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The imaginary part of the group refractive index*
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It is shown that the group refractive index is complex whenever the absorption
coefficient depends on frequency. The imaginary part of the group refractive index is
proportional to the frequency derivative of the absorption coefficient. A pulse propagating
in a time-independent absorbing medium will have its dominant frequency shifted by an
amount proportional to the distance traveled and the imaginary part of the group
refractive index and inversely proportional to the square of the pulse length.
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Radio wave propagation

1. Introduction

Propagation of monochromatic waves is generally
well understood, even for anisotropic and absorbing
media. The travel time of a wave front is propor-
tional to the real part of the phase refractive index,
and the attenuation rate is proportional to the imag-
inary part.

That is, for a complex phase refractive index

n = µ− iχ , (1)

the real part µ is associated with the phase of the
wave and the imaginary part χ is associated with the
amplitude. For example, for a homogeneous medium,
a wave of frequency ω that has propagated a distance
z into the medium at time t is represented by
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The quantity

vp = c/µ (3)

gives the phase speed of the wave, and

α = ωχ/c (4)

gives the attenuation coefficient.
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Similarly, for propagation of pulses in anisotropic
but nonabsorbing media it is well understood that
to a first approximation, the envelope of a pulse
that modulates the carrier frequency of a wave will
propagate without change in shape at the group ve-
locity dω/dk, where k is normal to the wave front,
|k| = 2π/λ, and λ is the wavelength. [e.g., Stratton,
1941; Hines, 1951a; Panofsky and Phillips, 1955; Jef-
freys and Jeffreys, 1956; Brillouin, 1960; Whitham,
1960; Budden, 1961; Jackson, 1962; Lighthill , 1965].

However, even for a nonabsorbing medium, a pulse
can change shape as it propagates, leading to some
ambiguity in how to define the propagation velocity
of a pulse. One method to circumvent this ambigu-
ity in practice is to calculate the change in shape of
the pulse as it propagates [e.g., Felsen, 1969; Nicolis,
1967; Wait , 1969a, b; Vogler , 1969; Wait , 1970a, b, c;
Vogler , 1970a, b]. Such calculations usually involve
an inverse Fourier transform of a calculation in the
frequency domain. Often, the inverse transform
can be successfully evaluated by asymptotic methods
[e.g., Jeffreys and Jeffreys, 1956; Price, 1968; Felsen,
1969].

Pulse propagation in absorbing media, however,
has some conceptual difficulties. The main difficulty
arises from trying to interpret the significance of a
complex group velocity. Booker [1939] suggested
that, since a pulse is made up of a spectrum of fre-
quencies, a complex frequency might be found in the
spectrum that would make the group velocity real.

Part of the difficulty was explained by Hines
[1951a, b]. He argued that when the arrival time of
a pulse is observed, it is really the time maximum of
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the pulse peak that is measured. Second, he showed
that (for a homogeneous medium) the travel time of
the time maximum of a pulse peak is given by the
product of the real part of the group refractive index
and the distance traveled in the medium divided by
the free-space speed of light. For a heterogeneous
medium, the travel time was equal to the integral of
the real part of the group refractive index divided by
the free-space speed of light.

Furutsu [1952], apparently unaware of Hines’s
work, argued that the concept of group velocity and
wave path do not exist in a dissipative medium.
Suchy [1972a, b, c, 1974] used different arguments
from Hines’s to advocate using the real part of ∂ω/∂k
as a more appropriate group velocity. Suchy [1972a]
argued that the imaginary part of ∂ω/∂k has no
apparent physical meaning. Later, however, Suchy
[1974] interpreted the imaginary part of ∂ω/∂k in
terms of a moving derivative of the real part of the
wave number.

The difficulty with interpreting a complex group
velocity is similar to that of interpreting the com-
plex direction that occurs for ray tracing in complex
space [e.g., Poeverlein, 1962; Budden and Jull , 1964;
Jones, 1970a; Budden and Terry , 1971; Keller and
Streifer , 1971; Bertoni et al., 1971; Deschamps, 1972;
Kravtsov et al., 1974; Wang and Deschamps, 1974;
Bennett , 1974; Connor and Felsen, 1974].

