

A Versatile Three-Dimensional Hamiltonian Ray-Tracing Program for Acoustic Waves in the Atmosphere Above Irregular Terrain
R. Michael Jones
J.P. Riley
T.M. Georges

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration Environmental Research Laboratories

A Versatile Three-Dimensional Hamiltonian Ray-Tracing Program. for Acoustic Waves in the Atmosphere Above Irregular Terrain

R. Michael Jones
J.P. Riley
T.M. Georges

Wave Propagation Laboratory
Boulder, Colorado
August 1986

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Environmental Research Laboratories

NOTICE
Mention of a commercial company or product does not constitute an endorsement by NOAA Environmental Research Laboratories. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.

"HARPA: A versatile three-dimensional Hamiltonian ray-tracing program for acoustic waves in the atmosphere above irregular terrain", by R. Michael Jones, J. P. Riley, and T. M. Georges, NOAA special report, August 1986

Errata, August 3, 2009

1 Documentation Errata

page 31: The Transmitter latitude (W4) should have "km" circled.
pages 31 and 199: On the "form to specify input data", "stop frequency stepping" should be changed to "stop elevation angle stepping," and W30, W31, and W32 should be changed to W278, W279, and W280, respectively.
pages 33 and 221: The model check number in the "Form to specify input data for receiver-surface model RTERR" should be 2.0 instead of 3.0
page 49, Fig. 2.23: The implied decimal point for latitude of transmitter should be between card columns 16 and 17. The implied decimal point for longitude of transmitter should be between card columns 22 and 23 . The implied decimal point for imaginary part of wave polarization at transmitter should be between card columns 75 and 76 .
page 50, Fig. 2.24: The imaginary part of wave polarization should be in card columns 74-77, and the implied decimal point should be between card columns 75 and 76 .
page 69: The last two lines should read:
*** Format type 1 implies format number A (see Table 5.3).
*** Format type 2 implies format number 1, 2, or 3 (see Table 5.3).
pages 94 through 98: The figure captions for Figures 6.1 through 6.5 should have the following added:

Circled block numbers correspond to program statement numbers.
page 98: In Figure 6.5, the lower branch on "Test mode." should read:

$$
\mathrm{MODE}=4 \text { and } y_{i, 1} \neq 0
$$

page 101: The last sentence in Section 6.4 should refer to Table 7.17 instead of 7.9.
page 102: The second line of the first full paragraph should refer to equation (6.30) rather than (4.1).
page 136: The first note in the caption to Figure 7.10 should read:

* See Equation (6.83) to estimate the time of the nearest closest approach to the specified surface.
pages 177 through 196: The calculation of absorption in the sample printout and sample raysets is incorrect. The correct values are in the files dinp.sam and punch.sam
page 200: The sentence "Superimpose these raypath plots on the graph of the previous runset:" should read "Superimpose these raypath plots on the graph of the next runset:"
page 221: The model check number in the "Form to specify input data for receiver-surface model RTERR" should be 2.0 instead of 3.0
page 222: The model check number in the "Form to specify input data for receiver-surface model RVERT" should be 3.0 instead of 2.0

2 Program Errata

page 251: Following line "UCON 30" in LOGICAL FUNCTION UCON, insert the line: $\operatorname{IF}($ CONV.EQ.-1.0) CONV $=1.0 /$ EARTHR

UCON305
page 251: Line "UCON 38 " in LOGICAL FUNCTION UCON should be replaced by:
$\operatorname{CNVV}(1,3)=-1.0$
UCON380
page 329: The variable OWI in line ANWWL 70 in SUBROUTINE ANWWL should be OW.
page 332: The variable OW in line AWWWL 76 in SUBROUTINE AWWWL should be OWI.
page 344: Line WGAUSS18 in SUBROUTINE WGAUSS2 should be
DATA RECOGU/8.0/
WGAUSS18
page 395: Line "RVERT 21" in SUBROUTINE RVERT should be replaced by:
DATA RECORR/3.0/
RVERT21

3 Additional Errata from Appendix E of HARPO Report follows.

APPENDIX E. ERRATA FOR HARPA REPORT

HARPA: A versatile Three-Dimensional Hamiltonian Ray-Tracing Program for Acoustic Waves in the Atmosphere Above Irregular Terrain" by R. Michael Jones, J. P. Riley, and T. M. Georges

2 February 1987

Page xi: change line 12 to:
Table 7.23 Definitions of the parameters in common block/HDRC/.... 157
Page 21: Following "The profile:" circle the units "km" in the columns labeled z_{i} and δ_{i}.

Page 31 and 199: At mid-page, change "stop frequency stepping" to "stop and $W 280$, respectively.

Page 33 and 221: Change the Model Check Number from 3.0 to 2.0 .
Page 50: Change "Phase path, km" to Phase time, sec" and "Group path, km" to "Pulse travel time, sec."

Page 59: In Table 4.l, change "NPABS" to "NPABSR".
Page 69: Change the last two lines to read:
*** Format type 1 implies format number A (see Table 5.3).
*** Format type 2 implies format number 1, 2, or 3 (see Table 5.3).
Page 79: Change description following $W(21)$ to read "Set $=1$ to stop eleva-tion-angle increment when the ray goes out of bounds."
Page 94-98: Add the following to the captions for Figures 6.1 through 6.5: "Circled block numbers correspond to program statement numbers."

Page 98: Change the comment near the lower branch of the "Test Mode" block to read: \quad MODE $=4$ and $Y_{i, l} \neq 0 "$.

Page 101: In the last sentence of Section 6.4 change the table mentioned from Table 7.9 to Table 7.17 .

Page 102: In the second line of the first full paragraph change the equation mentioned from Eq. (4.1) to Eq. (6.30).

Page 126 and 128: Change the captions so that the parenthetical expressions following ANWNL and AWWNL begin""(Acoustic, No Winds..." and "(Acoustic, With Winds...").

Page 127: Change the name of PROGRAM NITIAL to PROGRAM RAYTRC in the second block down.

Page 136: Change the first note in the caption of Figure 7.10 to read: "* See Equation (6.83) to estimate the time of nearest closest approach to the specified surface."

Page 155: Add the variable names NDEVGRP and NDEVBIN to Table 7.19.
Page 158: Replace Table 7.23 by:
Table 7.23--Definitions of the parameters in common block/HDRC/
Position in

common \quad Variable | name |
| :--- |

Page 168: In line 9, replace PGRKPH with PGRPH. In line 11 , replace $\partial g / \partial \theta$ by $\partial g / \partial \phi$.

Page 222: Change the Model Check Number from 2.0 to 3.0 .
Make the following changes in both the source-code listing (Appendix D) and in the program itself:

Page 251: Following the line "UCON 30" in LOGICAL FUNCTION UCON, insert the line: IF (CONV.EQ.-1.0) CONV $=1.0 / E A R T H R$ UCON305

Page 251: Replace line "UCON 38" in LOGICAL FUNCTION UCON by: $\operatorname{CNVV}(1,3)=-1.0$

UCON380

Page 361: Replace line "TTANH554" in SUBROUTINE TTANH5 by: ZIM1 = ZO

TTANH554
Page 395: Replace line "RVERT 21" in SUBROUTINE RVERT by: DATA RECORR/3.0/

RVERT2 1

Add the following routine:
FUNCTION ITOC(N) ITOCOO20
RETURN 7 CHARACTER STRING REPRESENTATION OF INTEGER N ITOC0030
C IF NUMBER IS TOO LARGE OR SMALL USE FLOATING POINT FORMAT
CHARACTER ITOC*7
IF (N.LT.-9999.OR.N.GT.99999) GO TO 100
ITOC0060
ITOC=' '
WRITE (ITOC, '(I7)', ERR=100) N RETURN
WRITE (ITOC, '(2PG7.0)') FLOAT (N)
END

CONTENTS

Page
ACKNOWLEDGMENTS Xiii
ABSTRACT 1
PART 1. WHAT THIS RAY-TRACING PROGRAM CAN DO

1. Introduction to Hamiltonian Ray Tracing 3
1.1 Rationale 3
1.2 What Is Ray Tracing? 4
1.3 What Approximations Are Involved in Ray Tracing? 5
1.4 When Should You Use Ray Tracing? 6
1.5 What Is Hamiltonian Ray Tracing? 7
1.6 What This Program Does 10
1.7 What This Program Does Not Do 11
1.8 History of the Program 12
1.9 Scope of This Report 13
2. A Sample Run Illustrating an Application of HARPA 15
2.1 The Atmospheric Model for the Sample Case 15
2.2 The Ray-Tracing Order Form for the Sample Case 27
2.3 Rayplot Order Form for the Sample Case 32
2.4 Setting Up the Input Data File (W Array) for the Sample Case 36
2.5 Printed Output for the Sample Case 41
2.5.1 Definitions of Quantities Listed in Printout 43
2.5.2 Meanings of Special Events Along a Raypath 44
2.6 Rayplots for the Sample Case 45
2.7 Machine-Readable Output for the Sample Case 47
PART II. HOW TO USE THIS PROGRAM
3. How To Get This Program Running on Your Computer 51
3.1 How To Get a Copy of the Program 51
3.2 ANSI-FORTRAN 77 Compatibility 51
. 3.2.1 Machine- and System-Dependent Code 52
3.2.2 Word Length 52
3.2.3 Execution Speed 53
3.2.4 Graphics 53
3.3 Unpacking the Program Tape and File Organization 54
3.3.1 Files on the HARPA Distribution Tape 54
3.3.2 Setting Up a Run Module 54
3.3.3 If You Are Using Cards to Input Data 56
3.3.4 If You Are Using Permanent Disk Files. 56
4. How To Construct an Atmospheric Model 57
4.1 Choosing From the Available Atmospheric Models 57
4.1.1 Model Check Numbers 60
4.1.2 Tabular Input to Models 61
4.2 Designing Your Own Models 61
4.2.1 How To Write an Atmospheric Model Subroutine So It Can Receive Tabular Data Read Into Common Blocks by READW1 67
4.2.2 Designing Your Own Terrain Models 68
5. How to Specify the Input Data and Set Up an Input Data File 71
5.1 Editing the Input Data File 71
5.2 Input Data Formats 75
5.3 Specifying the W-Array Input 75
5.3.1 Initialization of the Input Data Parameters 77
5.3.2 Explanation of the Input Data Parameters 78
5.4 Specifying Tabular Input 84
5.4.1 Changing to the Tabular Format 84
5.4.2 The Format Line 86
5.4.3 The Units Line 86
5.4.4 The Data Lines 86
5.4.5 The Return Line 88
PART III. HOW THE PROGRAM WORKS
6. The Ray-Tracing Equations 89
6.1 Hamilton's Equations in Spherical Polar Coordinates 89
6.1.1 Phase Path 92
6.1.2 Absorption 92
6.1.3 Path Length 93
6.2 Numerical Integration 93
6.3 The Atmospheric Sound-Speed Model (Subroutine GAMRTDM) 99
6.4 Acoustic Dispersion Relations 101
6.4.1 ANWNL - Acoustic No Winds, No Losses 101
6.4.2 AWWNL - Acoustic With Winds, No Losses 103
6.4.3 ANWWL - Acoustic No Winds, With Losses and AWWWL - Acoustic With Winds, With Losses 105
6.5 Reflecting Rays From Irregular Terrain 106
6.5.1 Detecting Ray Intersections With the Terrain 106
6.5.2 The Surface Model 111
6.5.3 Reflecting the Ray From the Terrain Surface 113
6.5.4 Unit-Normal Directions From the Surface 116
6.6 Coordinate Systems 117
7. Structure of the Program 119
7.1 Description of the Subroutines 119
7.1.1 Ray-Tracing Core 119
7.1.2 Dispersion Relation Routines 122
7.1.3 Atmospheric Model Subroutines 123
7.2 HARPA Organization Diagrams 124
7.3 Flow Charts for Program RAYTRC and Subroutines TRACE and BACKUP 129
7.4 Common-Block Structure and Usage 138
REFERENCES 171
APPENDIX A. PRINTOUT AND RAYSET LISTING FOR THE SAMPLE CASE 177
PRINTOUT 178
RAYSET LISTING 194
APPENDIX B. BLANK INPUT PARAMETER FORMS 197
3-D RAYPATH CALCULATION 199
RAYPATH PLOT PROJECTION 200
ATMOSPHERIC MODELS 201
BACKGROUND CURRENT MODELS
WLINEAR -- A linear profile of u; constant v and w 202
WTIDE -- Sinusoidal u and v profiles 203
ULOGZ2 -- A logarithmic u profile 204
VVORTX3 -- A vertical vortex with a solid-rotating core 205
WGAUSS2 -- A jet of u that decays in three dimensions 206
BACKGROUND SOUND-SPEED MODELS
GAMRTDM -- Defines C in terms of temperature 207
CSTANH -- C profile with linear segments smoothly joined 208
SOUND-SPEED PERTURBATION MODELS
CBLOB2 -- A blob of C increase that decays in three dimensions 209
BACKGROUND TEMPERATURE MODELS
TLINEAR -- Linear T profile 210
TTANH5 -- T profile with linear segments smoothly joined. 211
TTABLE -- A tabular temperature profile in cubic segments 212
TEMPERATURE PERTURBATION MODELS
TBLOB2 -- A blob of T increase that decays in three dimensions 213
MOLECULAR WEIGHT
MCONST -- A constant molecular weight 214
VISCOSITY/CONDUCTIVITY
MUARDC -- ARDC formula 215
PRESSURE
PEXP -- Exponential decrease with constant scale height 216
TERRAIN MODELS
GHORIZ -- A horizontal surface at a specified height above sea level 217
GLORENZ -- A Lorentzian ridge along a latitude line 218
GTANH -- 2-D, linear segments smoothly joined 219
RECEIVER-SURFACE MODELS
RHORIZ -- A surface at a fixed height above sea level 220
RTERR -- A surface at a fixed height above the terrain 221
RVERT -- A vertical receiver surface at a fixed range from an origin 222
APPENDIX C. CDC 250 PLOT PACKAGE AND DISSPLA INTERFACE 223
APPENDIX D. FORTRAN SOURCE-CODE LISTINGS 227
APPENDIX E. ERRATA FOR NOAA TECH. MEMO. ERL WPL-103 408
INDEX 409

FIGURES

Page
Figure 1.1. Relation of HARPA to its inputs and outputs, as well as its supporting and supplementary programs 14
Figure 2.1. Sample of completed form to specify an atmospheric model (including terrain model) 17
Figure 2.2. Sample of completed form to specify input data for wind-velocity model ULOGZ2 18
Figure 2.3. Sample of completed form to specify sound-speed model GAMRTDM 19
Figure 2.4. Sample of completed form to specify input data for atmospheric molecular-weight model MCONST 20
Figure 2.5. Sample of completed form to specify input data for temperature model TTANH5 21
Figure 2.6. Profiles of background wind speed, temperature, and sound speed for the sample case 22
Figure 2.7. Sample of completed form to specify input data for atmospheric temperature perturbation model TBLOB2 24
Figure 2.8. Sample of completed form to specify input data for sound-speed perturbation model CBLOB2 25
Figure 2.9. A plan view of the sound-speed contours in a horizon- tal slice through the sample-case atmospheric model at an alti- tude of 125 km above sea level, showing the perturbations caused by TBLOB2 and CBLOB2 26
Figure 2.10. Sound-speed contours in a vertical slice through the sample-case model, showing the perturbations caused by models TBLOB2 and CBLOB2 to an otherwise horizontally stratified atmosphere 26
Figure 2.11. Sample of completed form to specify input data for viscosity/conductivity model MUARDC 28
Figure 2.12. Sample of completed form to specify input data for pressure model PEXP 29
Figure 2.13. Sample of completed form to specify input data for terrain model GLORENZ 30
Figure 2.14. Sample of completed form to specify input data for a three-dimensional raypath calculation 31
Figure 2.15. Sample of completed form to specify input data for receiver-surface model RTERR 33
Figure 2.16. Sample of completed form to specify input parameters for plotting a projection of the raypath 34
Figure 2.17. Sample of completed form to specify input parameters for plotting a projection of the raypath 35
Figure 2.18. Plan view of the major features of the sample-case model, the transmitter location, the transmission direction, and the plot-projection plane 36
Figure 2.19. Input Data File for the sample case 38
Figure 2.20. Projection of the rays of the sample case onto the vertical plane shown in Figure 2.18 46
Figure 2.21. Projection of the rays of the sample case onto a horizontal plane whose axis is shown in Figure 2.18 46
Figure 2.22, Rayset output for the first run set of the sample case, using an elevation-angle increment of 20° 48
Figure 2.23. Definitions and format for a transmitter rayset 49
Figure 2.24. Definitions and format for a receiver rayset 50
Figure 3.1. Configuration of a run module, assembled from parts consisting either of disk-file modules or punched-card decks 55
Figure 4.1. Listing for model temperature subroutine TTANH5 64
Figure 5.1. Input Data File (W array) for the sample case 72
Figure 6.1. Flow chart for subroutine RKAM 94
Figure 6.2. Flow chart for subroutine RKAM1 95
Figure 6.3. Flow chart for the Runge-Kutta procedure 96
Figure 6.4. Flow chart for the Adams-Moulton integration method 97
Figure 6.5. Flow chart for the single-step error analysis 98
Figure 6.6. Three steps in calculating the intersection and reflection of a ray at a terrain surface 107
Figure 6.7. A ray crossing a terrain or receiver surface and crossing back again between integration steps 108
Figure 6.8. A ray that nearly intersects a terrain or receiver surface 108
Figure 6.9. A ray crossing a terrain or receiver surface and ending closer to a second intersection 108
Figure 6.10. Examples of terrain (or receiver-surface) encounters that HARPA's intersection algorithm will not correctly handle 109
Figure 7.1. Block diagram of the ray-tracing program showing the relation of the main program to other subroutines during the ini- tialization stage 125
Figure 7.2. Continuation of the block diagram of the ray-tracing program (Fig. 7.1), showing the relations among the atmospheric model subroutines during the initialization stage 126
Figure 7.3. Block diagram of the ray-tracing program showing the relations among the main program and the subroutines during the raypath calculation stage 127
Figure 7.4. Continuation of the block diagram of the ray-tracing program (Fig. 7.3) that shows the relations among the atmospheric model subroutines during the raypath calculation stage 128
Figure 7.5. Flow chart for program RAYTRC 130
Figure 7.6. Flow chart for subroutine TRACE 132
Figure 7.7. Flow chart showing some details of finding crossings of and closest approaches to receiver surface 133
Figure 7.8. Flow chart for subroutine BACK UP 134
Figure 7.9. Flow chart for the algorithm that steps the ray by numerical integration to a crossing of a specified height 135
Figure 7.10. Flow chart for the algorithm that steps the ray by numerical integration to a point of closest approach to a spec- ified height 136
Figure C1. An organization chart that shows how graphical output is produced by a series of programs, some of which are a part of HARPA, and others of which are either supplied along with HARPA or are commercial packages 226

