) 

Since our particles begin as critical clusters with volumes on the order of 1 nm3, the vapor 

pressure above their surface will be enhanced by the Kelvin effect.  We must therefore write the 

pressure above the surface of the particle as: 

)
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Here P0 is the pressure at equilibrium above a flat surface, σ is the surface tension, and v1 is the 

volume of a single molecule of the substance.  We can estimate the importance of this quantity 

by setting the argument in the exponent to 0.1 and solving for the diameter, to find that for Dp < 

25 nm the pressure at the surface deviates significantly from its equilibrium value (see fig. 7-1).  

In the model we develop here however, we can show that this effect does not significantly 

change the growth rate of particles since for very small sizes the supersaturation drives the 

condensation more than the Kelvin effect resists it. 

Since there is loss of gas-phase species, this must be coupled into the process.  The rate 

of change of gas-phase concentration due to condensation on particles (again assumed 

monodisperse) is given by: 

0
2 JNDn pπ−=&           (7.9) 

Here No is the number of particles per m3 of air. 

We may now bring n(t) naturally into the condensing flux with: 
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We therefore have the following system of coupled ordinary differential equations to be solved 

simultaneously for the change in concentration and particle size in time: 

ρ
))(),(),((2 1 tDtTtnJm

D p
p =&

                  (7.11)
 

0
2 ))(),(),(()( NtDtTtnJtDn ppπ−=&  

The initial conditions are defined by n(0) for the initial gas-phase concentration and Dp(0) for the 

critical cluster size.  No known analytical solution exists for this system, but a numerical solution 

is straightforward, using either Euler or Runge-Kutta integration (see fig. 7-3).  This model 

confirms that particle nucleation under conditions present in this study leads to very rapid growth 

of particles and consequent decrease of gas phase density, such that nucleation and growth can 

be effectively removed from the general dynamic equation and we can focus our attention on 

coagulation alone. 
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Figure 7-3:  Rapid condensation on particles delivers an initial number density of particles 
which continue to grow slightly until detection, maintaining S=1 in the cooling carrier flow. 
 
 
 
Effect of condensation on polydisperse distributions 

The above model describes particle growth due to condensation assuming a single particle size 

(the size distribution is a delta function).  Here, we will discuss qualitatively what effect 

condensation will have on a polydisperse size distribution with time.   

 Eq. 7.3 shows the flux onto a particle surface in the case of kinetic mass transport.  This 

is only valid in the limit where the particle radius is much less than the mean free path of the air 

molecules surrounding the particle (Kn >>1).  Since the condensing gas phase flux is 

independent of size, it follows that all aerosol sizes will encounter the same growth rate (see eq. 

7.7).  Such condensation conditions would lead to a simple rightward shift of the entire size 

distribution through diameter space in time.  At the other extreme (Kn << 1), the flux of 

condensing gas phase species to the aerosol surface can be shown2 to go as the inverse of the 
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particle radius.  In such a case, eq. 7.7 indicates that the growth rate is larger for smaller 

particles.  Distributions of particles condensing in this fashion would exhibit a faster rightward 

shift of the left side of the size distribution than the right side, such that the distribution is 

increasingly monodisperse.  

Determining coagulation time with incomplete saturation  

In these experiments the sulfuric acid vapor is entrained by flowing N2 over a sulfuric acid 

reservoir at a known temperature.  In systems where use of a frit is not possible due to 

complications arising from formation of particles from popping bubbles, the partial pressure at 

the reservoir exit is not likely to obtain its equilibrium value.  The extent of equilibration can be 

approximated experimentally if there are no wall losses by comparing the mass in the observed 

particles to the expected amount if all the gas at equilibrium vapor pressure were to condense 

(see fig. 6-8).  We define the equilibration extent, ε as the ratio of the actual to the equilibrium 

vapor pressure: 
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p

≡ε                     (7.12) 

The concentration of sulfuric acid exiting the reservoir is therefore given by: 
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The temperature in the flowtube is changing as a known function of time, so if we assume there 

are no gas losses (to the walls for example) at early times ( Tres < T(t) ) the sulfuric acid partial 

pressure is: 
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This leads to the following expression for the supersaturation as a function of time: 
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For the case when ε = 1, we see this gives the expected S = 1 at T(t) = Tres.  In the case where ε < 

1, we must solve the following expression for t: 
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=                    (7.16) 

This expression can be solved numerically, and we have used the bisection method to find that S 

= Scrit at between 0.2 and 0.4 s over the full range of Tres in the example experiments described 

here. 

