Correction to: The rotation problem [1]

R. Michael Jones

This corrected Table 4 in "The Rotation Problem" [2] correctly shows which rows in the table include the effects of inflation and include the surface term.

Table 4 Possible approximate values of C_I from (110) and C_{II} from (115) in "Appendix G"

References	Includes		α	α_1	α_2	α_3	α_4	C_I	C_{II}
	the								
	term?								
			<u> </u>						
[76]			0	-3/2	3/2	$1/8\pi$		$1 - 686 \alpha_4$	$-453 - 8927\alpha_4 + 1.04 \times 10^6 \alpha_4^2$
[76]			0	-3/2	3/2	$1/8\pi$	0	1	-453
[76]			0	-3/2	3/2	$1/8\pi$	10^{-1}	-68	9054
[76]			0	-3/2	3/2	$1/8\pi$	1	-685	1.03×10^{6}
[76]		\rightarrow	0	-3/2	3/2	$1/8\pi$	0	97	
[76]	yes		0	0	0	$-1/4\pi$		$-2 + 471\alpha_4$	$-9 + 204\alpha_4 - 2.08 \times 10^6 \alpha_4^2$
[76]	yes		0	0	0	$-1/4\pi$	0	-2	-9
[76]	yes		0	0	0	$-1/4\pi$	10^{-1}	45	-2.08×10^{4}
[76]	yes		0	0	0	$-1/4\pi$	1	469	-2.08×10^{6}
[76]	yes	\rightarrow	0	0	0	$-1/4\pi$	0	-58	
[60.77]			1	-1/2	1/2	$1/8\pi$		$1 - 384\alpha_4$	$-148 - 3044\alpha_4 + 1.05 \times 10^6 \alpha_4^2$
[60,77]			1	-1/2	1/2	$1/8\pi$	0	1	-148
[60,77]			1	-1/2	1/2	$1/8\pi$	10^{-1}	-37	10^{4}
[60,77]			1	-1/2	1/2	$1/8\pi$	1	-383	$1.05 imes 10^6$
[60,77]		\rightarrow	1	-1/2	1/2	$1/8\pi$	0	52	
[60,77]	yes		1	1	-1	$-1/4\pi$		$-2 + 769\alpha_4$	$296 + 6087 \alpha_4 - 2.06 \times 10^6 \alpha_4^2$
[60,77]	yes		1	1	-1	$-1/4\pi$	0	-2	296
[60,77]	yes		1	1	-1	$-1/4\pi$	10^{-1}	75	-1.97×10^{4}
[60,77]	yes		1	1	-1	$-1/4\pi$	1	767	-2.05×10^{6}
[60,77]	yes	\rightarrow	1	1	-1	$-1/4\pi$	0	-103	

The parameter α is defined in (22). The parameters α_1 , α_2 , and α_3 are defined in (4). The constant of integration α_4 is defined in (78), and its most probable value is zero. The effect of inflation for 60 e-foldings is also shown in the rows with the arrow \rightarrow .

References

- Jones, R.M.: "Correction to: The rotation problem". General Relativity and Gravitation 52(7), 1–3 (2020). DOI 10.1007/s10714-020-02711-0. URL https://doi.org/10.1007/s10714-020-02711-0
- https://doi.org/10.1007/s10714-020-02711-0
 2. Jones, R.M.: "The rotation problem". General Relativity and Gravitation 52(5), 1–35 (2020). DOI 10.1007/s10714-020-02696-w. URL https://doi.org/10.1007/s10714-020-02696-w

R. Michael Jones

Cooperative Institute for Research in Environmental Sciences University of Colorado, Boulder, Colorado 80309-0216