The seemingly peculiar behavior of wave propaga-
tion in dissipative media has led to various investiga-
tions into various aspects of propagation. For exam-
ple, Hines [1951c, d] and Arsaef and Kinber [1968]
consider the direction of energy flux in dissipative
media. Poeverlein [1962] points out that absorption
of waves can be represented by complex propaga-
tion vectors. Storey and Roehner [1970] and Roehner
[1971] consider the direction of stationary phase for
a beam of waves in an absorbing medium. Bertoni
et al. [1971] consider the nonlocal nature of prop-
agation in dissipative media. Batorsky and Felsen
[1971] consider complex waveguide modes. Denman
and Buch [1973] derive a Hamiltonian for dissipative
systems. Several investigators have calculated vari-
ous aspects of pulse distortion in dissipative media
[e.g., Vogler , 1969, 1970a, b; Wait , 1970b].

The practical calculation of the propagation of
pulses in dissipative media in terms of pulse distor-
tion is not hindered by difficulties in interpreting a
group velocity that takes on complex values. The
method is the same as for lossless media (that is,

an inverse Fourier transform of a frequency-domain
calculation), and the results for the amplitude and
phase of the resulting signal as a function of time
and position are just as unambiguous as for the loss-
less case.

In 1970, I discovered that as a pulse propagates
through a dissipative medium, the frequency of the
carrier will be shifted by an amount proportional to
the imaginary part of the complex group refractive
index, which in turn depends on the frequency de-
pendence of dissipation. I presented the results at
a conference [Jones, 1970b], but failed to publish
the result at that time. Bennett [1974], however, re-
ported the results in the special issue of Proceedings
IEEE on rays and beams, referring to my unpub-
lished work. In the same issue, Connor and Felsen
[1974, eq. 7], apparently independently, derive the
frequency shift of a Gaussian-shaped pulse propagat-
ing in a dissipative medium, but do not mention the
relation to the imaginary part of the group refractive
index. Jones [1981] presented the results in more de-
tail, but that report did not reach a wide audience.

2. Complex group refractive index

A complex group refractive index is defined by
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with real part

<(n′) =
d

dω
(ωµ) (6)

and imaginary part

=(n′) = − d

dω
(ωχ). (7)

It is well known that .
dω

dk
(8)

gives the group velocity. More specifically,
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gives the travel time of the time maximum of a
pulse[Hines, 1951a, b, c, d], giving the significance
of the real part of the group refractive index.

To see the significance of the imaginary part of the
group refractive index, we combine (4) and (7) to see
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that the imaginary part of the group refractive index

=(n′) = − d

dω
(ωχ) = − d

dω
(cα) = −c

dα

dω
(10)

is proportional to the frequency derivative of the at-
tenuation coefficient.

3. Pulse propagation

A transmitted pulse with shape m(t) and carrier
frequency ω0

m(t)eiω0t =
1√
2π

∫ ∞

−∞
eiωtA(ω)eB(ω)dω (11)

that has a spectrum

A(ω)eB(ω) =
1√
2π

∫ ∞

−∞
e−iωtm(t)eiω0tdt (12)

will have its frequency shifted as it propagates
through a dissipative medium.

Notice that the spectrum is divided arbitrarily into
a slowly varying part A and an exponentially vary-
ing part exp(B). If the pulse m(t) is symmetric, we
can take A(ω) and B(ω) to be real whenever ω is
real. When m(t) is not symmetric, we could choose
B(ω) to represent the symmetric part, in which case
it would be real whenever ω is real, but then A(ω)
would be complex and would have a phase that varied
with frequency. Since this is counter to the assump-
tion that exp(B) represent the quickly varying part
of the spectrum, we must allow B(ω) to be complex
in the general case where m(t) might be asymmetric.