 

7.3 Validation of the simple coagulation model 

In forming the simple model presented in sec. 6.2.2, we have made a number of assumptions.  In 

this section we explore the limitations of the model in the context of these assumptions.  In 

modeling coagulation of only 5 sizes, for example, we have assumed that the effect of collisions 

between particles of larger sizes does not affect the dynamics of sizes 1 through 5 given the 

timescales and number densities of experimental interest in this system.  We have also assumed 

that the polydispersity of the system can be neglected.  We thus count all the particles in mode i 

as having size i, even though in reality this mode represents a distribution of sizes around the 

median size. 

Comparison of the model against the case of unlimited m-mers 

In the limit of very long time, this system of equations (eq. 6.16) converges to n0/5 5-mers.  In 

reality there is no reason to stop at the 5-mer; indeed the equilibrium of the physical system 

would be a single n0-mer.  In order to assure that this choice of model is sufficient to capture the 
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features of a physical system where all m-mers are being formed up to m = n0, we must compare 

our simplified model to an analytical result which accounts for all possible m-mers. 

Were we to extend the system of kinetic equations shown in eq. 6.16 up to formation of 

an n0-mer, an exact expression for the concentration of a given m-mer can be found3 for the case 

where the rate constant, k does not depend on particle size:  
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Here τ = 2/kn0.  For m = 4 and tc = 4.5 s, the error is 1% and 10% for n0 = 107 and 108 cc-1 

respectively.  The error is smaller for all m < 4.  The ODE system (eq. 6.16) has an advantage 

over eq. 7.17 as a model for studies on submicron aerosol coagulation since k will generally 

change with size for particles under a micron in diameter.  

Comparison of the discrete model against continuous distribution coagulation 

 The rate of change of a coagulating size distribution of particles can be written as4: 
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Here, nm = dN/dm, so n(m,t)dm is the concentration of particles having masses between m and 

m+dm at time t.  Eq. 7.18 is a so-called partial integro-differential equation.  The presence of the 

integral implies much more computational effort than for partial differential equations for 

example, and pursuit of efficient numerical techniques for such systems is an active area of 

research5.  The first term on the right hand side represents the source term building up an 

infinitesimal mass region of the distribution.  The two terms in the first integral reflects that we 

must sum contributions from all possible collisions resulting in formation of particles of masses 

within m and m+dm.  As we move to higher m, calculation of the integral is more and more 
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costly.  We note that the rate of formation is second order in concentration.  The second term is 

the loss rate (again second order) for the same infinitesimal mass range.  Here the integral only 

needs to account for collisions between particles of mass m and all other sizes (resulting in loss 

of particles of size m).  Although analytical solutions to the general expression (eq. 7.18) are 

unavailable, an early numerical solution for this system is provided by Drake6 [1972]. 

 Whereas the simplified model (eq. 6.16) has been shown to reliably deliver number 

densities for a coagulating system of monodisperse aerosols, we have not validated this model 

against an analytical result on polydisperse coagulating systems.  In the absence of a solution to 

eq. 7.18, we can approximate the effect of polydisperse coagulation in the following way.  

Instead of beginning with n0 particles of size D1, we begin with n1- of size D1-, n1 of size D1 and 

n1+ of size D1+, where particles of sizes 1- and 1+ are very nearly the same size as those of size 

1.  We can allow the off sizes to be arbitrarily different from size 1 such that the effect of 

polydispersity can be observed.  Keeping track of all the possible collisions of mode-1 particles 

(1-, 1, and 1+) it can be shown that 5 possible sizes result: 2--, 2-, 2, 2+, and 2++.  Here, for 

example, a particle of size 2++ results from a 1+:1+ collision, whereas a particle of size 2 can 

come from 1+:1- or a 1:1 collision.  In general, for the mth mode, there will be 2m+1 sizes 

resulting from collisions of all the different sizes from within mode sizes less than m.  Once the 

possible sizes are constructed, one can describe the dynamics through a system of ordinary 

differential equations similar to the system in eq. 6.16.  For the case of up to m = 3 modes, one 

must write a rate equation for the number densities for each of the 15 different sizes.  We 

constructed such a model whose results we summarize here. 

 In the case where the coagulation rate constants do not vary with aerosol size, the time 

variation of the number densities within a given mode of a polydisperse system are identical to 

those within a discrete system.  The particles labeled “1+” or “1-“ do not differ from those 



Taken from doctoral thesis, Chemical Kinetics and Microphysics of Atmospheric Aerosols, © copyright by James W. Morris, 
2002. 
 

 140

labeled “1” with regard to coagulation.  This was confirmed with the model.  Eq. 6.16 also says 

nothing about the resulting widths of coagulation modes as a function of the width of mode 1.  

