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INTRODUCTION

Examination of the scaling of geomorphological features yields information on the
processes that shaped the terrain (Church and Mark, 1980; Milne, 1988). In flood-
plains, which are often a lake-rich terrain, the lakes reflect the pattern of depressions
and the overall relief. The sizes and shapes of floodplain lakes, which can be measured
readily by remote sensing, reveal small differences in relief that do not appear on
conventional topographic maps. The origin of some kinds of floodplain lakes is
apparent from their size and shape. Oxbow lakes and scroll lakes, which are created
by migrating river channels (Hutchinson, 1957), are two such examples. Many
floodplain lakes are irregular in shape, however, and the geomorphological processes
that formed the lakes are less apparent. Comparison of scaling patterns between these
different kinds of floodplain lakes could provide insight into the processes that shape
the floodplain (Salo, 1990).

The frequency distribution of lake sizes can be used in analyzing the scaling of lake
morphometry. Such an analysis is based upon a comparison of the distribution of
empirical observations with that which would be expected in the absence of a
predominant scale-specific geomorphological process (Goodchild, 1981). Fractal
theory provides a stochastic model of scale-invariant relief that is useful as a point of
reference or ‘null hypothesis’ for this comparison. The relation between area and
perimeter in a population of lakes also provides information on scaling and can be
analyzed for consistency with the stochastic model (Mandelbrot, 1982).

In this study, we analyze the statistical properties of size distributions for floodplain
lakes of the Amazon and Orinoco rivers. For the Orinoco floodplain lakes, we also
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examine the relation between area and perimeter. Our objectives are to evaluate the
consistency of these statistical properties with the fractal model, and to explore the
usefulness of lake size distributions as indicators of geomorphological patterns and
processes on floodplains and other kinds of lake-rich terrain.

CONCEPTUAL BACKGROUND

Mandelbrot (1977, 1982) introduced the term ‘fractal’ for a spatial or temporal
phenomenon whose variation is scale-invariant. The variation in a fractal phenom-
enon can be described mathematically by a non-integer dimension (the fractal
dimension, D). Many geophysical phenomena, including coastlines, topography,
island areas, river discharges, and climatic variation, show fractal characteristics over
a wide range of observational scales (Mandelbrot, 1982; Burrough, 1985; Kaye, 1989;
Takayasu, 1990). Computer simulations of fractal surfaces based on a stochastic
process called fractional Brownian motion (FBM) produce images that resemble
closely certain types of real terrain (Mandelbrot, 1982; Goodchild, 1988). This
resemblance is surprising given the scale-specific nature of most geomorphological
processes, and suggests that the types of terrain that are simulated realistically by
FBM models are shaped primarily by geomorphological processes that are scale-
invariant, and that the terrain can be described by the same fractal dimension that
characterizes FBM surfaces.

Mandelbrot used conceptual models to demonstrate that islands created by flooding
a fractal landscape have a size distribution that reflects the fractal geometry of the
landscape. The statistical properties of the island area~number relationship had been
studied earlier by Kor¢ak (1940), who found that an inverse power law fitted empirical
data on the size distribution of oceanic islands. If the islands are ranked by area from
largest to smallest, then the number of islands (4) above a given size (a) can be
denoted as Nr(A > a) and is given by:

Nr(A >a) = Fa %

where F' and B are positive constants. Mandelbrot called this the Koréak Empirical
Law, and he argued that the exponent B should be equal to D/2, where D is the fractal
dimension of the relief (i.e. of the topographic contours). Fractal dimension D lies
between 1 (Euclidean shapes with smooth boundaries) and 2 (infinitely convoluted
boundaries). The graphical diagnosis for goodness-of-fit to the Koréak Law is a log-
log plot of rank against area, which will yield a straight line of slope —B. This plot is
called a Pareto fit; it takes the same form as an asymptotically hyperbolic probability
distribution called the Pareto distribution, which describes diverse socioeconomic and
biological phenomena and is known particularly for its application in economics for
modeling the upper tail of the distribution of income (Badger, 1980; Arnold, 1985;
West and Shlesinger, 1990).