TABLES

Page
Table 4.1. Available atmospheric models 58
Table 4.2. Allocation of common blocks for tabular input to the various atmospheric models. 62
Table 4.3. Allocation of common blocks for output from the various atmospheric models 63
Table 4.4. Assignment of entry point names and input parameter blocks in the W array for the atmospheric models 67
Table 4.5. Definitions of the parameters in common block /B5/ 69
Table 5.1. Units conversion on input 76
Table 5.2. Description of the identifying numbers in the first three columns of the Input Data File 85
Table 5.3. Tabular input data formats available 87
Table 6.1. The more important symbols and their definitions. 90
Table 6.2. Run time vs. accuracy 99
Table 7.1. Definitions of the parameters in blank common 137
Table 7.2. Definitions of the parameters in common block/MCONST/ 139
Table 7.3. Definitions of the parameters in common block/PCONST/ 139
Table 7.4. Common block usage by the core routines 140
Table 7.5. Input and output variables to routines in common blocks other than blank common and labeled common blocks /MCONST/, /PCONST/, and /WW/ and other than the common blocks listed in Tables 4.2 and 4.3 141
Table 7.6. Definitions of the parameters in common block/HDR/ 146
Table 7.7. Definitions of the parameters in common block /UCONC/ 147
Table 7.8. Definitions of the parameters in common block/UCONV/ 147
Table 7.9. Definitions of the parameters in common block/RKAMS/ 148
Table 7.10. Definitions of the parameters in common block /CGET/ 148
Table 7.11. Definitions of the parameters in common block/CRMACH/ 149
Table 7.12. Definitions of the parameters in common block /CRKTIME/ 149
Table 7.13. Definitions of the parameters in common block /TRLOCAL/. 150
Table 7.14. Definitions of the parameters in common block /RK/ 151
Table 7.15. Definitions of the parameters in common block /TRAC/ 152
Table 7.16. Definitions of the parameters in common block /FNDER/ 153
Table 7.17. Definitions of the parameters in common block/RIN/ 154
Table 7.18. Definitions of the parameters in common block /ERR/ 155
Table 7.19. Definitions of the parameters in common block /RAYDEV/ 155
Table 7.20. Definitions of the parameters in common block /FLGP/ 156
Table 7.21. Definitions of the parameters in common block /RINPL/ 156
Table 7.22. Definitions of the parameters in common block /FLG/ 157
Table 7.23. Definitions of the parameters in common block /RINPL/ 158
Table 7.24. Definitions of the parameters in common block /FILEC/ 158
Table 7.25. Definitions of the parameters in common block /PLT/ 158
Table 7.26. Definitions of the parameters in common block/RAYCON/ 159
Table 7.27. Definitions of the parameters in common block /ANNCTC/. 159
Table 7.28. Definitions of the parameters in common block /ANNCTL/ 159
Table 7.29. Definitions of the parameters in common block /LABCLT/ 160
Table 7.30. Definitions of the parameters in common block /DD/ 161
Table 7.31. Definitions of the parameters in common block /KNKN/ 162
Table 7.32. Definitions of the parameters in common block /DDLIM/ 162
Table 7.33. Definitions of the parameters in common block/UU/ 163
Table 7.34. Definitions of the parameters in common block /CC/ 164
Table 7.35. Definitions of the parameters in common block /TT/ 165
Table 7.36. Definitions of the parameters in common block /MM/ 166
Table 7.37. Definitions of the parameters in common block/RR/ 167
Table 7.38. Definitions of the parameters in common block/GG/ 168
Table 7.39. Definitions of the parameters in common block /AA/. 169
Table 7.40. Definitions of the parameters in common block/PP/ 170
Table D1. Alphabetical list of source-code modules 228

ACKNOWLEDGMENTS

Part of the organization of this program into subroutines follows that of the program of Dudziak (1961). Also, the coordinate transformation in subroutine PRINTR and the method for data input via the W array are taken from the program of Dudziak (1961). The term "rayset," the idea of outputting computerreadable results of each hop for each ray trace, and the idea of automatically plotting raypaths come from the program of Croft and Gregory (1963). Subroutine RKAM1 is a modification of subroutine RKAMSUB, written by G. J. Lastman, and is available through the CDC CO-OP library (the CO-OP identification is D2 UTEX RKAMSUB). Subroutine GAUSEL was written by L. David Lewis, NOAA Space Environment Laboratory. Judith Stephenson wrote much of the code for the original ionospheric ray-tracing program, upon which HARPA is based. Richard Lindzen devised the method upon which models TTANH5, CSTANH, and GTANH are based. We also thank the many users of earlier versions of the program who provided helpful feedback. Special thanks go to the Editorial Staff of Publication Services for extensive help in clarifying the expression of our ideas, and to Ms. Mildred Birchfield for her excellent typing and layout of the manuscript.

HARPA -- A VERSATILE THREE-DIMENSIONAL HAMILTONIAN RAY-TRACING PROGRAM FOR ACOUSTIC WAVES IN THE ATMOSPHERE ABOVE IRREGULAR TERRAIN

R. Michael Jones, J. P. Riley, and T. M. Georges

Abstract

HARPA stands for Hamiltonian Acoustic Ray-tracing Program for the Atmosphere. This FORTRAN computer program traces the three-dimensional paths of acoustic rays through model atmospheres by numerically integrating Hamilton's equations, which are a differential expression of Fermat's principle. The user specifies an atmospheric model by writing closed-form formulas for its three-dimensional wind and temperature (or sound-speed) distribution, and by defining the height of the reflecting terrain as a function of geographic latitude and longitude. Some general-purpose models are provided, or users can easily design their own.

Because it uses continuous models, the Hamiltonian method avoids the false caustics and discontinuous raypath properties encountered in conventional ray-tracing methods, which use layers or cells where each acoustic-raypath segment can be computed in closed form. Furthermore, computational speed can be traded for accuracy, without changing the model of the medium, by specifying the maximum allowable integration error per step.

In addition to computing the geometry of each raypath, the program can calculate pulse travel time, phase time, Doppler shift (if the medium varies in time), absorption, and geometrical path length. Amplitude is not explicitly computed, but the contributions by absorption, reflection losses, and focusing are separately available for each ray. Only geometrical effects are accounted for; that is, no diffraction or partial-reflection corrections are applied. The program prints out a step-by-step account of each ray's progress, and it can plot the

projection of a set of rays on any vertical plane or on the ground. Furthermore, it can output each ray's properties in machine-readable form for further processing (amplitude calculations, for example).

This report describes the ray-tracing equations and the structure of the program and provides complete instructions for using it, illustrated by a sample case. The program is modular and can be adapted to model propagation through other media by changing the routine that defines the medium's dispersion relation.

PART I: WHAT THIS RAY-TRACING PROGRAM CAN DO

1. Introduction to Hamiltonian Ray Tracing

1.1 Rationale

Many practical problems in atmospheric acoustics submit to a straightforward application of geometrical acoustics, or ray theory. No other propaga-tion-modeling tool provides such an intuitive and graphic portrayal of the paths that acoustic energy follows through inhomogeneous media. Even in situations where ray theory does not strictly apply, a picture of the acoustic raypaths often provides a useful first look at the way the waves and the medium interact, and it gives insight into where higher order computations are required. Some calculations cannot be easily made in any other way, for example, computing multipath pulse travel time or showing which parts of the medium affect each pulse arrival.

Yet most of the ray-tracing computer programs in common use fail to take full advantage of the power of geometrical acoustics. Many are essentially automated versions of graphical techniques that patch together closed-form raypath solutions for layers or cells with simple refractive-index gradients (Roberts, 1974; Cornyn, 1973). In such models, gradient discontinuities at cell boundaries can introduce false caustics and cause discontinuous behavior of ray properties as launch angle varies (Pederson, 1961). Furthermore, it is difficult to extend such models to three-dimensional media, to account for winds, and to compute reflections from complicated terrain models.

This report describes a general-purpose atmospheric acoustic ray-tracing program called HARPA -- for Hamiltonian Acoustic Ray-tracing Program for the Atmosphere -- that we have designed to overcome these limitations. It computes acoustic raypaths by numerically integrating Hamilton's equations, which are a differential expression of Fermat's principle. The user defines an atmospheric model by writing closed-form expressions for its temperature (or sound-speed) and wind distribution in three dimensions, and by defining the terrain height as a function of latitude and longitude. Several simple but generally useful models with user-definable parameters are described in this report; users can pattern their own models after them.

HARPA is the companion to a similar program we have developed for the ocean, known as HARPO. The main differences between the two programs are in the models available for the two media, in provisions for reflections from an upper boundary (in the ocean case), and in the program module that describes the media dispersion relations. HARPO is documented in a separate report (Jones et al., 1986).

1.2 What Is Ray Tracing?

Although ray tracing has a long history, many people outside the field do not know what ray tracing is or what it can do. In ray theory, waves are treated like particles (photons of light, phonons of sound) that travel along geometric trajectories called rays. In material media, the particles travel at a speed determined by the medium's "refractive index." Gradients in refractive index bend rays, giving rise to the problem of computing ray trajectories through a known spatial distribution of refractive index. Ray tracing is any method, graphical or numerical, for solving that problem.

Originally, lensmakers used ray tracing to find out how light rays travel through optical systems. They used graphical techniques based on Snell's law to compute the bending that light rays suffer when they encounter abrupt changes in refractive index, as at the surface of a lens. By constructing bundles of such rays, lensmakers could simulate the magnification, reduction, and focusing of their lens designs without actually building them.

Modern ray-tracing applications, whether acoustic or electromagnetic, serve basically the same function: they allow one to simulate the propagation of waves through media whose refractive-index structure varies in a complicated way, without actually performing the physical measurement. Modern raytracing computations are usually performed by programs written for digital computers that can graphically display the results of their computations in various informative ways.

Today's ray-tracing programs do much more than compute the bending of rays as they cross interfaces; they can model media whose refractive index varies continuously in space and even with time. In dissipative media, they integrate absorption along the raypath. They can also integrate phase and
pulse travel time, as well as wave amplitude. In time-varying media, they can integrate the rate of change of phase, or Doppler shift. Some programs (including HARPA) produce machine-readable output so that the results of many raypath computations can be processed by other programs to display field observables, such as amplitude.

The most advanced applications of ray-tracing computer programs have been to the fields of ionospheric radio propagation, seismic wave propagation, and the propagation of acoustic or sound waves in the ocean and the atmosphere. In the Hamiltonian formalism, the ray-tracing equations for acoustic, seismic, and electromagnetic waves are identical. General-purpose programs can thus be constructed in which only the modules that describe the wave dispersion relation and how the medium varies in space need be changed to go from one kind of ray-tracing program to another.

1.3 What Approximations Are Involved in Ray Tracing?

Solving a wave equation with arbitrary boundary conditions is still an impractical task, even for the most modern computers. Therefore, practical problems in wave propagation are of ten solved by making simplifying approximations to the wave equation. Examples of such approximations are the parabolic-equation (P.E.) method (Tappert, 1977), normal-mode theory (Tolstoy and Clay, 1966; Pierce, 1965), fast-field methods for numerical integration of the wave equation in range-independent environments (Raspet et al., 1985), and ray theory.

Ray theory, sometimes called the WKB or eikonal method, results from making a high-frequency approximation in the solution of arbitrary elliptic or hyperbolic partial differential equations (Budden, 1961). Ray tracing is related to the "method of characteristics" for solving such equations because the raypaths are the bi-characteristic rays of the differential equations in the infinite frequency, infinite wave-number limits. In some fields, ray tracing is called the "shooting method" because (as with shooting a gun) the location of the end point is found by trial and error while the initial conditions of a ray are varied.

In the case of the wave equation, the approximation gives rise to the fields of geometrical acoustics or geometrical optics, which are concerned
with the trajectories of bundles of acoustic or electromagnetic energy radiated in infinitesimal angular beams. Such rays experience no diffraction but produce sharp shadow boundaries when they encounter solid objects. Ray theory can be extended to include the effects of diffraction, for example, by using the Geometrical Theory of Diffraction (GTD) (Keller, 1962).

In ray theory, one assumes conservation of energy within a bundle of rays called a flux tube so that wave intensity is inversely proportional to the cross-sectional area of the flux tube. When that cross-sectional area becomes zero, ray theory predicts infinite energy density. At such "caustics," higher order corrections to ray theory can give more accurate field estimates when needed. For example, the field near a surface caustic can be calculated in terms of Airy functions (Ludwig, 1966; White and Pedersen, 1981).

Without such corrections, ray tracing accounts only for refraction by large-scale gradients in the medium and not for diffraction and scattering by changes in the medium over scales that are small compared to a Fresnel zone. Even so, ray theory provides a useful first look at many complicated propagation problems and gives a kind of graphical insight lacking in other propagation models.

1.4 When Should You Use Ray Tracing?

Ray tracing is best suited to modeling acoustic propagation in environments where the medium's refractive index can be described deterministically in one, two, or three dimensions, and where changes in refractive index are small in the WKB sense (roughly speaking, within an acoustic Fresnel zone). (This means that ray models are most accurate at high frequencies.) In such environments, ray tracing gives accurate information about the geometrical paths followed by acoustic rays (energy), about shadow boundaries and reflections from surfaces, and about phase, intensity, pulse travel time, absorption and Doppler shift (for time-varying media) integrated along those paths.

In environments where multiple rays reach a receiver location of interest, additional computations, external to the ray tracing, may be required to combine field information from multiple rays. When the number of multipath rays becomes large, alternative formulations of the problem (P.E. or normal-mode
theory, for example) are more appropriate for continuous-wave amplitude calculations. For pulse transmissions, ray theory is useful for describing the distinct geometric paths corresponding to each pulse arrival and for computing multipath travel times.

In situations where the applicability of ray theory is doubtful, a raypath picture can tell which regions must be treated with higher order methods, such as GTD or the Airy-function approximation to the field near a caustic.
Furthermore, there are standard formulas to estimate how close to a caustic amplitude calculations are accurate (Budden, 1961; 1972).

Even when ray calculations of one wave quantity become inaccurate, they can give useful estimates of others. For example, when amplitude estimates break down (as at surface caustics), other information, such as travel time or phase, may still be reliable and can be tracked through caustics. Furthermore, Budden (1961, pp. 325-326) shows that the ray-computed phase must be advanced by 90° every time a ray passes through a line caustic.

1.5 What Is Hamiltonian Ray Tracing?

An alternative to cellular methods requires the medium to be modeled as a continuous three-dimensional function with continuous gradients and computes each raypath by numerically integrating Hamilton's equations with a different set of initial conditions. This method has been called Hamiltonian ray tracing. Hamilton's equations are the same for all kinds of wave propagation; only the definition of the Hamiltonian varies when going from one wave type to another.

Although Hamilton's equations are more familiar in mechanics, they have a long history of application to more general problems, including wave propagation. There, the point of view is that in a high-frequency limit, waves behave like particles and travel along rays, according to equations that exactly parallel those governing changes of position and momentum in mechanical systems (Lighthill, 1978, Sec. 4.5). Two steps show that integrating Hamilton's equations can lead to approximate solutions of a wave equation:
(1) The first step is to show that solutions to the wave equation are related to paths that satisfy a particular stationary principle, usually called

Fermat's principle. There are at least two standard methods for demonstrating that relation.
(a) First is the method of characteristics (see, for example, Courant and Hilbert, 1962; Garabedian, 1964), in which the solution is related to initialvalue data chosen on some appropriate surface. Specifying a surface and constructing a solution requires first constructing the characteristic surfaces that are wave fronts of the wave. These characteristic surfaces can be constructed by first constructing bi-characteristic rays that satisfy a stationary principle. The bi-characteristic rays are the same as the geometrical raypaths whenever all terms in the wave equation are proportional to a derivative of the wave function, or in the limit of infinite frequency and wave number.
(b) Second is the path-integral method (see, for example, Feynman and Hibbs, 1965), in which a solution to the wave equation is constructed as an integral over all possible paths (not just raypaths) that connect the source and observer. Making a saddlepoint (or stationary phase) approximation to the path integral finds the paths that contribute most to the path integral. Such paths are those for which the action (phase) is stationary for variations of the path; that is, they satisfy Fermat's principle.
(2) The second step is to show that Hamilton's equations can be integrated to construct paths that satisfy a variational principle, such as Fermat's principle. This is done in standard texts (for example, Lighthill, 1978). First, the variational principle is expressed as an integral of a Lagrangian along the path (specified in terms of generalized coordinates, q_{i}). This determines the form of the Lagrangian for the problem, which for the wave equation is usually some simple function of the phase refractive index. Then the generalized momenta p_{i} are defined, which for the wave equation correspond to components k_{i} of the wave number vector. Then a Hamiltonian $H\left(q_{i}, p_{i}\right)$ is constructed from the Lagrangian. For the wave equation, the Hamiltonian is usually a function that gives the dispersion relation for the wave in question when it is set to zero. Integrating Hamilton's equations then gives a path that satisfies the variational (Fermat's) principle.