The medium acts like a filter. Let the pulse propa-
gate through a homogeneous medium that multiplies
a monochromatic wave of frequency ω by

exp
(
−i

ω

c
µz

)
exp(−αz) , (13)

where z is the distance traveled (normal to a wave-
front) in the medium. The spectrum of the pulse at
a point z in the medium is then

A(ω) exp
[
B(ω)− i

ω

c
µ(ω)z − α(ω)z

]
(14)

To find the dominant frequency ωp in this spectrum,
we set

d

dω
|A(ω) exp[B(ω)− α(ω)z]|ω=ωp

= 0 . (15)

When the variation of A is neglected, this gives
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Expanding up to second order in a Taylor series

B(ω) = B(ω1) + B′(ω1)(ω − ω1) +
1
2
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(17)

about the point where
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Thus, the frequency shift is given by
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z
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Using (10) gives

δω ≡ ωp − ω1 = −z

c

= [n′(ωp)]
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, (21)

which is proportional to the imaginary part of the
group refractive index.

4. Gaussian-shaped pulse

A Gaussian-shaped pulse

m(t) = exp[−(t/τ)2] (22)

has a pulse spectrum

A(ω) exp[B(ω)] =
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2

exp

B(ω)︷ ︸︸ ︷[
−τ2

4
(ω − ω0)2

]
,(23)

so that

B(ω) = −τ2

4
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and

ω1 = ω0. (25)

Thus, the frequency shift is

δω =
2z=(n′)

cτ2
, (26)

where z is the distance traveled and τ is the pulse
length. A shorter pulse length (broader spectrum)
gives a larger frequency shift, as expected.

5. heterogeneous medium

For pulse propagation through a heterogeneous
medium in the WKB aproximation, each frequency
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component is multiplied by

a(ω) exp
[
−i

ω

c
P (ω)

]
, (27)

where a(ω) is a slowly varying function,

P =
∫

raypath

n · ds (28)

is the complex phase path, n is a vector pointing in
the wave-normal direction whose magnitude equals
the complex phase refractive index, and ds is a vector
pointing in the ray direction. The Taylor expansion
gives

B′′(ω1)(ωp − ω1) +
1
c
= [P ′(ωp)] = 0 , (29)

where

P ′ ≡ d

dω
[ωP (ω)] (30)

is the complex group path.
Thus, for an inhomogeneous medium, the fre-

quency shift from (21) is

δω = ωp − ω1 = −= [P ′(ωp)]
cB′′(ω1)

, (31)

or, for a Gaussian-shaped pulse,

δω =
2=(P ′)

cτ2
. (32)

References
Arsaef, I. E., and B. E. Kinber (1968), Geometrical op-

tics approach in the study of the propagation of waves
in nonuniform absorbing media, Izvestiya VUZ. Ra-
diofizika, 11, 1377–1387.

Batorsky, D. V., and L. B. Felsen (1971), Ray-optical cal-
culation of modes excited by sources and scatters in a
weakly inhomogeneous duct, Radio Sci., 6, 911–923.

Bennett, J. A. (1974), Complex rays for radio waves in
an absorbing ionosphere, Proc. IEEE, 62, 1577–1585.

Bertoni, H. L., L. B. Felsen, and A. Hessel (1971), Local
properties of radiation in lossy media, IEEE Transac-
tions on Antennas and Propagation, AP-19, 226–237.

Booker, H. G. (1939), Propagation of wave packets inci-
dent obliquily upon a stratified doubly refracting iono-
sphere, Phil. Trans. Roy. Soc. London, A 273, 411–
455.

Brillouin, L. (1960), Wave propagation and group veloc-
ity, 154 pp., Academic Press, London.

Budden, K. G. (1961), Radio waves in the ionosphere,
542 pp., University Press, Cambridge.

Budden, K. G., and G. W. Jull (1964), Reciprocity and
nonreciprocity with magnetoionic rays, Can. J. Phys.,
42, 113–130.