Lake areas also reportedly follow the Kor¢ak Law (Mandelbrot, 1982), as noted
originally by Kor¢ak (1940), although we have found few empirical demonstrations of
this fit in the literature (notable exceptions include Goodchild (1981) and Kent and
Wong (1982) who studied lakes on glacial landscapes). Mandelbrot speculated that
landscapes with fractal relief will have lake area distributions that follow the Korcak
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Law, and that the fractal dimension D therefore can be estimated from B, the
exponent of the lake size distribution. Although a multitude of factors in addition to
relief may affect the occurrence and size of lakes on a fractal landscape, Mandelbrot
hypothesized that these factors may act independently of lake size, with little resultant
effect on the original hyperbolic size distribution described by the Kor¢ak Law.

An independent method to determine the fractal dimension of lake-rich terrain is
based on the relation between area and perimeter in a population of lakes of varying
size that is observed at a single scale of observation (Mandelbrot, 1982; Burrough,
1985). For a population of lakes with smooth boundaries (D = 1), the perimeter will
vary as area to the one-half power. The perimeter of lakes on fractal surfaces should
vary as area to the power D/2, because the larger lakes appear to have more
convoluted boundaries at a fixed observational scale. The slope of a log-log plot of
perimeter against area is constrained to lie between 0.5 (Euclidean shapes with D =
1.0) and 1.0 (infinitely convoluted boundaries with D = 2.0). Theoretically, the
estimate of D obtained in this way will agree with that obtained from the Koréak Law.
However, only a few studies have estimated D by both methods. Goodchild (1981)
reported disagreement between the two estimates for lakes on Random Island, off the
coast of Newfoundland, while Kent and Wong (1982) found reasonable agreement for
Canadian Shield lakes in Ontario. The two methods yielded different estimates of D
for lakes simulated on FBM surfaces; the Pareto fit produced an infeasible estimate of
D (Goodchild, 1988).

The fractal model has been proposed as a point of reference or ‘null hypothesis’ for
the analysis of lake-rich landscapes: comparison of the statistical properties of
empirical lake size distributions with those predicted by the FBM model might reveal
the presence or absence of scale-specific geomorphological processes that shape the
relief and thereby determine patterns in lake morphometry (Goodchild, 1988). If the
empirical lake size distribution possesses distinct statistical properties, then we can
reject the FBM model and consider particular scale-specific processes that might be
responsible for the genesis of the lakes. It should be noted that we use the term ‘null
hypothesis’ only in an informal sense; we are not referring to a statistical test based on
probability theory.

STUDY SITES

Amazon Floodplain

The Amazon River, which is the world’s largest river, has a mean discharge of ca.
210000 m® s~* (Richey et al., 1989) and inundates a floodplain of 170 000 km?, of
which 65% is located within Brazil (Melack and Fisher, 1990). We will limit this
description to the Brazilian Amazon (Figure 6.1), which is the study site analyzed in
this paper. The main stem of the Amazon in Brazil is called the Solimées River above
the confluence with the Negro River at Manaus. Along the 2600 km of channel from
the Xingu River confluence up-river to the Peruvian border, the floodplain is typically
10-50 km wide and is composed of a mosaic of open waterbodies, dense fields of
herbaceous plants that float on the water surface during floods, and forest. At Manaus
on the central Amazon, the river stage varies seasonally by ca. 10 m. Many of the
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Figure 6.1 Map of the Amazon River

largest lakes are connected with the river throughout the year, and their water levels
are controlled directly by the river.

Most of the suspended sediment carried by the Amazon main stem originates in the
Andes along the western margin of the basin, and enters the Brazilian Amazon
through the main stem and through the Madeira River (Meade et al., 1985). Tribu-
taries that drain lowland basins, including the Negro and Tapajos rivers, carry
relatively little material in suspension, and their waters have a black or clear
appearance.