In Cartestian coordinates, Hamilton's equations take the particularly simple form (Lighthill, 1978)

$$
\begin{equation*}
\frac{d x_{i}}{d \tau}=\frac{\partial H}{\partial k_{i}} \quad ; \quad \frac{d k_{i}}{d \tau}=-\frac{\partial H}{\partial x_{i}} \quad, \quad i=1 \text { to } 3 \tag{1.1}
\end{equation*}
$$

where τ is a parameter (sometimes proportional to time) whose physical meaning depends on the how the Hamiltonian, H, is defined, k_{i} are the wave-number components, and x_{i} are the coordinates of a point on the raypath. Transforming to spherical polar coordinates complicates the equations considerably. The full set of equations for spherical coordinates can be found in Chapter 6.

To solve (1.1) for the raypath, one chooses initial values for the six quantities x_{i} and k_{i} and performs a numerical integration of the system (1.1) of six total differential equations. For acoustic waves in the atmosphere, the Hamiltonian (which is constant along a raypath) is defined as

$$
\begin{equation*}
H\left(x_{i}, k_{j}\right)=\left[\omega-\vec{k} \cdot \vec{V}\left(x_{i}\right)\right]^{2}-C^{2}\left(x_{i}\right) k^{2}=0, \tag{1.2}
\end{equation*}
$$

where $\vec{V}\left(x_{i}\right)$ is the wind field, $C\left(x_{i}\right)$ is the sound-speed field, and ω is the angular wave frequency (\vec{V} and C may also depend on time). Thus, the effects of a three-dimensional vector-wind field are automatically included in the definition of the Hamiltonian.

There is an alternative to Hamilton's equations for a differential form of the ray equation, namely the eikonal equation (see, for example, Garabedian, 1964, p. 166; Felsen and Marcuvitz, 1973, p. 126). The eikonal equation is derived by first assuming an approximate solution to the wave equation in terms of an asymptotic series. Substituting the asymptotic series into the wave equation leads to the eikonal equation, which determines the raypaths, and a transport equation, which determines an approximate solution to the wave equation. The eikonal equation is equivalent to Hamilton's equations for determining the raypath. The transport equation is equivalent to methods mentioned above for determining an approximate solution to the wave equation.

In addition to allowing continuous three-dimensional models of the refractive-index field and two-dimensional models of reflecting surfaces, Hamiltonian ray tracing by numerical integration permits the user to trade computing speed for accuracy by specifying the maximum allowed integration error per step. In other words, you can have a fast but crude ray trace or a
slower and more accurate one. The program automatically adjusts the integration step length along the raypath to keep the error within specified bounds. In regions where the refractive index varies quickly, small steps are required, but in regions where it varies slowly, large steps save computation. If the quantity being integrated varies monotonically along the raypath, the specified relative accuracy will be preserved in integrated quantities, such as travel time.

1.6 What This Program Does

HARPA computes the paths of acoustic rays, one at a time, through a user-defined model of the atmosphere, given initial conditions that include the source location (latitude, longitude, and height above the ground), wave frequency, direction of transmission (elevation and azimuth), the receiversurface model, and the maximum number of hops (intersections with the receiver surface). The input data specification forms in Chapter 2 illustrate the generality of acceptable input.

The mechanics of the raypath calculation have been completely separated from the modeling of the medium (sound-speed, wind velocity, and terrain models). This allows the user to select models from those we have developed or to develop new models simply by writing new (or altering existing) subroutines to define those models.

The modular structure of the program allows the user to extend the program easily to other types of geophysical ray tracing (underwater acoustics, for example) simply by substituting new subroutines for defining the Hamiltonian and the model of the medium.

The method for inputting data into the program is easy to learn. The user simply specifies the magnitude and units of the elements of an Input Data File which correspond to physical or mathematical quantities that tell the program what models to use, what rays to trace, and in what form to present its results. We provide input parameter forms for making sure that all the required quantities are specified.

At the user's option, HARPA produces three kinds of output: (1) The printout reproduces the input data set and gives detailed information about
each raypath computed, in columnar form, with each line corresponding to a "snapshot" of the ray's progress after a specified number of integration steps. (2) Computer-readable output permits further processing of raypath data by supplementary programs, without recomputing the raypaths. (3) The raypath plots show projections of any part of the raypaths on any vertical plane or on any part of the ground, with any desired magnification. These plots give the user a quick view of the raypath geometries.

Chapter 2 illustrates more fully what the program does by going through the setup and execution of a representative application.

1.7 What This Program Does Not Do

HARPA's computations lie entirely within the scope of geometrical acoustics (ray theory). It applies no corrections for diffraction or partial reflections. The atmospheric model must be deterministic, not stochastic.

There are no provisions built into HARPA for explicit computations of acoustic amplitude. This would normally be done with a supplementary program that processes HARPA's machine-readable output. Total amplitude at a receiver would be computed by combining flux-tube focusing, reflection losses, and absorption, and the user would normally decide whether to add coherently or incoherently the contributions of multipath rays. Because there are so many ways to compute amplitude, we think it is best to keep the various factors separate and let the users combine them however they wish.

Because the numerical integration of Hamilton's equations requires media models with continuous gradients, HARPA cannot presently handle refraction at discontinuities of refractive index or its gradients. If such discontinuities are included in a model, the integration routine will attempt to handle them by taking extremely small steps when a ray encounters a discontinuity, and the results may not be reliable. In general, one can approximate discontinuous functions with continuous functions to any desired accuracy, and HARPA will adjust its step length to accommodate them. Our algorithms for reflecting rays from arbitrary terrain surfaces could be generalized to compute refraction at discontinuities in refractive index.

HARPA is not currently equipped to model penetration of rays into the ground or to account for partial reflections from subsurface layers. However, the user can specify a complex (to account for phase and amplitude) groundreflection coefficient that is a function of frequency and angle of incidence. Since reflection coefficients do not affect the raypaths, their effects can be added after raypath calculations.

HARPA cannot directly compute the raypaths that connect a specified source and receiver. To find such "eigenrays," one usually launches a fan of rays at small increments in elevation and/or azimuth angle and linearly interpolates for the rays that reach the desired receiver location (range, azimuth and height). We have developed an eigenray program that processes the "rayset" output of HARPA, interpolating in elevation angle only, and that will be documented elsewhere. Some shortcuts for finding three-dimensional eigenrays when azimuthal deflections are small are described by Georges et al. (1986).

HARPA makes no checks to see if atmospheric models satisfy physical conservation laws and boundary conditions, or that wind and temperature models are geostrophically consistent. (Accurate raypaths can be computed through physically impossible models.) Therefore, users should make their models as physically realistic as their application demands.

1.8 History of the Program

HARPA has a long history of development. We started by learning from the programs of Dudziak (1961) and Croft and Gregory (1963). Jones (1966) documented our first version of a three-dimensional ray-tracing program for radio waves in the ionosphere, which included anisotropy caused by the earth's magnetic field. Jones (1968) documented improvements in the original program. Georges (1971) converted the ionospheric radio program to trace raypaths for acoustic-gravity waves in an atmosphere with winds and changed the ray-tracing equations into Hamiltonian form. Jones and Stephenson (1975) documented further significant improvements in the ionospheric program. Jones et al. (1982) documented a Hamiltonian acoustic ray-tracing program for an atmosphere over a spherical earth.

Through its history, HARPA and its predecessors have found application in the propagation of radio waves through the ionosphere (Georges, 1967; 1970;

Georges and Stephenson, 1968; Stephenson and Georges, 1969), acoustic propagation through the atmosphere (Georges, 1972; Georges and Beasley, 1977) and acoustic propagation in the ocean (Georges et al., 1986; Jones et al., 1984). In extending the utility of ray theory, Jones (1970) has treated ray propagation in lossy media (ray tracing in complex space), bending of rays in random, inhomogeneous media (Jones, 1981a), and the frequency shift suffered by pulses propagating in dispersive media (Jones, 1981b). Jones (1983) has also surveyed existing techniques for underwater acoustic ray tracing.

HARPA combines the improvements made by Jones and Stephenson with the acoustic-wave capability and atmospheric models developed by Georges.
Although it does not include the capability for tracing acoustic-gravity-wave raypaths, it includes modularity features that make it easier to convert the program to trace rays in other media. It also includes algorithms developed by Jones (1982) for reflecting rays from arbitrary terrain surfaces. In addition, we have developed real-time graphics routines and facilitated operation from time-share graphics terminals as that technology has advanced.

1.9 Scope of This Report

This report documents only the ray-tracing program HARPA, its supporting subroutines, and its various forms of input and output. The main intent of this report is to show what HARPA can do and to explain how to use it. We illustrate its capabilities with a comprehensive sample case. We also show how to extend and modify the program to the user's specific needs.

Not documented here are supplementary programs that we have designed to plot properties of the atmospheric models and to process the computerreadable output of HARPA. Examples of such programs are packages to plot range vs. elevation angle of transmission, range vs. travel time, and amplitude calculations (Jones et al., 1984). We have not documented here our programs for editing input to HARPA or our procedure files for running it on our computer. Nevertheless, the package documented here is self-contained and has everything needed to compute and display raypaths through arbitrary threedimensional model atmospheres.

Figure 1.1 shows an organization chart of HARPA in relation to its supporting modules. The dotted line encloses the portion documented in this
report. Separate reports will document the remaining modules, which are the same for both HARPA and HARPO.

Figure 1.1. Relation of HARPA to its inputs and outputs, as well as its supporting and supplementary programs. The dashed line shows the scope of this report.

2. A Sample Run Illustrating an Application of HARPA

A sample case serves several purposes: it introduces new users to the capabilities of the program in terms of physical models they can understand; it shows new users how to set up and run the program and what output to expect; and it provides a comprehensive test case to exercise the program and make sure everything works on a new machine. New users should run the sample case (provided with the program) first and make sure that the program's output is identical to that shown in this report. Varying the input parameters, one by one, from the sample case is an instructive way to explore the program's capabilities.

The usual procedure for defining models is to fill out "order forms" corresponding to the wind, sound speed, temperature, molecular weight, viscosity/conductivity and terrain models you want to use, then create an "Input Data File" from the information on the order forms. Models can be selected from the general-purpose ones we have created, or you can design your own. The following pages show filled-out forms for the models used by the sample case; blank order forms for all our models are supplied in Appendix B. Using these forms is recommended, even for advanced users, because they make sure that you specify all the required model parameters. They also help you keep track of the models you create.

2.1 The Atmospheric Model for the Sample Case

The atmospheric model described here is designed more to exercise features of the program than to represent any physically realistic situation. It combines a three-dimensional wind and temperature field with a terrain model containing a Lorentzian-shaped ridge. The sample case also includes a simple absorption model based on models of atmospheric viscosity and thermal conductivity.

Refer now to the FORM TO SPECIFY AN ATMOSPHERIC MODEL (Figure 2.1). This form is filled in with the names of all the subroutines required to specify the atmospheric model, for the sample case, including the terrain model,
viscosity/ conductivity model and receiver-surface model. Data-set ID numbers uniquely identify the particular set of parameter values used by each subroutine for the sample case. The entire set of models and parameters that constitute the atmospheric model for the sample case is also given a unique ID number, which is S03. The references to W followed by numbers in these forms correspond to specific input data parameters, as described in Section 5.3.

The first subroutine name on this form specifies the acoustic-wave dispersion relation to be used. In the sample case, we specify AWWWL, which means "Acoustic, With Winds, With Losses." This means that we will use a model atmosphere with winds and will calculate acoustic absorption. More efficient versions of the dispersion relation should be selected when wind or absorption models are not used. The remaining subroutine names filled in on this form refer to the atmospheric model subroutines, to be discussed next.

Refer next to the FORM TO SPECIFY INPUT DATA FOR WIND VELOCITY MODEL ULOGZ2 (Figure 2.2). This wind-field model represents a wind profile for the atmospheric boundary layer, neglecting Coriolis forces. The wind has only an eastward component whose magnitude depends only on height above the terrain surface, according to the formula given on the ULOGZ2 order form.

ULOGZ2 requires the user to specify three parameters, z_{0}, u_{*}, and k. For the sample case, we choose $k=0.35, z_{0}=1.0 \mathrm{~km}$, and $u_{*}=5.0 \mathrm{~m} / \mathrm{s}$. The resulting profile of wind speed is shown in figure 2.1a. (The program that provided this plot is part of a set of peripheral programs that will be documented in another report.) Because we use no wind-perturbation model, we select the do-nothing wind-perturbation NPWIND.

Refer next to the FORM TO SPECIFY SOUND-SPEED MODEL GAMRTDM (Figure 2.3). We use this sound-speed model because we want to specify a background temperature distribution instead of a sound-speed model directly. GANRTDM requires no input parameters, but it requires a molecular weight model, discussed next.

Refer next to the FORM TO SPECIFY INPUT DATA FOR ATMOSPHERIC MOLECULAR WEIGHT MODEL MCONST (Figure 2.4). For the sample case, we select the simplest possible model, namely a constant value of 29 . Molecular weight is required to convert temperature to sound speed when temperature models are specified.

FORM TO SPECIFY INPUT DATA

A logarithmic wind profile of the atmospheric boundary layer neglecting Coriolis forces. The eastward wind is given by

$$
\begin{array}{lll}
u_{\phi}=\frac{u_{*}}{k} \ln \frac{z}{z_{0}} & \text { for } & z>z_{0} e \\
u_{\phi}=\frac{u_{*}}{k} \frac{z}{z_{0} e} & \text { for } & z \leqslant z_{0} e,
\end{array}
$$

where $z=G(r, \theta, \phi)$ is determined by the terrain model and is the height above or some kind of distance from the terrain, depending on the terrain model, and r is the radial coordinate of the ray point.

Specify--
the model check for ULOGZ2 $=$ 6.0 (W100)
the input data-format code $=$ \qquad (W101)
an input data-set identification number $=$ \qquad (W102)
an 80-character description of the wind velocity profile:
LOGARITHMIC EASTWARD WIND PROFILE, U $U^{*}=.5 \mathrm{M} / \mathrm{S}, ~ 工 \varnothing=1 K M$
the reference wind speed, $u_{*}=\ldots \quad 5 \quad \mathrm{~km} / \mathrm{s}$, 角/s (W103)
von Kármán's constant, $k=$. 35 (W104) (.35 recommended)
the roughness height, $z_{0}=\ldots \quad 1 \quad k m$ (W105)

OTHER MODELS REQUIRED: Any wind-perturbation model. Use NPWIND if no perturbation is desired.
($\overline{u w}=-u_{*}^{2}$ is the surface stress at the ground.)

Figure 2.2. Sample of completed form to specify input data
for wind-velocity model ULOGZ2.

This model specifies sound speed in terms of a background temperature model using

$$
\mathrm{C}^{2}=\frac{\gamma \mathrm{RT}}{M}
$$

where $\gamma=1.4, R$ is the universal gas constant, T is the absolute temperature in Kelvins, and $M(r, \theta, \phi)$ is a model of the mean molecular weight of the atmosphere. See Sec. 6.3 for further description of this model.
Specify --
The model check for GAMRTDM $=1.0 \quad$ (W150)

OTHER MODELS REQUIRED: Any background temperature model; any molecular weight model.

Figure 2.3. Sample of completed form to specify sound-speed model GAMRTDM.

A constant molecular weight (independent of height, longitude, latitude,
and time)
Specify--
the model check for MCONST = 1.0 (W250)
the input data-format code $=$

\qquad (W251)
an input data-set identification number $=$ 29 (W252)
an 80-character description of the molecular weight:
MOLECULAR WEIGHT $=29$
the value of the constant molecular weight, $M=$ 29(W253)'atmospheric molecular-weight model MCONST.

This model represents the temperature profile by a sequence of linear segments that are smoothly joined by hyperbolic functions:

$$
\begin{aligned}
& T=T_{0}+\frac{c_{1}}{2}\left(z-z_{0}\right)+\sum_{i=1}^{n} \delta_{i}\left(\frac{c_{i+1}-c_{i}}{2}\right) \quad \ln \left\{\frac{\cosh \left(\frac{z^{-z_{i}}}{\delta_{i}}\right)}{\cosh \left(\frac{z_{i}-z_{0}}{\delta_{i}}\right)}\right\}+\frac{c_{n+1}}{2}\left(z-z_{0}\right) \\
& \frac{d T}{d z}=c_{1}+\sum_{i=1}^{n}\left(\frac{c_{i+1}-c_{i}}{2}\right) \quad\left\{\tanh \left(\frac{z-z_{i}}{\delta_{i}}\right)+1\right\} \\
& c_{i}=\left(T_{i}-T_{i-1}\right) /\left(z_{i}-z_{i-1}\right) .
\end{aligned}
$$

$z=r-r_{e}$, where r_{e} is the Earth radius, and r is the radial coordinate of the ray point. Thus, δ_{i} is the half-thickness of a region centered at approximately $z_{i} k m$, in which $d T / d z$ changes from c_{i} to c_{i+1}. Start by drawing a profile using linear segments and get T_{1} and z_{i} from the corners. Then select δ_{i} to round the corners. The final profile will not go through ($\mathrm{T}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}$).