Budden, K. G., and P. D. Terry (1971), Radio ray trac-
ing in complex space, Proc. Royal Soc. Lond. A, 231,
275–301.

Connor, K. A., and L. B. Felsen (1974), Complex space-
time rays and their application to pulse propagation
in lossy dispersive media, Proc. IEEE, 62, 1586–1598.

Denman, H. H., and L. H. Buch (1973), Solutions of the
hamilton-jacobi equation for certain dissipative classi-
cal mechanical systems, J. Math. Phys., 14, 326–329.

Deschamps, G. A. (1972), Ray techniques in electromag-
netics, Proc. IEEE, 60, 1022–1035.

Felsen, L. B. (1969), Transients in dispersive media, part
i: Theory, IEEE Transactions on Antennas and Prop-
agation, AP-17, 191–200.

Furutsu, K. (1952), On the group velocity, wave path,
and their relations to the poynting vector of the elec-
tromagnetic field in an absorbing medium, J. Phys.
Soc. of Japan, 7, 458–466.

Hines, C. O. (1951a), Wave packets, the Poynting vector,
and energy flow: Part I – non-dissipative (anisotropic)
homogeneous media, J. Geophys. Res., 56, 63–72.

Hines, C. O. (1951b), Wave packets, the Poynting vector,
and energy flow: Part II – group propagation through
dissipative isotropic media, J. Geophys. Res., 56, 197–
206.

Hines, C. O. (1951c), Wave packets, the Poynting vec-
tor, and energy flow: Part III – packet propagation
through dissipative anisotropic media, J. Geophys.
Res., 56, 207–220.

Hines, C. O. (1951d), Wave packets, the Poynting vector,
and energy flow: Part IV – Poynting and MacDonald
velocities in dissipative anisotropic media (conclusion),
J. Geophys. Res., 56, 535–544.

Jackson, J. D. (1962), Classical electrodynamics, 641 pp.,
John Wiley and Sons, New York and London.

Jeffreys, S. H., and L. B. S. Jeffreys (1956), Methods of
mathematical physics, 714 pp., University Press, Cam-
bridge.

Jones, R. M. (1970a), Ray theory for lossy media, Radio
Science, 5, 793–801.

Jones, R. M. (1970b), The meaning of a complex group
refractive index, in URSI 1970 Fall Meeting, 15-17
September at The Ohio State University, Columbus,
Ohio, p. 51.

Jones, R. M. (1981), The frequency shift of a pulse by
a time-independent, dispersive, lossy medium, Tech.
Memo ERL WPL-80, Natl. Oceanic and Atmos.
Admin., September 1981, 19 pages, reprint available
at http://cires.colorado.edu/∼mjones/group/ERL-
WPL-80.pdf.

Keller, J. B., and W. Streifer (1971), Complex rays with
an application to Gaussian beams, J. Opt. Soc. Am.,
61, 40–43.

Kravtsov, Y. A., L. A. Ostrovsky, and N. S. Stepanov
(1974), Geometrical optics of inhomogeneaous and
nonstationary dispersive media, Proc. IEEE, 62, 1492–
1510.

Lighthill, M. J. (1965), Group velocity, J. Inst. Maths.
Applics., 1, 1–28.

Nicolis, J. S. (1967), The distortion of electromagnetic
pulses undergoing total internal reflection in a strati-
fied troposphere, IEEE Transactions on Antennas and
Propagation, AP-15, 706–708.



R. MICHAEL JONES: GROUP REFRACTIVE INDEX 5

Panofsky, W. K. H., and M. Phillips (1955), Classical
electricity and magnetism, xi, 404 pp., Addison Wes-
ley, Reading, Mass.

Poeverlein, H. (1962), Sommerfeld-Runge law in three
and four dimensions, Phys. Rev., 128, 956–964.

Price, G. H. (1968), The characteristics of impulses re-
flected from a sech2 electron-density profile, Proc.
IEEE, 56, 1341–1349.
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