Lake outlines for two distinct reaches of the Amazon floodplain are depicted in
Figure 6.2. In the upper panel, which is near the confluence with the Japura River, the
floodplain is dominated by scroll-bar topography and contains numerous small,
narrow lakes (channel lakes). Channel lakes on the main stem Amazon floodplain
occur principally in association with scroll bars; few channel lakes have dimensions
that approach those of the main river channel. Mertes (1985) noted that the curvature
of meander scrolls on the Amazon floodplain tends to resemble that of small channels
(parands) that carry water from the main channel across the levees and into the
floodplain, as opposed to that of the meanders of the main channel. Mertes concluded
that the parands probably create most of the meander scrolls.

The lower panel of Figure 6.2 depicts the floodplain near Manaus, which has both
scroll-bar topography and back-swamp deposits with round or irregular lakes. Also,
back-flooded tributary valleys (blocked-valley lakes) form dendritic lakes along the
floodplain boundary.

The origin of blocked-valley lakes has attracted attention from various authors, and
several hypotheses have been advanced. One view holds that eustatic changes in sea
level during the Flandrian transgression caused changes in river base level, backing up
the Amazon main stem and flooding lateral tributary valleys. The backwater effect
resulted in enhanced aggradation of floodplains inundated by turbid river water.
Where less turbid influents entered the floodplain of a turbid river, the flooded valleys
were not filled at comparable rates and persist today as blocked-valley lakes (Tricart,
1977; Klammer, 1984). Other investigators have provided geomorphological evidence
for neotectonic sinking of lower river courses along fault lines, resulting in box-shaped
valleys that are flooded permanently (Departamento Nacional da Producio Mineral,
1978). Damming of tributary valleys by fluvial deposition from the main stem also has
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Figure 6.2 Examples of the Amazon floodplain. Solid areas indicate open-water sur-
faces, and dashed lines show the floodplain boundaries. The upper panel is a reach near
the confluence of the Japura River, and the lower panel is a reach near Manaus.
(Adapted from planimetric maps published by Departamento Nacional da Produgao
Mineral, 1978)
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been suggested (Iriondo, 1982). These processes may operate separately or in com-
bination to produce the blocked-valley lakes along the Amazon (Iriondo, 1982).
Regardless of the processes that result in formation of blocked-valley lakes, the size
distribution of the lakes is expected to be determined by the size distribution of the
tributary stream valleys that were produced by fluvial erosion before the valleys
became back-flooded.

Orinoco Floodplain

The Orinoco River of Venezuela and Colombia (Figure 6.3) is the world’s third
largest river in terms of discharge (mean, 36 000 m® s™!: Meade ef al., 1983). The
floodplain that fringes the main stem covers 7000 km? along the lower 770 km of
channel between the delta and the Meta River (Hamilton and Lewis, 1990a). A more
extensive savanna floodplain (the Llanos) occurs west of the main stem and is
contiguous with the main stem floodplain between the Meta and Apure rivers. Scroll-
bar topography is less common on the Orinoco floodplain than on the Amazon
floodplain. The vegetation of the Orinoco floodplain resembles that of the Amazon.
The level of the Orinoco River fluctuates seasonally by 10-15 m along the lower main
stem. However, few lakes on the Orinoco floodplain fluctuate in level as much as the
river because the lakes are usually isolated from and perched above the river during
low water (Hamilton and Lewis, 1990b). Like the Amazon, the sediment load of the
Orinoco is derived almost entirely from the Andes to the west, and enters the Orinoco
main stem largely through the Meta and Apure Rivers.