Specify--
the model check for TTANH5 = \qquad (W200)
the input data-format code $=$ \qquad (W201)
an input data-set identification number $=$ \qquad (W202)
an 80-character description of the model with parameters: U.S. STANDARD ATMOSPHERE 1962 TEMPERATURE PROFILE and the profile values:
the number of points in the profile $-2=n=$
the profile: 1

1	z_{i} $\left(\mathrm{~km}_{\mathrm{m}}\right)$
0	0
1	15
2	52
3	95
4	165
5	300

T_{1}	δ_{i}
$\left({ }^{\circ} \mathrm{K}\right)$	$\left(\mathrm{km}_{\mathrm{m}}\right)$
288	0
190.5	10
320	7.5
191	10
1451	50
1586	0

OTHER MODELS REQUIRED: Any temperature-perturbation model. Use NPTEMP if no perturbations are desired. FUNCTION ALCOSH.
Figure 2.5. Sample of completed form to specify input data for temperature model TTANH5.

Figure 2.6. Profiles of background (a) eastward wind speed, (b) temperature, and (c) sound speed used in the sample case. The program for plotting these profiles is not supplied with HARPA but is part of a set of supplementary programs documented elsewhere.

Refer next to the FORM TO SPECIFY INPUT DATA FOR TEMPERATURE MODEL TTANH5 (Figure 2.5). This "background" temperature model is a continuous approximation to the 1962 U.S. Standard Atmosphere (USSA) temperature profile (Valley, 1965). The model's parameters, shown on the TTANH5 form, have been selected to give a smooth representation of the USSA profile, which actually has "corners." Figures 2.6 b and 2.6 c show the resulting temperature and soundspeed profiles. TTANH5 is a very flexible model that can be used to match virtually any temperature profile with linear segments that join smoothly.

Superimposed on the height-dependent background temperature model (TTANH5) are two "perturbations." One is expressed as a temperature perturbation (TBLOB2), and the other is expressed as a sound-speed perturbation (CBLOB2).

Refer now to the FORM TO SPECIFY INPUT DATA FOR ATMOSPHERIC TEMPERATUREPERTURBATION MODEL TBLOB2 (Figure 2.7). This temperature-perturbation model is in general a three-dimensional blob with Gaussian cross sections in all three dimensions, centered at any latitude, longitude, and height. The formula is given on the TBLOB2 order form.

For the sample case, we suppress the vertical temperature dependence (by setting $W_{z}=0$), making the perturbation a vertical cylinder with Gaussian cross sections in the two horizontal dimensions. For the sample case, we locate the cylinder at longitude 50 km east and latitude 105 km north, and set its E-W (zonal) Gaussian width at 25 km and its $\mathrm{N}-\mathrm{S}$ (meridional) width at 50 km . Its maximum fractional temperature perturbation is 0.5 (50\%). Notice that the form allows us to specify some of the model parameters in various units (such as latitude in kilometers); the program will automatically convert to the units (radians, in this example) it uses for computations.

Refer next to the FORM TO SPECIFY INPUT DATA FOR SOUND-SPEED PERTURBATION MODEL CBLOB2 (Figure 2.8). This sound-speed perturbation model is of the same form as TBLOB2, and its formula is shown on the CBLOB2 order from. For the sample case, we center a 50\% increase in sound speed at 125 km height, longitude 250 km east, and latitude 335 km north. The Gaussian widths are 25 km in height, $50 \mathrm{~km} \mathrm{~N}-\mathrm{S}$, and $25 \mathrm{~km} \mathrm{E}-\mathrm{W}$.

Figure 2.9 shows sound-speed contours in a horizontal slice at 125 km height, and Figure 2.10 shows sound-speed contours in a vertical slice near the centers of the two perturbations. (The contour-plotting routine is also part of the supplementary program set.)

The final part of the atmospheric model specifies the method used to compute acoustic absorption parameters required by the dispersion-relation subroutine $A W W W L$. In the sample case, we use a viscosity/conductivity subroutine called MUARDC, which requires a model of pressure.

FORM TO SPECIFY INPUT DATA FOR
ATMOSPHERIC TEMPERATURE-PERTURBATION MODEL TBLOB2

An increase (or decrease) in temperature in a localized region that decays in a Gaussian manner in all three spatial directions.
$T(r, \theta, \phi)=T_{0}(r, \theta, \phi)\left\{1+\Delta \exp \left[-\left(\frac{z-z_{0}}{W_{z}}\right)^{2}-\left(\frac{\theta-\theta_{0}}{W_{\theta}}\right)^{2}-\left(\frac{\phi-\phi_{0}}{W_{\phi}}\right)^{2}\right]\right\}$
$T_{0}(r, \theta, \phi)$ is the temperature specified by a temperature model. (r, $\left.\theta, \phi\right)$ are the coordinates of the ray point in an Earth-centered spherical polar coordinate system. $\quad \theta_{0}=\pi / 2-\lambda_{0}$ and $z=r-r_{e}$, where r_{e} is the Earth radius. Specify--
the model check for subroutine $T B L O B 2=12.0 \quad$ (W225)
the input data-format code $=$ \qquad (W226)
an input data-set identification number $=2.0$ (W227)
an 80-character description for the temperature-perturbation model, including description of parameter values:
50% CYLINDRICAL INCREASE INTEMPERATURE AT $105 \mathrm{KM} \mathrm{N}, 105 \mathrm{KM} \mathrm{W}$ the strength of the increase (or decrease), $\Delta=0.5$ (W228)
the height of maximum effect, $z_{0}=100 \quad \mathrm{~km}$ (W229)
the latitude of maximum effect, $\lambda_{0}=105 \quad$ rad, $\operatorname{deg}, \mathrm{km} \mathrm{N}^{\prime}(\mathrm{W} 230)$
the longitude of maximum effect, $\phi_{0}=-105 \quad \mathrm{rad}$, deg, Km) E (W231)
the Gaussian width in height of the effect, $W_{z}=\ldots \quad 0 \quad k m$ (W232)*
the meridional width of the effect. $W_{\theta}=$ 50 rad, deg, km (W233)*
the zonal width of the effect, $W_{\phi}=$ 25 rad, deg, (km)(w234)*

OTHER MODELS REQUIRED: none.

[^0]An increase (or decrease) in sound speed in a localized region that decays in a Gaussian manner in all three spatial directions.
$C^{2}(r, \theta, \phi)=C_{0}^{2}(r, \theta, \phi)\left(1+\Delta \exp \left\{-\left(\frac{z_{0}-z_{0}}{W_{z}}\right)^{2}-\left(\frac{\theta-\theta_{0}}{W_{\theta}}\right)^{2}-\left(\frac{\phi-\phi_{0}}{W_{\phi}}\right)^{2}\right\}\right)$ $C_{o}{ }^{2}(r, \theta, \phi)$ is the square of the sound speed specified by a sound-speed model. (r, θ, ϕ) are the coordinates of the ray point in an Earth-centered spherical polar-coordinate system. $\quad \theta_{0}=\pi / 2-\lambda_{0}$ and $z=r-r_{e}$, where r_{e} is the Earth radius.

Specify--
the model check for subroutine $C B L O B 2=1$ (W175)
the input data-format code $=$ \qquad (W176)
an input data-set identification number $=$ \qquad (W177)
an 80 -character description for the sound-speed perturbation model, including description of parameter values:
50% INCREASE IN SQ. SOUND SPEED AT 125 KM HT, $335 \mathrm{KM} N, 125 \mathrm{KME}$
the strength of the fractional increase (or decrease), $\Delta=0.5$ (W178)
the height of maximum effect, $z_{0}=125 \quad \mathrm{~km}$ (W179)
the latitude of maximum effect, $\lambda_{0}=\ldots 335 \quad$ rad, $\operatorname{deg}, \mathrm{km} \mathrm{N}$ (W180)
the longitude of maximum effect, $\left.\phi_{0}=125 \quad \mathrm{rad}, \mathrm{deg}, \mathrm{km}\right) \mathrm{E}$ (W181)
the Gaussian width in height of the effect, $W_{z}=\ldots 25 \quad \mathrm{~km}$ (W182)*
the meridional width of the effect, $W_{\theta}=$ So_rad, deg, Km (W183)*
the zonal width of the effect, $W_{\phi}=$ 25 rad, deg, km (W184)*

OTHER MODELS REQUIRED: none.

[^1]

Figure 2.9. A plan view of the sound-speed contours in a horizontal slice through the sample-case atmospheric model at an altitude of 125 km above sea level. The contours show the perturbations caused by TBLOB2 (left) and CBLOB2 (right).
The horizontal line across the center of the plot corresponds to the line $L-R$ in Figure 2.18.

Figure 2.10. Sound-speed contours in a vertical slice through the sample-case model, showing the perturbations caused by models TBLOB2 (left) and CBLOB2 (right) to an otherwise horizontally stratified atmosphere. The plane of the figure corresponds to the line L-R in Figure 2.18.

Refer next to the FORM TO SPECIFY INPUT DATA FOR VISCOSITY/CONDUCTIVITY MODEL MUARDC (Figure 2.11). This model gives a formula (shown on the form) devised by the Air Research and Development Command (ARDC) (NOAA et al., 1976) for atmospheric viscosity and thermal conductivity. Its variable parameters are viscosity constant (β), Sutherland's constant (S), and Prandtl number $\left(P_{n}\right)$. For the sample case, $\beta=1.45 \times 10^{-6}, \mathrm{~S}=110.4$, and $P_{n}=.733$.

Refer next to the FORM TO SPECIFY INPUT DATA FOR PRESSURE MODEL PEXP (Figure 2.12). This model specifies an exponential decrease of pressure with height. The variable parameters are the pressure p_{0} at sea level (in Newtons per square meter) and the pressure scale height H (in kilometers). For the sample case, $p_{0}=1.01328 \times 10^{5}$, and $H=8.5 \mathrm{~km}$.

Refer next to the FORM TO SPECIFY INPUT DATA FOR TERRAIN MODEL GLORENZ (Figure 2.13). This terrain model superimposes a Lorentzian-shaped ridge on a spherical earth. The ridge, defined by the formula on the GLORENZ order form. runs along a latitude line chosen to be the equator for the sample case. The half width of the ridge is 30 km , and its height is 2 km .

This completes the specification of the atmosphere (and terrain) model for the sample case. Now we specify what raypaths we want to calculate through this model.

2.2 The Ray-Tracing Order Form for the Sample Case

Refer now to the FORM TO SPECIFY INPUT DATA FOR A THREE-DIMENSIONAL RAYPATH CALCULATION (Figure 2.14). The form has been filled out with the values for the sample case. We want to transmit rays from a height 13 km above the earth's surface (as specified in the terrain model), at a latitude of 200 km north, and longitude of zero. The acoustic frequency is 0.05 Hz (infrasound), with no stepping in frequency. The azimuth angle of transmission is 45° (northeastward), with no stepping in azimuth. The elevation angle is stepped from -20° to $+140^{\circ}$ in steps of 5°. (If azimuth and frequency stepping were used, elevation-angle stepping would be performed first, then azimuth angle, then frequency.)

We want to keep track of ray intersections with a receiver surface 5 km above the terrain, and we want to stop tracing rays that go above 500 km alti-

This subroutine calculates the atmospheric molecular viscosity using the ARDC formula for viscosity and calculates atmospheric thermal conductivity from the value of viscosity using a Prandtl number specified by the user. This model is used only to calculate acoustic absorption when either AWWWL or ANWWL is used.

The ARDC formula for viscosity is (U.S. Standard Atmosphere, 1976, p. 19, NOAA, NASA, USAF, U.S. Government Printing office, Washington, D.C., October 1976)

$$
\mu=\beta T^{3 / 2} /(\mathrm{S}+\mathrm{T}),
$$

where T is the atmospheric temperature in Kelvins.

The atmospheric thermal conductivity using the Prandtlapproximation (e.g., Francis Weston Sears, Thermodynamics, Addison-Wesley, 1956, pp. 267-9) is

$$
\kappa=\gamma R \mu /((\gamma-1) M \operatorname{Pr}),
$$

where γ is the ratio specific heats $=1.4$, R is the universal gas constant, and Mis the mean atmospheric molecular weight. Specify --

$$
\text { the model check for subroutine MUARDC }=1.0
$$

the input data-format code $=$ \qquad (W501)
an input data-set identification number $=1.0 \quad$ (W502)
an 80 -character description for the absorption model, including description of parameter values:

ARDC VISCOSITY/THERMAL CONDUCTIVITY MODEL
the viscosity constant, $\beta=1.458 \times 10^{-6} \mathrm{~kg} \mathrm{~s}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-1 / 2}$ (W503)
($1.458 \times 10^{-6} \mathrm{~kg} \mathrm{~s}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-1 / 2}$ suggested)
Sutherland's constant, $S=110.4$ Kelvins (W504)
(110.4 Kelvins suggested)

Prandtl number, $\operatorname{Pr}=.733 \quad$ (W505) (0.733 suggested)

OTHER MODELS REQUIRED: Any atmospheric temperature model and any atmospheric molecular weight model.

Figure 2.11. Sample of completed form to specify input data for viscosity/conductivity model MUARDC.

FORM TO SPECIFY INPUT DATA FOR PRESSURE MODEL PEXP

This model is used only to calculate absorption when either AWWWL or ANWWL is used. The pressure is given by

$$
P=P_{0} \exp (-z / H),
$$

where z is the height above sea level.

Specify --

the model check for subroutine PEXP $=\ldots$ (W550)
the input data-format code $=$ \qquad (W551)
an input data-set identification number $=1.0 \quad$ (W552)
an 80-character description for the pressure model, including description of parameter values:

EXPONENTIAL PRESSURE MODEL, SCALE HEIGHT $=8.5 \mathrm{KM}$
the pressure at sea level, $P_{0}=101328$._Newtons $/ m^{2}$ (W553)
(1.01328 $\times 10^{5}$ Newtons $/ \mathrm{m}^{2}$ suggested)
the pressure scale height, $\mathrm{H}=8.5 \mathrm{~km}$. m (W554)

OTHER MODELS REQUIRED: Any pressure-perturbation model. Use NPPRES if no perturbation is desired.

Figure 2.12. Sample of completed form to specify

 input data for pressure model PEXP.
FORM TO SPECIFY INPUT DATA FOR TERRAIN MODEL GLORENZ

An east-west Lorentzian-shaped ridge.

$$
\mathbf{g}(\mathbf{r}, \boldsymbol{\theta}, \phi)=\mathbf{h}-\mathbf{z},
$$

where

$$
\mathbf{h}=\mathbf{r}-\mathbf{r}_{\mathbf{e}},
$$

$$
z=z_{0} /\left(1+\left(\left(\theta-\theta_{0}\right) / \Delta \theta\right)^{2}\right)+z_{B},
$$

$$
\theta_{0}=\pi / 2-\lambda_{0},
$$

and r_{e} is the radius of the Earth.
Specify--

OTHER MODELS REQUIRED: Any terrain-perturbation model. Use NPTERR if no perturbation is desired.

Figure 2.13. Sample of completed form to specify input data for terrain model GLORENZ.

FORM TO SPECIFY INPUT DATA FOR A THREE-DIMENSIONAL RAYPATH CALCULATION

Atmospheric ID (3 characters)SO3

Name
Date_2-10-86

Title (77 characters) SANPLE CASE FOR HARPA DOCUMENTATION

Stop frequency stepping
when ray goes out of bounds
Maximum height

$\bigcirc \quad(\mathrm{W} 21=1$.	
500	kn (W26)
-1	km (W27)
1000	km (W28)
3	(W22)
1000	(W23)
10^{-6}	(W42)

Minimum height
Maximum range
Maximum number of hops
Maximum number of steps per hop
Maximum allowable error per step
10^{-} (W42)

Additional calculations:
$=1$. to integrate
$=2$. to integrate and print
Phase path
 (W57)
Absorption
Doppler shift
Path length
Every
2
(W60)
Printout: \qquad steps of the ray trace (W71)

```
Computer readable output (raysets):
```

\qquad

``` \((\mathrm{W} 72=1\).
Diagnostic printing:
(W73 = 1.)
Suppress all printout
(W74 = 1.)
```

Figure 2.14. Sample of completed form to specify input data for a three-dimensional raypath calculation.
tude, 1 km below the terrain (all rays should reflect from the terrain surface, however), or beyond $1000-\mathrm{km}$ range. We want to stop the ray trace after 3 hops, a hop being defined as an intersection with the receiver surface.

Because we have selected a receiver surface at a fixed height above the terrain, we also fill out the FORM TO SPECIFY INPUT DATA FOR RECEIVER-SURFACE MODEL RTERR, as shown in Figure 2.15.

We set the maximum number of steps per hop to 1000 (usually a large number that we don't expect to be exceeded under normal conditions but which guards against accidents). We set the maximum allowable integration error per step to 10^{-6}, which means that integrated quantities (that vary monotonically) are computed with at least that relative accuracy. We want to integrate and print phase path, path length, and absorption, but not to calculate Doppler shift (zero for the sample case, which has no time-dependent models). The printed output will display the raypath status every 50 th step, in addition to printing at special events, such as reflections, apogees (turnovers), and perigees. Machine-readable "raysets" will also be produced.

2.3 Rayplot Order Form for the Sample Case

Two kinds of raypath plots are available and are specified for the sample case on the FORM TO SPECIFY INPUT PARAMETERS FOR PLOTTING A PROJECTION OF THE RAYPATH (Figures 2.16 and 2.17). The same form is used twice: once for a projection of raypaths on a vertical plane and once for a projection on a horizontal plane.