With the model described above we showed that the mode widths are generally constant (i.e. the 

initial width of the coagulating system roughly equals that of newly formed modes), showing a 

slight tendency to decrease with mode.  An example from the model output is 1.10, 1.08, and 

1.08 for σ1, σ2, and σ3 respectively. 

 

7.4 Conservation of mass in coagulation of discrete sizes 

We would like to derive a simple relationship between the initial number density of size 1 

particles and the number densities of any other size, i at any time, t.  From mass conservation, the 

mass of a single particle of size i is im1.  The total mass per unit volume of air of all particles of 

this size is Mi = nimi, where ni is the number density of particle of size i.  We may therefore write 

the total mass of the system as, M = ΣMi = Σnimi.  This must be equal to the mass present 

initially in the system, n0m1, so we have: 
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7.5 Coagulation rate constants 

The problem of coagulation has been treated theoretically in multiple texts7,8,9,10.  In this section, 

we will summarize the results relevant to this study and suggest a new expression to approximate 

the coagulation rate through the transition regime.   
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The coagulation rate constant, kij for aerosols of size i and j is defined through the rate of 

collisions between them per volume of air: zij = kijninj where ni and nj are the number densities of 

size i and j particles respectively.  Or, as a formal definition for the coagulation rate constant, we 

have: 

ji

ij
ij nn

z
k ≡            (7.20) 

As we will see, there is a special case for same-size particle collisions as they reduce their 

number two-fold per collision.  It will be very important that we clearly define the rate constants 

as we switch back and forth between same-size and different-size collisions.   

7.5.1 A general strategy for deriving rate constants 

Here, we lay out the method to be used for all subsequent coagulation rate constant derivations.  

We begin with the collision rate as experienced by one particle.  This will generally have the 

form, zi = f(ai,aj)nj, where zi is the number of collisions per second felt by a single particle with 

radii ai through collisions with particles of radii aj whose number density is nj.  For unlike 

particles, we pass trivially to the total number of i:j collisions per unit time per unit volume by 

multiplying by ni.  So we may write the total collision frequency as zij = f(ai,aj)njni.  Once we 

apply this expression to same-size particles, however, we must be careful to not over-count.  In 

this case a single particle undergoes zi = f(ai)ni collisions per second.  If we were to multiply this 

simply by the number density of such particles, we would count a collision between two particles 

as two collisions.  So for same-size collisions we have:  zii = ½ f(ai)ni
2

  as the total collision 

frequency. This may seem troublesome as there appears to be a discontinuity in the function zij as 

we allow ai-aj to become vanishingly small.  One can clarify this issue with a simple thought 
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experiment.1  We summarize by saying that these formulations of zii and zij are entirely self-

consistent.  The only note of caution is that zii = zij / 2 when i = j. 

7.5.2 The kinetic regime 

We begin with the simplest case, borrowing concepts from kinetic theory.  In this limit we take 

particle sizes to be much smaller than the apparent mean free path of the particles.  This is 

expected to be applicable for particles for which a << 20 nm.  In this regime, we may consider 

the particle motion to be very jagged, much like a molecule.  To estimate the collision frequency 

of a particle with radius ai with other particles with radii aj, we imagine a single aerosol 

sweeping through a collision cylinder with radius ai+aj (note: we assume all approaches between 

aerosols for which the distance between centers is less than ai+aj result in a collision).  The 

collision frequency for this single aerosol can now be written as: 

jjiji nccaaz 2/1222 )()( ++= π         (7.21) 

The particle mean thermal speed is defined in analogy to gas-phase species: 

i

B
i m

Tk
c

π
8

=            (7.22)  

The term within the square root in eq. 7.21 is the relative speed between colliding particles.  If 

there are ni such particles per unit volume, then we have a total collision frequency per unit 

volume given by: 

jijijiij nnccaaz 2/1222 )()( ++= π         (7.23) 

For the case of same-size particles, we obtain: 

                                                 
1 Imagine red particles of size ai colliding with larger blue particles of size aj.  There are as many red as blue particles.  The 

collision rate between unlike sizes is given by: zij = f(ai,aj)n2 where n = nred = nblue.  Now imagine we shrink the blue particles 
slowly until ai=aj.  The red:blue collision frequency is now given by zrb= f(ai)n2.  The total collision frequency is given by 
summing the red:red, red:blue, and blue:blue collision frequencies.  Using zii above, we may write zrr = zbb = ½ f(a)n2, and the 
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2222 ncazii π=           (7.24) 

Since we have assumed that each collision leads to coagulation, we may use eq. 7.20 and define 

the coagulation rate constants in this regime: 

jiforccaak jijiij ≠++= 2/1222 )()(π  

cakii
222 π=           (7.25) 

These are the coagulation rate constants in the kinetic regime.  Our result for kii is in agreement 

with Fuchs [1964].  Our result for kij is in agreement with Friedlander [1977] and Seinfeld 

[1998], even though they imply it is applicable even when i=j.  If we extended its validity to this 

point however, eq. 7.20 would no longer involve a true collision frequency.  These authors 

introduce the factor of ½ later in developing the dynamic equations. 