Examples of the Orinoco floodplain are shown in Figure 6.4. The upper panel is a
reach between the Meta and Apure rivers, where lakes are particularly abundant
along the left bank. The lower panel shows the floodplain in a reach between the
Caura and Caroni rivers, where the floodplain is interrupted periodically by outcrops
of high ground. Floodplain bordering the main stem is narrower than along the
Amazon, and the lakes are generally smaller. Blocked-valley lakes are rare on the
Orinoco floodplain.
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Figure 6.3 Map of the Orinoco River
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Figure 6.4 Examples of the Orinoco fioodplain. Solid areas indicate open-water sur-
faces, and dashed lines show the floodplain boundaries. The upper panel is a reach
between the Apure and Meta rivers, and the lower panel is a reach between the Caura
and Caroni rivers. (Adapted from maps published by the Venezuelan Direccién de
Cartografia Nacional)
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METHODS

Amazon Lake Measurements

Until recently, analysis of the morphometric characteristics of Amazon floodplain
lakes was difficult because of the lack of appropriate imagery and maps for the
floodplain, much of which is remote and often obscured by cloud cover. However,
side-looking airborne radar (SLAR, X-band) imagery, published by the Brazilian
Projeto RadamBrasil (e.g. Departamento Nacional da Produgdo Mineral, 1978),
covers the entire Brazilian Amazon Basin. This radar imagery provided the opportun-
ity to measure lake sizes and shapes on the Amazon floodplain because of the high
contrast between open water surfaces, which cause specular reflection of microwave
radiation, and soil and vegetation, which backscatter part of the incident radiation.

We used a combination of prints of semi-controlled radar mosaics and the planimet-
ric maps that were produced from these images (both at 1 : 250 000 scale) to identify
and measure lakes. The planimetric maps were used in a few cases for which the print
quality of the mosaic was poor, and for areal measurements of the larger lakes.

We measured all lakes (N = 6510) on the fringing floodplain of the main stem
Amazon River system in Brazil (Figure 6.1). We define the fringing floodplain as area
that is inundated seasonally by water from the parent rivers, following Welcomme
(1979). Our study area extends from the apex of the Amazon delta up-river to the
Peruvian border. Our data include measurements of the shape and length reported by
Melack (1984), except that we have excluded lakes of the major tributaries. We have
expanded the data set to include lake area as well as shape and length.

Lake measurements included length and width, and area was either measured or
estimated. The maximum length (longest straight line across the lake without crossing
land) and maximum width (perpendicular to its length) of each lake were measured
with a ruler. The areas of the largest 10-15% of the lakes and of all dendritic lakes
were measured by electronic planimetry. These lakes appear to be the most irregular
in shape. The remaining lakes appear to be elliptic in shape, and their areas could thus
be estimated from length and width measurements and the formula for area of an
ellipse. Between 5 and 10% of the lakes whose areas were estimated in this manner
were irregular, crescentic, or sinuous rather than elliptic in shape; we have probably
underestimated their areas. Our measurements were less accurate for the smallest
lakes. Lakes with a maximum length < 250 m (< 1.0 mm at a scale of 1 : 250 000) were
difficult to distinguish on the images.

Orinoco Lake Measurements

The Orinoco lakes were measured on maps of 1 : 100 000 scale produced from aerial
photography by the Venezuelan Direccién de Cartografia Nacional between 1968 and
1975. In the course of field studies on the Orinoco floodplain, we have confirmed that
lake and river boundaries on the maps generally correspond to the vegetated shore-
lines, and hence can be considered the low-water boundaries (i.e. areas that are
flooded most of the year).

We measured all lakes (N = 2294) on the fringing floodplain of the main stem
Orinoco River from 6°40'N latitude down-river to the apex of the delta (Figure 6.3).
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Maps were unavailable for a 70 km reach of floodplain that extends from 6°40’'N
latitude up-river (southward) to the confluence with the Meta River; this reach
comprises only about 7% of the total area of fringing floodplain (Hamilton and Lewis,
1990a).

The area and perimeter of each lake were measured with a computerized digitizer.
The accuracy of our measurements was lower for lakes with a maximum length < 100 m
(= 1.0 mm at a scale of 1: 100 000).