The vertical plane is specified by the geographic coordinates of its left and right edges and the height above ground of the bottom of the graph. In the sample case, we want the left edge to be at latitude $\mathbf{- 1 0 0} \mathbf{k m}$ (south) and longitude -300 km (west); the right edge is to be at latitude 500 km (north), longitude 300 km (east). Thus, the plane of the vertical projection coincides with the plane of initial ray transmission. The bottom of the graph is to be at ground level. We specify tick marks every 100 km , and we want registration marks (the top of the graph) at 300 km height.

The horizontal projection plane is specified by the location of the centers of its left and right edges. For the sample case, we select the left and

A receiver-surface model in which the receiver surface is a fixed height above the terrain surface.

$$
\begin{aligned}
& f(r, \theta, \phi)=g(r, \theta, \phi)+z_{R} \\
& \frac{\partial f}{\partial r}=\frac{\partial g}{\partial r}, \frac{\partial f}{\partial \theta}=\frac{\partial g}{\partial \phi}, \frac{\partial f}{\partial \phi}=\frac{\partial g}{\partial \phi},
\end{aligned}
$$

where $g(r, \theta, \phi)$ and its derivatives are specified in common block/GG/ by the terrain model.
Specify-- $2 \cdot 0$
the model check number for subroutine RTERR = 3.0 (W275)
the input data-format code number $=$ (W276)
an 80-character description of the model including parameters:
RECEIVER Surface 5 kM above terrain
the height of the receiver surface above the terrain, $\mathbf{z}_{R}=$ 5_km (W20)
OTHER MODELS REQUIRED: Any terrain model.
Figure 2.15. Sample of completed form to specify input data for receiver-surface model RTERR.

Model ID: \qquad 503

Plot directly during raypath calculations \qquad , or
plot from precomputed raypaths \qquad in disk file \qquad

Normal or apogee plots:
Normal \qquad (W80=0.0)

Plot apogees only \qquad ($W 80=1.0$)

Projection:

Vertical plane, polar plot, rectangular expansion \qquad (W81=1.0)

Horizontal plane, lateral expansion \qquad (W81=2.0)

Vertical plane, polar plot, radial expansion \qquad (W81=3.0)

Vertical plane, rectangular plot
Superimpose these raypath plots on the graph of the previous runset:
Yes \qquad (W81 negative.)

No \qquad (W81 positive.)

Vertical or lateral expansion factor 1 (W82)

Coordinates of the left edge of the graph:
Latitude $=-100$ (rad, deg, km) north (W83)
Longitude $=-300$ (rad, deg, Km) east (W84)
Coordinates of the right edge of the graph:
Latitude $=500$ (rad, deg, km) north (W85)
Longitude $=300$ (rad, deg, kn east (W86)
Distance between horizontal tick marks $=100$ rad, deg, km (W87)
Height above sea level of bottom of graph $=\ldots \quad 0 \quad \mathrm{~km}$ (W88)
Height above sea level of top of graph $=300 \mathrm{~km}$ (W89)
Distance between vertical tick marks $=100 \mathrm{~km}($ W96)
Figure 2.16. Sample of completed form to specify input parameters for plotting a projection of the raypath.

Model ID: \qquad SO3

Plot directly during raypath calculations \qquad - or
plot from precomputed raypaths \qquad
in disk file \qquad

Normal or apogee plots:
Normal \qquad $(W 80=0.0)$

Plot apogees only \qquad (W80=1.0)

Projection:
Vertical plane, polar plot, rectangular expansion \qquad (W81=1.0)

Horizontal plane, lateral expansion (W81=2.0)
Vertical plane, polar plot, radial expansion \qquad (W81=3.0)

Vertical plane, rectangular plot
Superimpose these raypath plots on the graph of the previous runset:
Yes \qquad (W81 negative.)

No \qquad (W81 positive.)

Vertical or lateral expansion factor
Coordinates of the left edge of the graph:
Latitude $=-100 \quad$ (rad, deg, km) north (w83)
Longitude $=-300$ (rad, deg, kmi east (w84)
Coordinates of the right edge of the graph:
Latitude $=500$ (rad, deg, km) north (w85)
Longitude $=300$ (rad, deg, (kn) east (W86)
Distance between horizontal tick marks $=100$ rad, deg. Ki (w87)
Height above sea level of bottom of graph $=\ldots \quad$ km (W88)
Height above sea level of top of graph $=$ \qquad km (W89)

Distance between vertical tick marks $=$ \qquad km (W96)

Pigure 2.17. Sample of completed form to specify input parameters for plotting a projection of the raypath.
right edges of the horizontal plot to coincide with the coordinates of the left and right edges of the vertical plot, as specified above.

Figure 2.18 shows a plan view of the region of the earth's surface near latitude zero, longitude zero, including the transmitter location, the raylaunch azimuth, the locations of the centers of the CBLOB2 and TBLOB2 perturbations, the ridge along the equator, and the locations of the left and right edges of the two plot projections.

Figure 2.18. Plan view of the major features of the samplecase model, the transmitter location, the transmission direction, and the plot-projection plane.

2.4 Setting Up the Input Data File (W Array) for the Sample Case

Now that we have defined all the parameters needed to specify the atmospheric model, the raypaths desired, as well as the printed, plotted and machine-readable output, we can look at the form in which these input data are communicated to HARPA. To run HARPA, you have to create a file like the one shown for the sample case in Figure 2.19. (Such a file for the sample case comes with the program.) HARPA reads this file into an array named $W(n)$, where n, the array subscript, is the first value on each line (columns 1-3), and $W(n)$ is the second value on each line (columns 4-17).

The values of n corresponding to each input parameter are indicated on each of the input parameter forms we have just looked at. You will notice that not all values of n are listed in the input table for the sample case; those not explicitly defined in the Input Data File assume an initial value that is usually (but not always) zero. The initialization scheme is explained in Section 5.3.1.

Besides the values of n and $W(n)$, the figure contains in columns 18-24 provisions for unit conversion on input, that is, for entering data in various units. For example, the notation $A N K M$ means that angular data has been entered in kilometers and will be converted to radians by the program. For $W(3)$, the height of the transmitter, a T in column 17 converts the height specified to height above the terrain model. Finally, in columns 25-80, descriptive comments identify the data for easy data entry.

There are special values of n (such as zero or negative values) that contain instructions for reading what follows. They will be described in detail In Chapter 5. A negative number in columns 1-3 indicates that tabular or text data follow. A zero in columns 1-3 indicates the end of tabular data or the end of a "run set," the name we give to the input data for a set of ray calculations. For example, the rays for one run set will all appear on aingle rayplot. A new run set is necessary to create different plots or to change model parameters. In Figure 2.19, new run sets start with the lines that begin with "S03." For the sample case, each of the two run sets generates a different plot projection of the raypaths through the same atmospheric model. Only the W values that change from the previous run set need be specified; the others remain unchanged.

For now, you need only be aware of this tabular procedure for entering data into HARPA; it would also be instructive to verify that the values entered into the order forms for the sample case correspond to the entries in the $W(n)$ Input Data File.

When you run the program with this input data set, three kinds of output will be produced: a step-by-step printed account of each ray's progress, plots of the raypaths on vertical and horizontal planes, and machine-readable data, including "raysets."

Figure 2.19. Input Data File for the sample case.