7.5.3 The continuum regime  

For particles with radii >> 20 nm, very many molecular collisions must occur before there is a 

significant change in particle direction.  The particle motion in this regime can be considered 

Brownian. In order to derive an expression for the coagulation rate in the continuum regime, we 

consider the process starting with Fick’s law.  This treatment is entirely analogous to the 

derivation of the diffusion-limited rate constant for reaction in solutions11.  We first calculate the 

number of collisions of particles (radius = aj) with a single particle (radius = ai) per time.  If a 

steady state concentration gradient has been established (~10-5 s for 100 nm particles), the rate at 

which particles diffuse into an imaginary sphere of radius r surrounding the particle will be 

constant, given by: 

dr
nDrN ∂

= '4 2π&           (7.26) 

                                                                                                                                                             
total collision frequency is thus: z = zrb+zrr+zbb = 2 f(ai)n2.  If we were to rely solely on zii above for all the particles, we would 
say, z = ½ f(ai,)(2n)2=2 f(ai)n2 which equals the total from adding up the different color combinations. 



Taken from doctoral thesis, Chemical Kinetics and Microphysics of Atmospheric Aerosols, © copyright by James W. Morris, 
2002. 
 

 144

Upon integration, we impose the boundary condition expressing the concentration far away from 

the particle as nj.  This leads to: 

jn
rD

Nrn +
−

=
π4'

)(
&

          (7.27) 

We may further require that n(ai+aj)=0, since every collision leads to loss at the surface, such 

that the collision rate experienced by one particle is: 

jji nDaaz ')(4 += π           (7.28) 

The assumption that the collisional radius is ai+aj allows us to view all other particles as point 

masses.  As before, we may now write the total i:j collision rate as:  

jijijiij nnDDaaZ ))((4 ++= π         (7.29)
 

Here D’ has been recognized as an effective diffusion coefficient between particles diffusing 

relative to one another, which can be shown to be Di + Dj.  From eq. 7.20 above, it follows that 

coagulation rate constants in the continuum regime are given by: 

jiforDDaak jijiij ≠++= ))((4π  

aDkii π8=            (7.30) 

Once again our expression for kii =1/2*ki=j is in agreement with Fuchs.  Our result for kij is in 

agreement with Friedlander, Seinfeld and Pruppacher, even though they imply it is applicable 

even when i=j.  Our choice to write the coagulation rate constants this way reflects our 

adherence to using eq. 7.20 as a global working definition.  This will make writing the dynamic 

equations more intuitive since we have only to keep up with the collision rates for each size. 

7.5.4 The transition regime  

For most coagulation of atmospheric relevance (as well as for this study), radii typically span 10 

to 1000 nm, and neither the kinetic nor the continuum regime is fully applicable.  Rate constants 
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in this transition regime have been derived by Fuchs7.    Here we will propose a much simpler 

approximation of the transition regime than that given in the literature.  

We may physically imagine the coagulation process to consist of two components; one 

kinetic, the other continuous.  It is therefore reasonable that we should be able to model the 

transition regime by mixing the two expressions valid in each regime.  The simplest way of 

mathematically mixing the two rate constants such that one recovers the prescribed limits is 

given by the following: 

contkin

contkin
trans KK

KK
K

+
=          (7.31) 

This simplified expression is plotted against the more rigorous (and much more complex) 

expression provided by Fuchs (and formulated by Seinfeld) for like-size collisions in fig. 7-4.  

 

 
 
 
Figure 7-4:  The approximation presented here (7.31) compared to the Fuchs expression of the 
coagulation rate constant for the transition regime.  
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As is evident in fig. 7-1, the new approximation presented here is in good agreement with the 

more complicated expression derived by Fuchs.  As can be seen in the functional form of eq. 

7.31, the bridge for the transition regime was built from the limiting regimes in a resistor-like 

fashion.  The proximity of the approximation to the Fuchs result can be taken as an indicator of 

the extent to which both continuum and kinetic mechanisms are acting independently 

(uncoupled) during physical coagulation of aerosol particles.  
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