Definition of Floodplain Lakes

We define floodplain lakes as basins that contain water throughout the year. During
inundation by the river, the floodplain is typically covered with a continuous sheet of
water, within which open-water areas are visible. When the river level falls, water
drains from the floodplain, and lakes persist only in depressions that are perched
above the river level, or in deeper basins that remain in communication with the river.
Floodplain forest and fields of herbaceous plants grow on most of the seasonally
exposed land (Junk, 1983). During inundation, the upper portion of the forest canopy
generally remains above the water level, and the herbaceous vegetation remains
emergent or forms floating mats that rise and fall with the fluctuating water level. For
this reason, the boundaries of floodplain lakes appear similar on the radar images
regardless of whether the surrounding vegetation was flooded or dry. The shapes of
open-water areas that appear on the Orinoco maps, which were drawn from aerial
photography, also appear to represent the approximate low-water boundaries of
floodplain lakes.

Although in most cases the identification of a discrete floodplain waterbody was
unambiguous, there were several situations that required the use of specific criteria for
definition of a floodplain lake. Many lakes are interconnected by channels. If the
channel is narrow (i.e. the width of a single line on the images or maps) relative to the
width of the lakes on either end, the lakes are considered separate waterbodies.
Enlarged areas along floodplain channels are not considered lakes unless they are at
least three times wider than the channel. Waterbodies that are confluent with the river
channel are considered lakes only if the width of the confluence is less than half of the
maximum length of the waterbody. Dendritic back-flooded tributary valleys are
common along the Amazon floodplain. We consider these to be Amazon floodplain
lakes only if they are contiguous with the fringing floodplain of the main stem. Two
major tributaries of the Amazon, the Tapajés and Xingu rivers, form large lake-like
waterbodies in their lower reaches (Irion, 1984); these are not included in our lake
measurements.

Classification of Floodplain Lakes

We subdivided our data sets into three classes of floodplain lakes according to
differences in their geomorphological origins. Blocked-valley lakes, which are com-
mon on the Amazon but not on the Orinoco, extend inland from the floodplain
boundary (escarpment) and are shaped like drainage valleys. All other floodplain
lakes located within the boundaries of the fringing floodplain are lateral levee lakes
(Hutchinson, 1957). Within this category, we distinguish lakes with dish-shaped basins
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(dish lakes) from those with channel-shaped basins (channel lakes) (Hamilton and
Lewis, 1990b). Dish lakes tend to have lower rates of hydraulic through-flow during
inundation, resulting in gently sloping bottoms composed of fine sediment (Blake and
Ollier, 1971). Channel lakes tend to have visible currents during inundation, and often
have steeper sides and bottoms composed of coarser sediment, or of compacted fine
sediment. Channel lakes commonly lie in swales between concentric levees of coarse
sediment (scroll bars). We have chosen a length-to-width ratio of 5 as the division
between these categories, following the suggestion of Hamilton and Lewis (1990b),
who examined the relation between morphometry and limnology in Orinoco flood-
plain lakes.

RESULTS

The frequency distributions of our measurements of floodplain lake area show strong
positive skew. Two common probability distributions with long upper tails are the log-
normal and Pareto. The distribution of sizes (expressed as area) for all lakes on the
main stem Amazon floodplain is shown in Figure 6.5, which is a log—log plot (base 10)
of rank against area (Pareto fit); a Pareto distribution will appear linear on this plot
with a slope of —B. The parabolic shape in the lower domain suggests a log-normal fit,
but the data fit the Pareto distribution better in the upper domain. The transformation
from apparent log-normal to Paretian tail behavior occurs at about the 75th percen-
tile, as shown by the box plot. Pareto fits for each lake class on the Amazon floodplain
show this apparent transformation from log-normal to Paretian behavior in the upper
tail of each distribution (Figure 6.6).