Figure 2.19. Input Data File (continued).

```
        15.0000 190.500 10.0000
        52.0000 320.000 7.50000
        95.0000 191.000 10.0000
        165.0000 1451.000 50.0000
        300.0000 1586.000 0.
        999.0000
    6 DATA SUBSET FOR TEMPERATURE PERTURBATION MODEL
        A 50% CYLINDRICAL INCREASE IN TEMPERATURE AT 105KM N., 105 KM W
    MOLECULAR WEIGHT = 

\section*{NO PRESSURE PERTURBATION}
``` RETURN TO W ARRAY DATA SET
********** END OF RUN SET NUMBER I
S03-2 SAMPLE CASE FOR HARPA DOCUMENTATION REV. 2-10-86
710 NUMBER OF INTEGRATION STEPS PER PRINT
0. OUTPUT RAYSETS (\(1=\) YES ; \(0=\) NO)
1. DIAGNOSTIC PRINTOUT (\(1=Y E S\); \(0=\mathrm{NO}\))
2. RAYPLOT PROJECTION (\(1=V E R T ; 2=H O R I Z\)) PLANE
3. PLOT-EXPANSION FACTOR
********** END OF RUN SET NUMBER 2
```

Figure 2.19. Input Data File (continued).

### 2.5 Printed Output for the Sample Case

Appendix A shows the complete printed output, or "printout," for the sample case. Sections 2.5 .1 and 2.5 .2 define the terms and quantities used in the printout.

Page 1 of the printout contains the program title block and a list of all the models used for the first run set. The model list includes subroutine names, a number identifying the set of parameters defining that particular model, and comments describing each model.

Pages 2-4 of the printout reproduce the Input Data File for run set number 1 .

Page 5 of the printout is a list of $n$ and $W(n)$ for all nonzero $W(n)$. The values of $W(n)$ have been converted to the units used by the program; for example, angles (like latitude and longitude) input in kilometers have been converted to radians. The standard set of units used by the program are: angles in radians, distances in kilometers, and frequency in radians per second.

Pages 6-10 of the printout are in a columnar format that gives a step-bystep account of each ray's progress, with each line showing important raypath quantities at user-specified intervals along the raypath. The meanings of the quantities printed out are explained in Section 2.5.1. The user can specify how often along the ray a line is printed (we specified every 50 integration steps). In addition, a line is printed out every time a ray experiences a "special event," such as a ground reflection, a turnover (apogee) or turnunder (perigee), crosses the receiver height, or a few other events. Section 2.5 .2 explains the exact meanings of all the special events.

Each ray calculation terminates when one of the termination conditions is met, such as the maximum number of hops, maximum range, or maximum number of integration steps, whichever occurs first. In the sample case, all of the rays terminate either because they reached the maximum number of hops specified (3) or because the absorption reached the maximum specified. At the end of each ray calculation, the printout shows how much CPU time was used for that ray computation ( 2.009 s , in this case).

Look at page 1 of the printout in Appendix A. Verify that the models indicated at the botton of the page coincide with those we specified as input. Verify that the wave frequency and initial azimuth and elevation angles on page 6 are what we want. Look down the first (ERROR) column of the tabular printout (page 6) and verify that none of the numbers in this column exceeds the maximum allowable single-step integration error, W(42), which for the sample case is $10^{-6}$. This means that the numerical integration is proceeding correctly.

Look at the first entries in the ELEVATION columns and verify that the ray starts at the correct height above the terrain ( 13.00 km in this case), as well as the correct height above sea level (slightly more than 13 km in this case, because of the terrain model). The RANGE column should begin with zero range from the transmitter and indicate the range from the transmitter with successive steps.

A general idea of the sequence of events along this ray can be read in the EVENT column. These notations mark the special events along the raypath, which cause printout regardless of the step number. Reading down this column. we see that this ray begins at the transmitter (XMTR), then crosses the receiver ( $R C V R$ ) height at 5 km altitude above the terrain, then reflects from the ground (GRND REF), passes through the receiver (RCVR) height once again, then executes an APOGEE, or turnover, and stops when it reaches the receiver height (RCVR) a third time. The ray stopped because we specified a maximum of three hops, or intersections with the receiver height (MAX HOPS).

The numbers in the AZIMUTH DEVIATION columns indicate that the ray deviates from the azimuth of transmission because of the wind. The ELEVATION ANGLE columns show changes in the local wave-normal direction and the elevation of the ray point measured from the transmitter.

PULSE TIME gives the time for a pulse or wave packet to reach that point, and PHASE TIME gives the time for a wave phase front to reach that point. The wave phase can be derived from PHASE TIME by multiplying by the wave frequency in appropriate units (cycles per second to get wave phase in cycles, etc.) and removing the integer part. The PATH LENGTH gives the physical length of the ray path.

The second run set shown in the sample-case printout uses the same initial ray conditions, but it changes the rayplot to a horizontal projection, and it adds diagnostic printout that can be useful for studying the details of terrain or receiver-surface intersections.

### 2.5.1 Definitions of Quantities Listed in Printout (Appendix A)

AZIMUTH ANGLE OF TRANSMISSION -- Azimuth angle (degrees clockwise from north) of the initial ray-launch direction.

ELEVATION ANGLE OF TRANSMISSION -- Elevation angle (degrees upward) between the initial ray-launch direction and local horizontal at the transmitter.

TRANSMITTER LATITUDE -- East latitude of the transmitter in geographic coordinates.

TRANSMITTER LONGITUDE -- North longitude of the transmitter in geographic coordinates.

FREQUENCY -- Acoustic wave frequency in hertz.
SINGLE-STEP ERROR -- Maximum allowable single-step integration error.
ERROR -- Normalized difference between the wave number $k$ computed by numerical integration and $k$ computed from the dispersion relation [Eq. (6.32)].

EVENT -- Nature of special event along the raypath (see Sec. 2.5.2).
HEIGHT -- Height of the ray point above sea level (or above the terrain).
RANGE -- Great-circle distance, measured at sea level between the transmitter and the ray point.

AZIMUTH DEVIATION (XMTR) -- Azimuth angle of the direction of transmission in degrees clockwise from the great circle between the transmitter and the ray point.

AZIMUTH DEVIATION (LOCAL) -- Azimuth angle of the wave normal in degrees clockwise from the great circle between the transmitter and the ray point.

ELEVATION (XMTR) -- Elevation angle (degrees) of the ray point from local horizontal at the transmitter.

ELEVATION (LOCAL) -- Elevation angle (degrees) of the wave normal from the local horizontal at the ray point.

PULSE TIME -- The time (seconds) required for a wave packet (pulse) to travel from the transmitter to the ray point (Sec. 6.1).

PHASE TIME -- The time (seconds) required for a wave front to travel from the transmitter to the ray point (Sec. 6.1.1).

ABSORPTION -- Decrease in acoustic intensity ( $d B$ ) from the transmitter to the ray point caused by atmospheric dissipation only (Sec. 6.1.2).

PATH LENGTH -- Geometric length of the ray path (kilometers) from the transmitter to the ray point (Sec. 6.1.3).

### 2.5.2 Meanings of Special Events Along a Raypath

XMTR -- Ray is at the transmitter.
RCVR -- Ray is at the receiver surface.
GRND REF -- Ray has reflected from the terrain surface.
APOGEE -- Ray has passed through a maximum in height.
PERIGEE -- Ray has passed through a minimum in height.
WAVE REV -- Vertical, southward, or eastward component of the wave vector has changed sign.

MAX LAT -- Ray has passed through a maximum (or minimum) in latitude.
MAX LONG -- Ray has passed through a maximum (or minimum) in longitude.
EXTINC -- Absorption has exceeded the maximum allowable.
MAX HOP -- Ray has executed the requested number of hops (receiver-surface crossings).

MAX RANG -- Ray has exceeded the maximum allowable ground range.
MAX HT -- Ray has exceeded the maximum allowable height.
MIN HT -- Ray has gone below the minimum allowable height.
MIN DIST -- Ray has made a closest approach to the receiver surface.
ADDITIONAL EVENTS IN DIAGNOSTIC PRINTOUT
BACK UPO -- At call to subroutine BACKUP.
BACK UP1 -- Before each numerical integration step in subroutine BACKUP.
GRAZE 0 -- At call to ENTRY point GRAZE in subroutine BACKUP.
GRAZE 1 -- Before each numerical integration step after ENTRY point gRAZE.
BACK UP2 -- After unsuccessfully trying to find a closest approach to the receiver surface.

BACK UP3 -- Before each numerical integration step after BACK UP2.

### 2.6 Rayplots for the Sample Case

We requested two rayplots, a projection on a vertical plane and a projection on a horizontal plane. These two plots are shown in Figures 2.20 and 2.21. Because we selected the FULANN (full annotation) option in $W(75)$, we have produced a plot with publication-quality lettering. This capability requires the DISSPLA plotting package.

Rayplots are of ten the most useful output from a ray-tracing program, particularly when the medium is complicated. Depending on the user's plotting and display facilities, rayplots can be produced on paper, microfilm, or video displays.

Because the atmospheric and terrain models used in the aample case cause the acoustic raypaths to behave in complicated ways, a few features of the two rayplot projections call for some explanation. Pigure 2.18 shows how the planes of these plots are related to the transmitter location and the features of the atmospheric and terrain models. The letters $L$ and $R$ show the locations of the left and right edges of the two plots; the line connecting the $L$ and $R$ represents the plane of the vertical projection (Figure 2.20) as well as the line across the center of the horizontal projection (Figure 2.21).

The two rayplots show the gross refracting features of this atmospheric model, namely that the temperature gradient bends upgoing rays back toward the ground, and that the eastward wind deflects rays generally downwind. The wind direction is to the right in Figure 2.20 (though not in the plane of the plot) and is down and to the right in Figure 2.21. In the absence of wind, the rays shown in Figure 2.21 would all be coplanar and so would appear as a single straight, horizontal line in that projection, and the plot of Figure 2.20 would exhibit left-right symmetry. By comparing corresponding rays in Figures 2.20 and 2.21 , one can get a rough three-dimensional perspective of the raypaths.

The effects of the ridge in the terrain model are not evident in the scales of these plots because the ridge is only 2 kn high. The peak of the


MODELS	
ULOGZ2	3.0
NPWIND	.0
GAMRTDM	.0
CBLOBZ	2.0
TTANH5	1.0
TBLOBR	2.0
MCONST	29.0
GLORENZ	2.0
NPTERR	.0
MUARDC	1.0
NPABSR	.0
PEXP	1.0
NPPRES	.0
RTERR	.0

MODELS

Figure 2.20. Projection of the rays of the sample case onto the vertical plane shown in Figure 2.18.

ridge intersects the plane of the vertical projection at about 300 km to the left of the transmitter, and rays launched between about 120 and 130 deg elevation reflect from the terrain near the peak of the ridge. They can be observed in detail by launching a dense fan of rays between 120 and 130 deg elevation and magnifying the vertical-projection plot in the vicinity of the ridge. This could be done with just a few modifications of the Input Data File and will be left as an exercise for the user.

### 2.7 Machine-Readable Output for the Sample Case

HARPA produces two kinds of machine-readable output. One form is called "raysets," which summarize in compressed form some useful ray parameters at each special event (as defined above) along the raypath. The other form of machine-readable output is called "binary raypath data," which permits a complete reconstruction of the raypaths by a supplementary processing progran. When stored in machine-readable form (punched cards, magnetic tape, disk files), raysets (as a file named PUNCH) and binary raypath data (as a file named TAPE6) form the input to supplementary processing programs and extend the utility of ray-tracing calculations. Examples are supplementary programs to plot model profiles and contours, to compute amplitude, to plot range versus elevation angle of transmission and range versus travel time, as well as programs that interpolate in elevation angle to estimate eigenrays that reach a specified range. These supplementary capabilities will be documented in another report.

Figure 2.22 shows a portion of the printout of the raysets for the sample case. The complete rayset output for the sample case is given in Appendix A. Each ray begins with a "transmitter rayset," the lines beginning with "S03" in the example. Additional 80 -column lines are produced whenever a ray reflects from the terrain surface or crosses the receiver height and at the end of each ray trace. Because of the way hops are counted, two identical raysets are produced each time a ray executes a closest approach to the receiver height.

The compressed rayset format is generally meant to be read by machines, not humans, so it can be rather difficult to inspect for information.
Receiver Raysets
Model Identification



$50 \%$ CYLINDRICAL INCREASE IN TEMPERATURE AT 105 KM N., 105 KM W .
MOLECULAR WEIGHT $=29$
S03-1
SAMPLE CASE FOR HARPA DOCUMENTATION
TTANH5
3.0 NPWIND
.0 GAMMA RT
RIDGE 2-KM HIGH, $30-\mathrm{KM}$ WIDE ALONG EQUator

Transmitter Raysets

Receiver Raysets
Figure 2.22. Rayset output for the first run set of the sample case, using an elevation-angle increment of $20^{\circ}$.

However, since this is occasionally necessary, Figures 2.23 and 2.24 provide the key for reading rayset printouts.

Notice that the last 3 columns preceding the hop identifier in the receiver raysets contain all zeroes for the sample case. The first of these colums is for Doppler shift, which is zero because we did not use a timevarying model atmosphere. The transverse polarization is always zero for pure acoustic waves, but is nonzero for acoustic-gravity waves (Jones et al., 1982, Sec. 4.1).


Figure 2.23. Definitions and format for a transmitter rayset. *Wind/ absorption code: $0=$ no wind, no absorption; $1=$ with wind, no absorption; $2=$ no wind, with absorption; $3=$ with wind, with absorption and $\Delta=$ decimal point.


Figure 2.24. Definitions and format for a receiver rayset. * Type of rayset: $G=$ ground reflection; $M=$ closest approach to receiver height; $P$ $=$ penetrated range or height limit; $R=$ at receiver height; $S=$ maximum number of steps; $E=$ extinction; $F=$ exceeded maximum range; $U=$ exceeded maximum height; $D=$ went below minimum height; $\Delta=$ decimal point.

## PART II: HOW TO USE THIS PROGRAM

## 3. How to Get This Program Running on Your Computer

This chapter explains how to get the FORTRAN source code off the distribution tape and onto your computer, and how to get as far as running the sample case. It also deals with the machine-dependent aspects of running HARPA and suggests ways to deal with different computing environments.

### 3.1 How To Get a Copy of the Program

The FORTRAN source code for the version of HARPA documented in this report and the Input Data File for the sample case are available on magnetic tape. For ordering information, contact the authors at the Wave Propagation Laboratory, Propagation Studies Program Area, 325 Broadway, Boulder, Colorado 80303.

The format of the distribution tape is $0.5 \mathrm{in} \times 1200 \mathrm{ft}, 9$ track, 1600 bpi , ASCII character set, block size 1600 bytes, logical record length 80 bytes, no parity.

### 3.2 ANSI-FORTRAN 77 Compatibility

HARPA was designed to run on a Control Data Corp. (CDC) CYBER 700-800 series with a CDC FORTRAN 77 compiler. It should compile with any FORTRAN compiler that adheres to the ANSI FORTRAN 77 standard, including microcomputer FORTRAN compilers that claim such compatibility.

To ensure portability, we have made many changes in portions of the program that were written before the ANSI standard was established. However, where such changes would have been arduous, and where de facto standards that exist on many systems permit deviations from the ANSI standard, we have retained some non-ANSI code. Following are some exceptions to the ANSI standard:
(1) Some variable and subroutine names have seven characters (six is the ANSI standard).
(2) Some alphanumeric characters are stored eight characters per word in numeric (not character) variables and are output using A8 format.
(3) Some machine-dependent constants are entered in nonstandard format (see the following section).
(4) Sometimes a function is called as though it were a subroutine.
(5) Some real variables are EQUIVALENCEd to integer variables.
(6) In some models and other subroutines, data statements are used to initialize variables contained in labeled-common blocks. For systems that do not permit this, such data statements must be put into separate BLOCK DATA modules. Sequence numbers in the source-code listing identify such statements.

### 3.2.1 Machine- and System-Dependent Code

We have tried to consolidate any machine- or operating-system-dependent code into two subroutines to make it easier to identify and adapt to new environments.

Before attempting to run HARPA, the user must modify SUBROUTINE DFCNST, which defines machine-dependent constants. The version supplied on the distribution tape is for the CYBER 700-800 series with NOS $\mathbf{2 x}$. Instructions for modifying this routine for several popular machines are included as comments in SUBROUTINE DFCNST (Appendix D).

Another subroutine, DFSYS, contains some operating-system-dependent functions, such as clock and date functions and system-dependent I/O. Users should also check DFSYS and make changes appropriate to their own operating systems.

### 3.2.2 Word Length

Some problems may arise with machines that have word lengths shorter than the 60 -bit word used in our CYBER 840. The numerical integration subroutine (RKAM1) uses double-precision arithmetic to accumulate numerically integrated quantities, but this is almost certainly not necessary with a 60-bit word for ordinary precision requirements. We have not investigated what errors might
occur if less precision were used. We recommend testing the precision on a different machine by running the sample case for smaller and smaller values of the single-step integration error, $W(42)$, and verifying that the error value in the first column of the printout maintains at least the accuracy specified by $W(42)$. The level where that accuracy first breaks down is probably the precision limit imposed by the computer's word length.

### 3.2.3 Execution Speed

For many applications, HARPA runs fast enough on our CYBER 840 to allow virtually interactive (machine load permitting) ray tracing using a graphics terminal for editing program input and for viewing graphical output. Although HARPA may compile and run on smaller machines, its speed may be so slow that interactive ray tracing may no longer be practical. The run times shown on the printout (Appendix A) for the sample case (at the end of each ray) allow you to compare run times between your computer and ours. Tests on a CRAY XMP-48 indicate a factor of 7 speedup over a CYBER 840.

### 3.2.4 Graphics

The graphics programs included with HARPA were designed to run on the CYBER 700-800 series computer and use the DISSPLA graphics package (by ISSCO, Inc.) and a CDC 250 Microfilm Potting Unit. However, HARPA will run regardless of the plotting facilities you have.

If you have DISSPLA, you can produce the graphic output by running the supplementary program DDSPLA, supplied as File 6 of the distribution tape. This program reads a graphics metafile called TAPE5, which HARPA produces when plots are requested (see Fig. C1).

If you don't have DISSPLA, you can still run HARPA and get the printed and machine-readable outputs, but you won't get any graphics output. Just ignore the TAPE5 file. If you have other graphics devices, you can modify the DD-prefix plotting routines to drive them. PROGRAM DDALT (file 7 of the distribution tape) provides a framework for inserting custom plot-command calls. The functions of these routines and further details about the CDC 250 plot package and the DISSPLA interface are given in Appendix $C$.

### 3.3 Unpacking the Program Tape and File Organization

The distribution tape contains the seven files listed in Section 3.3.1. Section 7.1 gives a list of the programs and subroutines on the distribution tape. Normally, you would transfer all tape files to punched cards or permanent disk files, depending on which medium you will use to run the program.

Although HARPA continues to evolve, the source code on the distribution tape will always correspond exactly with the version described in this report. Updates and errata will be documented separately and included in a dated update tape file.

### 3.3.1 Files on the HARPA Distribution Tape

File *:

1. FORTRAN source code for the Sample Case, including its models, ready to compile, with common and data blocks included.
2. Input Data File for the Sample Case.
3. FORTRAN source code for the "Ray-tracing Core" programs, including plotting (graphics-write) routines.
4. FORTRAN source code for four dispersion-relation routines.
5. FORTRAN source code for all atmospheric-model routines.
6. FORTRAN source code for program DDSPLA for reading the Graphics Output File (TAPE5) for users with DISSPLA.
7. FORTRAN source code for program DDALT, a skeleton routine for reading the Graphics Output File (TAPE5), allowing users to insert plotting modules for their own plotting system.

### 3.3.2 Setting Up a Run Module

A run module is the subset of programs that you submit to your computer to run a particular application, along with the job-control commands your computer needs to compile and/or run a program. Files 1 and 2 of the distribution tape constitute the run module (minus the job-control cards) for the sample case. It consists of a core of routines (Sec. 7.1.1) that must always be present to trace rays, and a set of selectable routines (Secs. 7.1.2 and 7.1.3) that describe the particular model (those for the sample case in this example). Figure 3.1 shows a representative run module.

Job-control statements for your computer
Ray-tracing core
One dispersion-relation routine
Selected atmospheric-model routines
Input data file

Figure 3.1. Configuration of a run module, assembled from parts consisting either of disk-file modules or punched-card decks.

The selectable part of the run module means that you select only the routines that describe the model you want to use. The run module must contain one and only one (with exceptions noted) of the following kinds of model routines:
a dispersion-relation routine
a background sound-speed model
a background wind model (if you use dispersion models AWWWL or AWWNL)
a background terrain model
a perturbation sound-speed model (NPSPEED does nothing)
a perturbation wind model (NPWIND does nothing) (if you use dispersion models AWWWL or AWWNL)
a perturbation terrain model (NPTERR does nothing)
a receiver-surface model.

In addition, you need any other models that are called by any of the above routines, for example, background and temperature-perturbation models called by a sound-speed model (such as GAMRTDM). If you are using a version of the dispersion-relation routine that includes absorption (AWWWL or ANWWL), you will also need models for viscosity/thermal conductivity and pressure, or whatever other parameters it requires. Look at the bottom of the model input parameter forms (Appendix B) to see what other models a given model needs.

### 3.3.3 If You Are Using Cards To Input Data

If you have no permanent disk storage on your computer, you can load a previously compiled version of HARPA (if you don't change the program itself) into your computer from tape each time you want to run it, and have it read the Input Data File from punched cards. For each run, you have to edit the Input Data File (Deck) by punching new cards for the data you change from a previous run. The Input Data file is arranged in an $80-c o l u m n$ format with one input parameter per card so that the deck is easy to edit if you have the contents of the cards interpreted (printed across the card tops).

### 3.3.4 If You Are Using Permanent Disk Files

It is far more convenient to store both the program and the Input Data File in permanent disk files. A run module (Fig. 3.1) can be constructed by a batch or procedure progran that selects the appropriate routines from the HARPA "library." Procedure (or batch) programs also simplify the manipulation of HARPA input and output, but because they depend on the operating system you use, you will generally have to write your own procedures.

## 4. How to Construct An Atmospheric Model

The easy way to set up an atmospheric model is to select from a generalpurpose set of models we have designed (Table 4.1) and choose the model parameters that fit your needs. This requires no programing whatsoever and we encourage that choice whenever possible. Alternatively, you can design your own atmospheric models by writing a FORTRAN subroutine that defines the atmospheric property and its spatial derivatives in a form that is compatible with the rest of the program. This chapter describes both ways.

### 4.1 Choosing From the Available Atmospheric Models

We have designed some generic atmospheric models that can be adapted to represent common atmospheric structures simply by selecting the appropriate model and its parameters in the Input Data file. They are closed-form expressions for an atmospheric property as a function of geographic latitude, longitude, and height; some accept input parameters in tabular form. There are models for wind, sound-speed and temperature fields, viscosity and thermal conductivity, pressure, molecular weight and terrain surfaces. Though not strictly considered part of the atmospheric model, three models for the receiver surface are also provided. All of these models are described in Appendix $B$.

Most of the models come in two kinds, "background" and "perturbation." Perturbation models generally superimpose more structure on a background model. Table 4.1 lists the atmospheric models that come with HARPA. To run HARPA, you always have to specify one background model and one perturbation model for each required atmospheric property, even if the perturbation is a do-nothing version.

To put together an atmospheric model from the subroutines we have supplied, first copy the FORM TO SPECIFY AN ATMOSPHERIC MODEL from Appendix B and fill in the name of a model you want to use for each atmospheric parameter, selecting from the choices listed in Table 4.1. Full mathematical descriptions of each model can be found in Appendix $B$ on the order form listed under the model name, and FORTRAN listings for the model subroutines can be found in Appendix D. For now, leave off the numbers of the Data Set ID column until you have selected the models' parameters.

Model type number	Start of $W$ array parameter block	Model   check   number	Subroutine name	Description
1.	100	1.	WL INEAR	Background wind models:   Constant upward and northerly wind, linear easterly wind profile
		6.	ULOGZ2	Logarmithmic atmospheric boundary layer profile
		9.	VVORTX3	Vertical, cylindrical wind vortex
		8.	WGAUSS2	Localized (Gaussian) zonal wind field
		5.	WTIDE	Zonal and meridional profiles that are harmonic in time and height and are in quadrature
2.	125			Wind-perturbation models:
		0.	NPWIND	Do-nothing version
3.	150	1.	GAMRTDM	$\begin{aligned} & \text { Sound-speed models: } \\ & C^{2}=\gamma R T / M \end{aligned}$
		2.	CSTANH	Profile with linear segments joined by hyperbolic functions
4.	175			Sound-speed perturbation models:
		$0 .$	NPSPEED	Do-nothing version
		$2 .$	CBLOB2	Localized (Gaussian) temperature perturbation
5.	200			Background temperature models:
		0.	NTEMP	Do-nothing temperature model
		1.	TLINEAR	Linear temperature profile
		6.	TTABLE	Tabular temperature profile with cubic interpolation between points
		7.	TTANH5	Profile with linear segments joined by hyperbolic functions
6.	225			Temperature-perturbation models:
		0.	NPTEMP	Do-nothing version
		2.	TBLOB2	Localized (Gaussian) temperature perturbation
7.	250			Molecular weight models:
		1.	MCONST	Constant molecular weight

Table 4.1--Available atmospheric models (continued)

Model   type number	Start of $W$ array parameter block	Model check number	Subroutine name	Description
8.	275			Receiver-surface models:   A sphere concentric with the earth   A fixed height above the terrain   A vertical surface at a specified fixed range from a specified geographic point
		1.	RHORIZ	
		2.	RTERR	
		3.	RVERT	
9.	300			Terrain models:   A sphere concentric with the earth   A profile of linear segments joined by hyperbolic functions   An east-west Lorentzian-shaped ridge
		1.	GHORIZ	
		3.	GTANH	
		4.	GLORENZ	
10.	325			Terrain perturbations: Do-nothing version
		0.	NPTERR	
17.	500	1.	MUARDC	Viscosity/thermal conductivity:   ARDC viscosity model,   Prandtl number for thermal conductivity
18.	525			Viscosity/conductivity perturbation: Do-nothing version
		0.	NPABS	
19.	550			Atmospheric pressure: Exponential profile
		1.	PEXP	
20.	575			Pressure perturbation:   Do-nothing version
		0.	NPPRES	

Next, select and copy the blank Input Parameter Forms from Appendix B for the models you have selected and fill in the values of the variable parameters that you want. Next transfer the input parameters to a new Input Data File, either constructing one from scratch, according to the format shown in Figure 2.5, or modifying an old one. (If you use an old one, make sure that unused parameters are removed.) Remember to assign an input data-set identification number (F7.3 FORMAT), which uniquely identifies that set of input parameters for each model, and to assign an Atmospheric Identification (ID) for the entire
set of models. Put these ID numbers on the FORM TO SPECIFY AN ATMOSPHERIC MODEL and save all these forms as a record of the models you have defined.

Here are a few guidelines for selecting models. If you want a model with no temperature variation, use TLINEAR and set the gradient to zero. If you want a model with no wind, use no wind model and select a dispersion-relation routine with no wind (ANWNL or ANWWL). If you specify any temperature model, you have to use model GAMRTDM, which simply converts temperature to sound speed. If you want to specify a sound-speed field only (such as CSTANH), don't use any temperature model, in which case you don't need GAMRTDM. You can also specify a background model in terms of temperature or sound speed (but not both), and perturbations in terms of temperature or sound speed or both (as in the sample case). If you want no perturbation model for wind speed, temperature, sound speed, or terrain, use the corresponding do-nothing perturbation models NPTEMP, NPWIND, NPSPEED, or NPTERR.

If you are storing HARPA on a permanent disk file, you have to select only the subroutines that define your atmospheric model (and the correct dispersionrelation routine) and assemble them into a separate "run module" (Section 3.3.2). If you are storing the programs on punched cards, you should select and submit only the decks for the model subroutines you want to use. It is convenient to think of HARPA as consisting of a core of ray-tracing routines that are always used, and a set of selectable model-related routines from which you select the ones appropriate to the models you want. The specific routines that fall into each category are listed in Chapter 7.

### 4.1.1 Model Check Numbers

To guard against accidentally selecting the wrong model subroutine for a run module, each model is assigned a permanent Model Check Number, which is entered on each model input data form (Appendix B). If a model subroutine is selected whose Check Number does not match that specified in the Input Data file, then the program will stop and give an error message.

Another number, called the Input Data Format Code, is not now being used or checked, but may be used in the future.

### 4.1.2 Tabular Input to Models

Some models, like TTANH5 and TTABLE, can accept so many input parameters that it is inconvenient to specify each one as a separate line in the Input Data File, 80 a general provision has been made for entering data in tabular form. The use of TTANH5 in the sample case is an example. Tabular data are entered into the Input Data File in a special format illustrated by Figure 2.19 and described fully in Chapter 5.

### 4.2 Designing Your Own Models

HARPA will accept any atmospheric model specification that provides the desired atmospheric property as a function of the earth-centered spherical-polar coordinates $r, \theta, \phi$ and time $t$, as well as its spatial and temporal derivatives. There are three important considerations in writing model subroutines: (a) All spatial derivatives must be not only continuous but also analytically consistent with the formulas for the atmospheric property itself; any errors or approximations in those calculations will result in larger-than-desired integration errors, as displayed in the first colunn of the ray-tracing printout. (b) The input data for the models must come from the part of the $W$ array assigned to that type of model (Table 4.1) and from the tabular-input common blocks assigned to those models (Table 4.2). (c) The output from the atmospheric model must go to the appropriate data-output common block (Table 4.3). Because the model routines are called many times, efficient programming here pays off in execution efficiency.

If you want a new model of wind, temperature, or sound speed that depends only on height, you would normally design a new background model. If you want a three-dimensional model, you could use one of the background models we have supplied and design a new perturbation model. Conceivably, you could design both a new background and a new perturbation model, but the safe way to proceed is to do one at a time.

Those designing a new model should pattern their subroutine after a similar one that comes with HARPA. We will use the model TTANH5 (Fig. 4.1), as an example and discuss its structure in detail to illustrate how to write a model subroutine. In the following paragraphs, general statements will be followed in square brackets by the specific examples from TTANH5.

Table 4.2-Allocation of common blocks for tabular input to the various atmospheric models*

Common block name	Atmospheric model
/B1/	Wind velocity
/B2/	Perturbation to the wind   velocity
/B3/	Sound speed
/B4/	Perturbations to the sound   speed
/B6/	Temperature
/B7/	Perturbations to the temperature
/B8/	Molecular weight

Table 4.3-Allocation of common blocks for output from the various atmospheric models

Common block   name	Location of description   (table number)	Atmospheric model
/UU/	7.10	Wind velocity
$/ \mathrm{CC} /$	7.11	Sound speed
$/ \mathrm{TT} /$	7.12	Temperature
$/ \mathrm{MM} /$	7.13	Molecular weight
$/ \mathrm{RR} /$	7.14	Receiver surface
$/ \mathrm{GG} /$	7.15	Terrain
$/ \mathrm{AA} /$	7.16	Viscosity/thermal
conductivity		

There are no restrictions on naming models, but it is useful to assign a name that suggests the model's function. [TTANH5 is the fifth temperature model that used TANH functions to smooth temperature profiles with linear segments. Square brackets enclose examples of parameters for the TTANH5 routine.] Each model subroutine has two entry points whose standard names are given in

Table 4.4. These names must be used when designing new subroutines. The first entry point [ENTRY IPTEMP], whose name begins with an "I," is for initialization after new input data have been read in, and that entry point is called the first time the program enters the subroutine. The second entry point [ENTRY TEMP] enters the routine for subsequent computations of the atmospheric parameter [T] and its time and space derivatives [PTT, PTR, PTTH, PTPH] according to the formulas given on the model order from.

The input to each subroutine (geographic coordinates $r, \theta, \phi$ ) is through blank common, and output [temperature and its derivatives] is through the labeled common blocks [/TT/], named for each kind of model and listed in Table 4.3. If you need more input parameters than will fit in the assigned block of the Input Data Table [200-224], then you should use a tabular input format, which uses the labeled common blocks [B5] listed in Table 4.2. Tabular

	SUBROUTINE TTANH5		
C	TEMPERATURE PROFILE REPRESENTED BY A SEQUENCE OF LINEAR SEGMENTS	TTANH510	TTANH5 9
C	SMOOTHLY JOINED BY HYPERBOLIC FUNCTIONS. PARAMETERS ARE INPUT	TTANH511	
C	AS TABULAR DATA WITH SLOPES COMPUTED FROM TEMPERATURE DATA.		
C	REFERENCE TEMPERATURE TO IS READ FROM TABULAR DATA.	TTANH513	
	DIMENSION C(20), TM (19), Z (19), DL(19)	TTANH514	
C	COMMON DECK "RKAM" INSERTED HERE		
	REAL KR, KTH, KPH	RKAMCOM4	
	COMMON//R,TH, PH, KR, KTH, KPH, RKVARS (14) , TPULSE, CSTEP, DRDT (20)	RKAMCOM5	
C	COMMON DECK "TT" INSERTED HERE	CTT	2
	REAL MODT	CTT	4
	COMMON/TT/MODT (4), T, PTT, PTR, PTTH, PTPH	CTT	5
C	COMMON DECK "WW" INSERTED HERE	CWW 2	
	PARAMETER (NWARSZ $=1000$ )	CWW1	
	COMMON/WW/ID (10), MAXW, W (NWARSZ)	CWW1	
	REAL MAXSTP, MAXERR, INTYP, LLAT, LLON	CWW2	
	EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)), (TLAT,W(4))	CWW2	
	1 (TLON,W(5)), (OW,W(6)), (FBEG,W(7)), (FEND,W(8)), (FSTEP,W(9)),	CWW2	
	2 (AZl,W(10)), (AZBEG,W(11)), (AZEND,W(12)), (AZSTEP,W(13)),	CWW2	
	3 (BETA,W(14)), (ELBEG,W(15)), (ELEND,W(16)), (ELSTEP,W(17)),	CWW2 6	
	8 (RCVRH,W(20)),	CWW2 7	
	4 (ONLY,W(21)), (HOP, W(22)), (MAXSTP,W(23)), (PLAT, W (24)), (PLON,W(25)	CWW2 8	
	5, (HMAX,W(26)), (RAYFNC,W(29)), (EXTINC,W(33)),	CWW2 9	
	6 (HMIN,W(27)), (RGMAX,W(28)),	CWW2 10	
	8 ( INTYP,W(41)), (MAXERR,W(42)), (ERATIO,W(43)),	CWW2 11	
	6 (STEPl,W(44)), (STPMAX,W(45)), (STPMIN,W(46)), (FACTR,W(47))	CWW2 12	
	7 (SKIP,W(71)), (RAYSET,W(72)), (PRTSRP,W(74)), (HITLET,W(75))	CWW2 13	
	9 , (BINRAY,W(76)), (PAGLN,W(77)), (PLT,W(81)), (PFACTR,W(82)),	CWW2 14	
	1 (LLAT,W(83)), (LLON,W(84)), (RLAT, W (85)), (RLON,W(86))		
	2,(TIC,W(87)), (HB,W(88)), (HT,W(89)), (TICV,W(96))	CWW2 16	
	REAL MMODEL,MFORM, MID		
C		CWW3	3
	$100-124$	CWW3 4	
	(W) , (W)	CWW3 5	
C		CWW3	6
	(W(125), DUMODEL) , (W (126), DUFORM), (W(127), DUID)	CWW3 7	7
C		CWW3	8
C	SOUND SPEED 150-174	CWW3 9	
	EQUIVALENCE (W (150), CMODEL), (W (151), CFORM)	CWW3 10	
C	EQUIVALENCE (W) 153 ), REFC)	CWW3 11	
${ }_{C}^{C}$		CWW3 12	
	DELTA SOUND SPEED 175-199	CWW3 13	
	EQUIVALENCE (W (175), DCMODEL), (W (176), DCFORM), (W (177), DCID)	CWW3	14
C		CWW3 16	
C		CWW3 17	
C	(W (200) , TMODEL), (W(201), TFORM), (W(202),TID)	CWW3	18
C		CWW3 19	
		CWW3 21	
C	EQUIVALENCE (W (225), DTMODEL), (W(226), DTFORM), (W(227),DTID)		
C	$\begin{aligned} & 250-274 \\ & (W(250), M M O D E L),(W(251), M F O R M),(W(252), M I D) \end{aligned}$	CWW3	22
		CWW3 23   CWW3 24	
C			
c	RECEIVER HEIGHT 275-299   EQUIVALENCE (W(275), RMODEL), (W(276),RFORM), (W(277),RID)	CWW3 25   CWW3 26   CWW3 27	

Figure 4.1. Listing for model temperature subroutine TTANH5.

```
C
 TOPOGRAPHY 300-324
 CWW3
 CWW3
 EQUIVALENCE (W(300),GMODEL),(W(301),GFORM),(W(302),GID) CWW3
C DELTA TOPOGRAPHY 325-349
 EQUIVALENCE (W(325),GUMODEL),(W(326),GUFORM),(W(327),GUID)
C
C
C
C EQUIVALENCE (W(490),XFQMDL),(W(491),YFQMDL)
 ABSORPTION 500-524
 EQUIVALENCE (W(500), AMODEL), (W(501),AFORM),(W(502),AID)
 DELTA ABSORPTION 525-549
 EQUIVALENCE (W(525),DAMODEL),(W(526),DAFORM),(W(527),DAID)
 550-574
 EQUIVALENCE (W (550), PMODEL),(W(551),PFORM),(W(552),PID)
575-599
 EQUIVALENCE (W(575),DPMODEL),(W(576),DPFORM),(W(577),DPID)
 COMMON DECK "B5" INSERTED HERE
 INTEGER TMX,TNTBL,TITBL,TFRMTBL,IDST(10)
 COMMON/B5/TMX,TNTBL(10),TITBL(10),TFRMTBL(10),TGP(262)
 EQUIVALENCE (TGP,IDST), (ANT,TGP(11)) CB5 6
 EQUIVALENCE (Z0,TGP(12)),(TM,TGP(33))
 EQUIVALENCE (Z,TGP(13)),(C,TGP(32)),(DL,TGP(53))
 DATA RECOGT,N/7.0,0/
 DATA ANT/O.0/
 DATA TMX/2/
 DATA TNTBL/l,11,72,7*0/
 DATA TITBL/1,20,8*0/
 DATA TFRMTBL/1,2,8*0/
 COSH}(X)=(\operatorname{EXP}(X)+1./(EXP (X)))/2
 ENTRY ITEMP
 CALL IPTEMP
 IF HAD PREVIOUS CALL BUT NOTHING THIS TIME, EXIT NOW
 RETAINING PREVIOUS TABULAR DATA COUNT
 IF(N.GT.O .AND. ANT.EQ.0.0) RETURN
 IF(RECOGT .NE. TMODEL)
 1 CALL RERROR('TEMP ','WRNG MODEL',RECOGT)
 MODT (I) =7 HTTANH5
 MODT (2)=TID
 N=(ANT+1)/3-2
 IF(N.LE.O)
 1 CALL RERROR('TTANH5','BAD N VALUE',FLOAT(N))
```

    Figure 4.1. Listing for model temprature subroutine TTANH5 (continued).
    

Figure 4.1. Listing for model temperature subroutine TTANH5 (continued).

Table 4.4-Assignment of entry point names and input parameter blocks in the $W$ array for the atmospheric models

Atmospheric model	Entry point names	Input parameter   block in the W array
Wind	WINDR, IWINDR	$100-124$
Wind perturbation	PWINDR, IPWINDR	$125-149$
Sound-speed	SPEED, ISPEED	$150-174$
Sound speed perturbation	PSPEED, IPSPEED	$175-199$
Temperature	TEMP, ITEMP	$200-224$
Temperature perturbation	PTEMP, IPTEMP	$225-249$
Molecular weight	MOLWT, IMOLWT	$250-274$
Receiver surface	RECVR, IRECVR	$275-299$
Terrain	TOPOG, ITOPOG	$300-324$
Terrain perturbation	PTOPOG, IPTOPOG	$325-349$
Viscosity/thermal conductivity	ABSRP, IABSRP	$500-524$
Viscosity/thermal con-	PABSRP, IPABSRP	$525-549$
ductivity perturbation	PRES, IPRES	$550-574$
Pressure	PPRES, IPPRES	$575-599$

data are read into this common block from the Input Data File according to the format described in Chapter 5 and illustrated near the end of Pigure 2.19 for the sample case.

### 4.2.1 How To Write an Atmospheric Model Subroutine So It Can Receive Tabular Data Read Into Common Blocks by READW1

If you want to write an atmospheric model subroutine that uses tabular input data, then you have to observe some special precautions. In what follows, general statements are exemplified in square brackets for the case of the temperature subroutine TTANH5. You can use this example as a guide in developing new model subroutines that use tabular data.

Tabular [temperature] data are read into a model-related common block [/B5/] by READW1. Table 4.3 gives the names of the common blocks associated with the different model types. The format of the tabular input data can be selected by the user and is determined by a code [3] in columns 1-3 of the Input Data File (see Figure 2.19). [In the case of TTANH5, a three-column format makes sense because there are three input parameters]. READW1 interprets this code according to the formats listed in Table 5.4. The model subroutine [TTANH5] must tell READW1 how it wants the tabular input data stored in the common block [B5] in an array [TGP]. It does so by setting (in DATA statements) the values in variable TMX and in arrays TNTBL, TITBL and TPRMTBL for temperature models (or corresponding names for other model types, in which the first letter is different). The model variables [ZO,TM,C,DL] are EQUIVALENCEd to elements of a GP (for general-purpose) array [called TGP for temperature models]. Table 4.5 defines the structure of common block/B5/, which transmits these variables between READW1 and TTANH5, and it explains how to set the data-block parameters.

### 4.2.2 Designing Your Own Terrain Models

A terrain model specifies a function $g(r, \theta, \phi)$ such that $g=0$ on the terrain, $g>0$ above the terrain, and $g<0$ below the terrain. To be an allowed model, $g$ must be continuous through second derivatives. A subroutine for a terrain model must calculate $g$, its three first derivatives, and its six second derivatives for any values of $r, \theta, \phi$. All of our present terrain models define $g$ to be the height above the terrain, but more general definitions are allowed to handle cliffs, overhangs, and caves. To design a simple model with a few parameters, follow the example of SUBROUTINE GLORENZ. To design a more elaborate model that needs tabular input data, follow the example of SUBROUTINE GTANH. Source-Code listings for these models are in Appendix D.

Table 4.5--Definitions of the parameters in common block/B5/*

Position common	Variable name	Definition
1	TMX	Maximum number of data blocks in /B5/
2-11	TNTBL	An array that contains the beginning location of data blocks within the common block
2	TNTBL (1)	Beginning location (in TGP array) of data block 1
3	TNTBL (2)	Beginning location (in TGP array) of data block 2
4	TNTBL (3)	Beginning location (in TGP array) of data block $3^{* *}$
12-21	TITBL	An array that contains the iteration (or cycle) length of the data in the data blocks within the common block (if there is more than one array in the data block, then this is the dimension of the arrays)
12	TITBL (1)	Cycle length of data block 1
13	TITBL (2)	Cycle length of data block 2
22-31	TFRMTBL	An array that contains the input format numbers for the data blocks within the common block
22	TFRMTBL ( 1 )	Format type*** for data block 1
23	TFRMTBL (2)	Format type*** for data block 2
32-	TGP	An array containing TMX number of data blocks for tabular input data for atmospheric models

[^2]
## 5. How to Specify the Input Data and Set Up an Input Data File

To give HARPA an atmospheric model and to tell it what rays to trace, you have to construct an Input Data File, like the one shown in Figure 5.1 (same as Figure 2.19, reproduced here for the user's convenience) for the sample case. An Input Data file may contain one or more "run sets," each of which can specify a different atmospheric model, different ploting modes, or different initial ray conditions, but which will all be executed as a single computer run. The sample case contains two run sets. After the first run set, only the parameters whose values differ from those specified in the preceding run set need be specified.

After setting up an Input Data File, you run HARPA by combining it with other ray-tracing modules to form a "run module," as explained in Section 3.3.2. All the necessary modules to run the sample case are contained in Files 1 and 2 of the distribution tape (Sec. 3.3.1).

### 5.1 Editing the Input Data File

Because HARPA contains no built-in way to construct or edit an Input Data File, you have to use an editor of your own to do so. We have designed a specialized editor, called WMOD, for this purpose. It not only permits editing the Input Data File, but it also sets up a "run module" that includes jobsubmission procedures for our computer. This program, which could run on a local microcomputer, will be documented in another report.

The Input Data File can take the form of either a deck of punched cards or a disk file to be read by HARPA. Some suggestions for those using punched cards are given in Section 3.3.3. Henceforth, we will assume that the Input Data File will be created as a disk file. There are no formal differences between the two methods, however.

Rather than start fron scratch, we recommend that you modify an existing Input Data File. After you have run the sample case and have verified that its output agrees with that given in Appendix A, you can modify the Input Data File for the sample case to make the raypath calculations you want.


Figure 5.1. Input Data File (W array) for the sample case.


Figure 5.1. Input Data File (W array) for the sample case (continued).