4
—_—
i — All Amazon lakes
3 Slope between
arrows = -0.9
= _
c
g 2
o
°
Quartiles
1 -
) 25 50 75%
O T T T T
-2 -1 0 1 2 3

log(area)

Figure 6.5 Pareto fit for all lakes on the Amazon floodplain. Linearity indicates that the
size distribution of the lakes is statistically self-similar. In theory, the fractal dimension D
of the surface on which the lakes occur can be estimated from the slope (—B) as D = 2B.
Units of area are km? in this and the following plots. The box plot is aligned along the x-
axis to show the quartiles of the distribution of lake areas
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Figure 6.6 Pareto fits for dish, channel and blocked-valley lakes on the Amazon
floodplain. See Figure 6.5 for explanation
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The three lake classes for the Amazon floodplain show distinct slopes in the linear
portion of their Pareto fits (Figure 6.6). Dish lakes, which comprise the majority
(68%) of floodplain lakes that we measured along the Amazon main stem, fit the
Pareto model above the 75th percentile, except that the largest lakes fall below the
extrapolated Pareto line (Figure 6.6a). The slope of the linear portion of the Pareto fit
for Amazon dish lakes leads to an estimate for the fractal dimension D of 2.0, which is
infeasible. Channel and blocked-valley lakes also fit the Pareto model in the upper
domain, although not as well as dish lakes; the values of D estimated from their slopes
are 3.0 and 1.2 (Figure 6.6b). Channel lakes thus show the shortest (steepest) Paretian

34 Orinoco dish lakes
| Slope between
arrows = —1.36
= 2-
c
o
&
o -
o
14 Quartiles
25 50 75%
0 T L} T T T T
-2 -1 0 1
- Orinoco channel lakes
2_
— Slope between
= i arrows = —1.27
2
=3
o
1 -
Quartiles
0 T T ] T T T
-2 -1 0 1
log(area)

Figure 6.7 Pareto fit for dish and channel lakes on the Orinoco floodplain. See Figure
6.5 for explanation
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tail, while blocked-valley lakes show the longest tail. The Pareto fit for blocked-valley
lakes is the only one that yields a feasible estimate of D (1.2).

The general shapes of Pareto fits for Orinoco dish and channel lakes resemble those
for the Amazon lakes (Figure 6.7). However, the range over which the fit appears
linear for the Orinoco lakes lies below that of the Amazon lakes. The slopes of the
Pareto fits for Orinoco dish and channel lakes in Figure 6.7 lead to infeasible estimates
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Figure 6.8 Area—perimeter relation for Orinoco dish and channel lakes. The slopes
were determined by linear regression; r2 = 0.93 for dish lakes and 0.92 for channel lakes.
The line for Euclidean circles (smooth boundaries; D = 1.0) is included for comparison.
In theory, the fractal dimension D of the surface on which the lakes occur can be
estimated from the slope (B) as D = 2B; this is an independent method for estimation of
the fractal dimension of terrain
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of D (2.7 and 2.5), and the slopes of these two lake classes are closer to each other
than to the slopes of either dish or channel lakes on the Amazon floodplain. Dish
lakes outnumber channel lakes on the Orinoco floodplain by a factor of three.

Our Orinoco data set includes lake perimeters as well as areas, allowing us to
examine the area—perimeter relation (Figure 6.8). Simple linear regression was used
to fit lines to the empirical data in Figure 6.8. The difference between the slopes of the
two regression lines is highly significant (F-test, P < 0.001). The slopes of regression
lines lead to feasible estimates of D (1.16 for dish lakes and 1.42 for channel lakes).
The difference in the area—perimeter estimates of D for the two lake classes is large
compared with the similar slopes of the Pareto fits for these lakes.

DISCUSSION

Goodness-of-fit to the Pareto Distribution

Pareto fits for lake areas consistently show linearity in the upper domain, with
downward departures of the data in the lower domain and on the uppermost end. This
result might be interpreted as evidence for inadequacy of the Pareto distribution
(Kor¢ak Empirical Law) to describe our lake area distributions. It is also possible that
the data are log-normally distributed in the lower domain, then display a transforma-
tion to Paretian behavior in the upper domain; such a transformation is observed
commonly in scale-invariant phenomena, and is thought to represent a change in
controlling factors (West and Shlesinger, 1990). However, in the following discussion
we argue that the departures of the data at the ends can be explained and, indeed, are
expected in these data, even if their true distribution is Paretian.

Departure of variates from the extrapolated fit in the tails of a probability distribu-
tion can result from truncation or censorship of the variates (Aitchison and Brown,
1963). Truncation refers to the case where values of the variate above or below a
certain point either cannot occur or are not observed, whereas censorship refers to the
case where, above or below a certain point, the exact values of the variates are
unknown but limited knowledge of the variates is available. Both truncation and
censorship appear important in the distribution of lake areas that we have presented
here.

The apparent log-normal behavior in the lower domain of the distributions prob-
ably results because we approached the limits of resolution of lakes on the imagery. In
the Amazon lake data (Figure 6.5), the transformation occurs at about the 75th
percentile. This point corresponds to a lake area of 0.74 km?; a circular lake of this
area has a diameter of 0.5 km, which is only 2 mm on the 1 : 250 000 radar imagery
used for our measurements. Lakes are likely to be increasingly difficult to discern
below this size, resulting in increasing censorship of the distribution. The observation
that the linear range extended further downward in the Pareto fits for the Orinoco
lakes, which were measured on maps of larger scale, supports this interpretation.
Coverage of lake surfaces by vegetation probably also obscures some of the smallest
lakes because floating vegetation tends to extend outward from the lake shoreline;
dense vegetation over water appears as land on X-band radar and in aerial photogra-
phy. In addition, the smallest basins may not hold water all year simply because of
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losses by evaporation and seepage. For these reasons, censorship is expected to occur
for the smallest lakes even if we could measure them accurately, resulting in a
downward departure of the data from the extrapolated Pareto line. Eventually a point
of truncation must be reached, below which no lakes can be recognized. Truncation of
the lower tail sets the minimum lake area, but unlike censorship it does not affect the
slope, because the lakes are ranked from largest to smallest.

Censorship and truncation of the largest lakes also are expected because the
floodplain occupies a finite space between the river channel and the escarpment. As
lakes become larger, they are increasingly subject to constraints on their area as their
boundaries encounter the edges of the floodplain. There are thus fewer large lakes,
limited areas of the largest lakes, or both, resulting in increasing censorship of the
uppermost end of the distribution. The finite area of floodplain also dictates that there
must be a maximum possible lake size, which results in a point of truncation for the
distribution.

Censorship and truncation of the upper tail of a Pareto distribution cause the
distribution to depart from linearity because the variates are ranked from largest to
smallest. A censored or truncated Pareto fit may appear to be approximately linear in
the lower domain, but the slope of the ‘linear’ portion may be altered considerably.
To demonstrate the effects of censorship and truncation on the slopes of the Pareto
fits, we created an idealized Pareto distribution of lake areas with slope = —0.6 (D =
1.2). Figure 6.9 depicts the original distribution (A) and two altered distributions (B
and C). In B, we truncated the original distribution by removing the variates of rank
1-5 and re-ranking the remaining variates; this treatment altered the slope consider-
ably across the entire range, although the lower domain still appears approximately
linear. Removal of every other variate from ranks 1 to 10, which is a form of
censorship, produced the same effect on the slope in the lower domain. In C, we
reduced the lake areas by an arbitrary proportion that was inversely related to their
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Figure 6.9 The effects of censorship and truncation demonstrated with an idealized
Pareto distribution. See text for explanation
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ranks; the largest lake was reduced by 50%, the second largest by 25%, the third by
17%, etc. This form of censorship had less effect on the slope. Clearly, censorship and
truncation of the upper end can lead to biased estimates of the siopes of Pareto fits
and, consequently, of the fractal dimension D.

The variation that we observed in slopes of the Pareto fits among lake classes may
be caused simply by differences in the points of censorship and truncation, rather than
by differences in the fractal dimension of the terrain. The approximate linearity of the
Pareto fits suggests that fractal processes may determine the lake size distributions,
but the limited area of floodplain on which the lakes can occur results in steeper slopes
that cannot be related to the fractal dimension. The observed differences in Paretian
slopes among lake classes seem consistent with this interpretation. On the Amazon
floodplain, the slope is smallest for blocked-valley lakes (—0.6), intermediate for dish
lakes (—1.0), and largest for channel lakes (—1.5). These differences may reflect
different degrees of departure from the slope expected to result from the fractal
dimension of the relief. Blocked-valley lakes might be expected to be the least
constrained, since they occur outside of the floodplain boundaries. Dish lakes lie in
back swamps, which occupy much of the floodplain, while channel lakes are restricted
largely to the scroll-bar topography, which covers less area and tends to develop as
discrete spatial units compared with the more continuous back swamps where dish
lakes occur (Iriondo, 1982). On the Orinoco floodplain, dish and channel lakes appear
less segregated (e.g. Figure 6.4); the similar slopes of Pareto fits for these lake classes
may reflect their similar spatial constraints.

Comparisons with the FBM Model

Our original objective was to compare our empirical lake size distributions with those
produced by the FBM simulation model. However, the parameters of the empirical
distributions evidently are altered by censorship and truncation of the upper end. As
Goodchild (1988) noted when he presented the Pareto fit for lake areas from the FBM
model, the use of a limited area for simulation also results in censorship and
truncation of the distribution. The parameters of the Pareto fits are therefore biased in
both the simulation model and in the empirical observations, making meaningful
comparisons difficult. The FBM model does appear to support Mandelbrot’s asser-
tions that fractal relief will have lakes whose areas follow the Pareto distribution.
However, beyond that confirmation of fractal theory, its value as a ‘null hypothesis’
for the analysis of empirical data on lake-rich landscapes remains to be demonstrated.

CONCLUSIONS

Our measurements of the areas of lakes on the Amazon and Orinoco floodplains
appear to follow the Pareto distribution, with censorship and truncation on both ends.
This indicates that the lakes are statistically self-similar with respect to area over a
wide range of observational scales, and suggests that the relief on the floodplain
displays fractal characteristics. The observation that all of the lake classes show self-
similarity is surprising, because certain lake classes are created by specific geomorpho-
logical processes that presumably operate at characteristic scales (e.g. Amazon
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channel lakes in scroll-bar topography), while others are probably created by more
scale-invariant processes (dish lakes).

Statistical self-similarity of lake areas implies that descriptive statistics for the lake
populations, such as total abundance per unit land area and the medians and quartiles
of lake areas, will vary with the scale of observation. Such statistics therefore cannot
be compared between populations unless the same scales are used, or unless a fixed
lower limit of lake size is adopted that lies above the resolution limit of the imagery.
Statistical self-similarity with respect to area does not imply that the lakes are
necessarily self-similar with respect to shape (i.e. that they are isometric rather than
allometric (Church and Mark, 1980)).

Censorship and truncation of the upper end of a Pareto distribution are expected to
occur for lake areas on floodplains because of the finite space in which the lakes occur.
Spatial constraints similarly will affect any analysis of the size distributions of
landforms, however, either because of a limited study area or because the landforms
occur in a finite space. Consequently, the fractal dimension will be overestimated
from size distributions of landforms observed in nature. Goodchild (1981, 1988) found
that estimates of the fractal dimension obtained using real and simulated lake size
distributions were inconsistent with those obtained by other independent methods,
such as the area—perimeter relation. The present study reveals problems with the
application of the size-distribution method to empirical data. These problems are
likely to explain inconsistency of size-distribution analysis with other methods of
estimating the fractal dimension.
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