```
 15.0000 190.500 10.0000
 52.0000 320.000 7.50000
 95.0000 191.000 10.0000
 165.0000 1451.000 50.0000
 300.0000 1586.000 0.
 999.0000
 O RETURN TO W ARRAY DATA SET
 -6 DATA SUBSET FOR TEMPERATURE PERTURBATION MODEL
 A 50% CYLINDRICAL INCREASE IN TEMPERATURE AT 105KM N., 105 KM W
 MOLECULAR WEIGHT = 29
 RETURN TO W ARRAY DATA SET
 DATA SUBSET FOR RECEIVER SURFACE MODEL
RECEIVER SURFACE 5 KM ABOVE TERRAIN
 RETURN TO W ARRAY DATA SET
 DATA SUBSET FOR TERRAIN MODEL
 RIDGE 2-KM HIGH, 30-KM WIDE ALONG EQUATOR
 RETURN TO W ARRAY DATA SET
 DATA SUBSET FOR TERRAIN PERTURBATION MODEL
 NO TERRAIN PERTURBATION
 RETURN TO W ARRAY DATA SET
 DATA SUBSET FOR VISC/COND MODEL
 ARDC VISCOSITY AND THERMAL CONDUCTIVITY MODEL
 RETURN TO W ARRAY DATA SET
 DATA SUBSET FOR VISC/COND PERTURBATION MODEL
 NO VISCOSITY/CONDUCTIVITY PERTURBATION
 RETURN TO W ARRAY DATA SET
 DATA SUBSET FOR BACKGROUND PRESSURE MODEL
 EXPONENTIAL PRESSURE MODEL, SCALE HEIGHT = 8.5 KM
 RETURN TO W ARRAY DATA SET
 DATA SUBSET FOR PRESSURE PERTURBATION MODEL
 NO PRESSURE PERTURBATION
 RETURN TO W ARRAY DATA SET
 SAMPLE CASE FOR HARPA ***** END OF RUN SET NUMBER l ************
 SAMPLE CASE FOR HARPA DOCUMENTATION REV. 2-10-86
 O. NUMBER OF INTEGRATION STEPS PER PRINT
 0. OUTPUT RAYSETS (}1=YES; 0=NO
 1. DIAGNOSTIC PRINTOUT (1=YES; 0=NO)
 2. RAYPLOT PROJECTION (1=VERT; 2=HORIZ) PLANE
 3. PLOT-EXPANSION FACTOR
 ********** END OF RUN SET NUMBER 2 ************
```

Figure 5.1. Input Data File ( $W$ array) for the sample case (continued).

The best way to be sure you have input all the required data is to fill out the forms for specifying all the model and ray parameters, as discussed for the sample case in Chapter 2. Then translate the data from those forms into the format of the Input Data File. We provide blank forms for all models and procedures in Appendix B.

### 5.2 Input Data Formats

The Input Data File is read by a FORTRAN program and so must conform to precise format specifications. Originally, the Input Data File consisted of a deck of 80 -column punched cards, with one input parameter per card, so the data format is still specified in terms of data fields in card-image columns, even though cards are no longer used. Figure 5.1 for the sample case is an example of the proper format.

Looking at Figure 5.1 you will notice that the first part of the file consists of a series of lines that begin with a positive integer. Each of these lines specifies an element of a Data Input Array, $W(n)$. This format goes as far as the line that begins with 575. At the line beginning with -1 , the data format changes to accept tabular input data. First, we will explain how to specify data to be read into $W(n)$; then we will explain how to enter data in the tabular format.

### 5.3 Specifying the W-Array Input

The $W$-array input format consists of a single 80 -column line with four data fields: $n, W(n)$, unit conversion characters, and a description field.

The first three card-image columns contain the first data field in I3 format and specify the index, $n$, of the array $W(n)$. The value of $n$ must be between 0 and 999 , and if there are fewer than three digits, the entry must be rightjustified, or else trailing zeroes will be appended to fill out the three columns. If two or more lines begin with the same value of $n$, the last one prevails.

The second field, columns 4-17, contains the value of $W(n)$ in E14.7 format. The value can be entered in either $E$ or $F$ format, but if the $E$ format is used, the exponent must be right-justified within the 14 spaces, or else zeroes will be appended.

The third field, columns 18-24, contains characters that tell the program to convert the units of the data, as input, to units used by the program. The present choices available for input in this field are given in Table 5.1; the characters must be input in exactly the columnar format shown.

Table 5.1--Units conversion on input

Units of input value*	Meaning	Conversion needed	Value stored by read-in routine
AN RD	Angle in radians	None	$V_{i}$
AN DG	Angle in degrees	degs to radians or deg/s to rad/s	$\mathrm{V}_{1} \pi / 180 * *$
AN KM	Central earth angle in kilometers	km to rad	$V_{i} / r^{* * *}$
LN KM	Length in kilometers	None	$V_{1}$
LN M	Length in meters	$m$ to km	$V_{i} / 1000$
LN NM	Length in nautical miles	nmi to km	$1.852 \mathrm{~V}_{\mathrm{i}}$
LN FT	Length in feet	ft to kin	$3.048006096 \times 10^{-4} \mathrm{~V}_{1}$
FQ HZ	Frequency in hertz	Hz to $\mathrm{rad} / \mathrm{s}$	$2 \pi V_{1}$
FQ S	Frequency expressed as a period in seconds	Period in $s$ to frequency in rad/s	$2 \pi / V_{1}$
T****	Transmitter height relative to terrain instead of sea level	Add terrain height to transmitter height	$\begin{aligned} & V_{1} \\ & (\text { also, a flag } \\ & \text { is set }) * * * * * \end{aligned}$

* The five characters listed are to be put in card-image columns 18 through 22 of the $W$-array input value to be converted, or put above the data-input column of tabular input. For three-column tabular input, for example, the five characters should be in columns 1-13, 14-26 and 27-39. The five characters are automatically put in the appropriate place when using the WMOD editor.
** $\quad V_{1}$ is the input value.
*** $\quad$ afray the radius of the earth. The current value of $W(1)$ in the $W$ afray is used for this conversion.

Applies only for input to $W(3)$ (transmitter height). The " $T$ " must be put in card-image column 24.
***** At the start of each ray, the status of the flag is checked. If the flag is set, then the terrain height at the longitude and latitude of the transmitter is added to the transmitter height. For general terrain models, the terrain height at a given longitude and latitude can only be estimated. For all of the presently available terrain models, the estimate gives an exact result, however, because $\partial g / \partial r$ is constant.

The fourth field (columns 25-80) contains descriptive comments, which aid the user in setting up the table. These comments are optional and arbitrary as far as HARPA is concerned, but for $n \geqslant 100$ and divisible by 25 , the first word in the comment field is read when WMOD is used for editing and must be a valid model name. This convention will be described in a report about the supplementary programs. Where practical, the comments should describe the function of all acceptable values of the parameter, not just the present value, so that the comment would not have to be changed when the parameter is changed. We have included nonzero initial values in the comment field, where applicable. To make it easier to see the model groupings, we have adopted the convention of indenting the comments that describe model parameters.

### 5.3.1 Initialization of the Input Data Parameters

Before reading the Input Data File, the program initializes all of the input parameters, $W(n)$. Most are set to zero, but a few are given nonzero initial values that correspond to common usage. An example is the latitude of north pole of the computational coordinate system, $W(24)$, which usually has a value of $\pi / 2$. Section 5.3 .2 denotes those nonzero initial values by parentheses. These initial values can be overridden by the Input Data File (including a value of zero), but if no value is specified for a $W(n)$ in the Input Data File, then its initial value prevails.

In addition, some initial values are given "zero-override" priority, which means that $W(n)$ assumes its nonzero initial value if no value is input, but also if a zero is input. This zero override operates when a zero value would produce meaningless results or cause difficulty in program execution. An example is the plot expansion factor, $W(82)$. Section 5.3.2 denotes by square brackets the nonzero initial values that override zero.

To help the user keep track of the unit conversions and initializations, all nonzero $W(n)$ values, in the units actually used by HARPA, are listed at the beginning of the printout (Appendix A). In the examples given above, if $\mathbf{W}(24)$ were given a value of zero in the Input Data File, no value would be printed for $W(24)$. On the other hand, if $W(82)$ is given a zero value in the Input Data File, a message is printed indicating "INPUT OVERRIDDEN," and the non-zero override value is printed.

### 5.3.2 Explanation of the Input Data Parameters

Because HARPA has evolved from ray-tracing programs for other media, some values of the input parameter index, $n$, are not used in HARPA, but may be used in other versions of the program. As far as possible, $n$ is assigned consistently among the different versions, and blocks of $n$ are assigned to groups of related parameters.

A list is given next of all the parameters used by HARPA, with a description of their meanings and idiosyncrasies. Those with nonzero initial values need not be entered in the Input Data File, if the value is what you want. If no initial value is indicated, a zero will be assigned if you leave it out of the Input Data File. The default units given in parentheses are those which are assumed if no unit conversions are put into columns 18-24. Also included in the table is the FORTRAN name (where one exists) assigned (in EQUIVALENCE statements) to each variable in the program. Those labeled "not used" can be assigned to additional input parameters, but those labeled "used by other programs" or "used internally" should not be used.

W(1) EARTHR (6370.) -- Radius (kilometers) of the earth. Can be set to a very large value for a "flat-earth" approximation.

W(2) RAY -- Used by other programs.
W(3) XMTRH -- Height (kilometers) of the transmitter (source) above sea level. If there is a $T$ in column 24, it is the height above the terrain.

W(4) TLAT -- North geographic latitude (radians) of the transmitter. Can be entered in kilometers (or degrees) by putting AN KM (or AN DG) beginning in column 18.

W(5) TLON -- East geographic longitude (radians) of the transmitter. Can be entered in kilometers (or degrees) by putting AN KM (or AN DG) beginning in column 18.

W(6) OW -- Used internally.
$W(7)$ FBEG -- Initial acoustic wave frequency (rad/s). Can be entered in Hz (or period in seconds) by putting $\mathrm{FQ} H Z$ (or $\mathrm{FQ} S$ ) beginning in column 18.

W(8) FEND -- Final frequency (rad/s). Can be entered in Hz (or period in seconds) by putting $\mathrm{FQ} H Z$ (or FQ S ) beginning in column 18.
$W(9)$ FSTEP -- Step in frequency (rad/s). Can be entered in Hz (or period in seconds) by putting FQ HZ (or FQ S ) beginning in col 18 . Set $=0$ for no stepping.

W(10) AZ1 -- Used internally.

W(11) AZBEG -- Initial azimuth angle (radians east of north) of transmission. Can be entered in degrees by putting AN DG beginning in column 18.
(12) AZEND -- Final azimuth angle (radians east of north) of transmission. Can be entered in degrees by putting AN DG beginning in column 18.

W(13) AZSTEP -- Step in azimuth angle (radians east of north) of transmission. Can be entered in degrees by putting AN DG beginning in column 18 . Set $=0$ for no stepping.

W(14) BETA -- Used internally.

W(15) ELBEG -- Initial elevation angle (radians above horizontal) of transmission. Can be entered in degrees by putting AN DG beginning in column 18.

W(16) ELEND -- Final elevation angle (radians above horizontal) of transmission. Can be entered in degrees by putting AN DG beginning in column 18.

W(17) ELSTEP -- Step in elevation angle (radians) of transmission. Can be entered in degrees by putting AN DG beginning in column 18. Set $=0$ for no stepping.

W(18)-W(19) -- Not used.
W(20) RCVRH -- Height (kilometers) above sea level of the receiver surface when model RHORIZ is used; height of the receiver surface above the terrain when model RTERR is used.
$W(21)$ ONLY -- Set $=0$ to stop frequency increment when ray goes out of bounds (applies only when elevation and azimuth angles are not stepped).
$W(22)$ HOP -- Maximum number of ray hops (intersections with or closest approaches to the receiver surface); ray calculation stops when reached, printing MAX HOPS. Closest approaches count as two hops.

W(23) MAXSTP (1000.) -- Maximum number of integration steps per hop; ray calculation stops when reached, printing STEP MAX.
$W(24)$ PLAT ( $\pi / 2$ ) -- Geographic latitude (radians) of the north pole of the computational coordinate system.

W(25) PLON -- Geographic longitude (radians) of the north pole of the computational coordinate system.

W(26) HMAX (500.) -- Maximun ray height (kilometers) above sea level; ray calculation stops if exceeded, printing MAX HT.

W(27) HMIN -- Minimum ray height (kilometers) above sea level; calculation stops if ray goes below this height, printing MIN HT.

W(28) RGMAX -- Maximum ground range (kilometers at sea level) of the ray from the transmitter; ray calculation stops if exceeded, printing MAX RANG.

W(29) RAYFNC -- A set of seven binary digits to select execution of HARPA and supplementary programs. To run HARPA, use 100. Setting $=0$ is the same as all ones and will run HARPA.
$W(30)-W(32)$ Used by other programs.
W(33) EXTINC (999.999) -- Maximum absorption (dB); ray calculation stops if value exceeded, printing EXTINC. Set $=0$ for no maximum.
$W(34)-W(40)--N o t$ used.

W(41) INTYP (3.): Integration type:
$=1$ for Runge-Kutta integration without error checking;
$=2$ for Adams-Moulton integration without error checking;
$=3$ for Adans-Moulton integration with relative-error checking;
$=4$ for Adams-Moulton integration with absolute-error checking.
W(42) MAXERR (1.E-4) -- Maximum allowable integration error per step. RKAM routine decreases step size to achieve this error.
$W(43)$ ERATIO (50.) [50.] -- Ratio of maximum to minimum single-step integration error; RKAM increases step size when error is smaller that $W(42)$ by this factor.

W(44) STEP1 (1.0) -- Initial integration step size (seconds).
$W(45)$ STPMAX (100.) -- Maximum integration step size (seconds).
W(46) STPMIN (1.E-8) -- Minimum integration step size (seconds).
W(47) FACTR (.5) [0.5] -- Factor multiplying integration step size when decreasing step size.
$W(48)-W(56)$ Not used.
$W(57)$-- Phase-time integration: 0 to not integrate; 1 to integrate; 2 to integrate and print.
$W(58)--$ Absorption integration: 0 to not integrate; 1 to integrate; 2 to integrate and print.

W(59) -- Doppler shift integration: 0 to not integrate; 1 to integrate; 2 to integrate and print.
$W(60)$-- Path-length integration: 0 to not integrate; 1 to integrate; 2 to integrate and print.
$W(61)-W(70)--A s s i g n e d ~ t o ~ f u t u r e ~ i n t e g r a t i o n ~ o p t i o n s . ~$
W(71) SKIP -- [1.E31] Number of integration steps between printed lines. Set = 1 to print every step; $=0$ to suppress periodic printing.

W(72) RAYSET -- Write machine-readable raysets to file PUNCH -- $1=y e s ; 0=$ no.

W(73) PCNTRW -- Add diagnostic printout lines: $1=$ yes; $0=$ no.
W(74) PRTSRP -- Produce normal printout every $W(71)$ steps $-0=0$ yes; $1=$ no. Also produces printout at special events.

W(75) HITLET [.15] -- Height (inches on our plotter) of lettering on graphs. "FULANN" in description field activates publication-quality lettering on graphs when read by WMOD. Any other comment in description field produces draft-quality lettering.

W(76) BINRAY -- Write binary raypath description to file TAPE6 -- $1=$ yes; $0=$ no.

W(77) PAGLIN (66.) -- Page length (lines) for printout.
W(78)-W(79) -- Not used.
W(80) APOG, PRIGEE -- 0 for normal rayplots; 1 for apogee plots.
W(81) PLT: Rayplot projection:
1 = vertical plane, polar projection, rectangular expansion; 2 = horizontal plane, lateral expansion; 3 = vertical plane, polar plot, radial expansion; $4=$ vertical plane, rectangular plot. Make negative to superimpose plot on that from previous runset.

W(82) PFACTW [1.] -- Vertical or lateral expansion factor for rayplot.
W(83) LLAT -- North latitude (radians) of left edge of plot. To enter in degrees (kilometers) put AN DG (AN KM) beginning in column 18.
$W(84)$ LLON -- East longitude (radians) of left edge of plot. To enter in degrees (kilometers) put AN DG (AN KM) beginning in column 18.
$W(85)$ RLAT -- North latitude (radians) of right edge of plot. To enter in degrees (kilometers) put AN DG (AN KM) beginning in column 18.

W(86) RLON -- East longitude (radians) of right edge of plot. To enter in degrees (kilometers) put AN DG (AN KM) beginning in column 18.

W(87) TIC -- Distance (radians) between tick marks on horizontal axis of plot. To enter in kilometers, put AN KM beginning in column 18.
$W(88) \mathrm{HB}$-- Height (kilometers) of the bot tom of the graph above sea level.
W(89) HT -- Height (kilometers) of the top of the graph above sea level.
W(90)-W(95) -- Used by other programs.
W(96) TICV -- Distance (kilometers) between tick marks on vertical axis of plot. Notice that the default units are kilometers for the vertical ticks and radians for the horizontal ticks.

W(97)-W(99) -- Used by other programs.

```
 W(100) UMODEL -- Check number for background wind model.
 W(101) UFORM -- format code for background wind model.
 W(102) UID -- Data-set ID for background wind model.
 W(103)-W(124) -- Parameters for background wind model.
 W(125) DUMODEL -- Check number for perturbation wind model.
 W(126) DUFORM -- Format code for perturbation wind model.
 W(127) DUID -- Data-set perturbation wind model.
 W(128) W(149) -- Parameters for perturbation wind model.
 W(150) CMODEL -- Check number for background sound speed model.
 W(151) CFORM -- Format code for background sound speed model.
 W(152) CID -- Data-set ID for background sound speed model.
W(153) W(174) -- Parameters for background sound speed model.
W(175) DCMODEL -- Check number for perturbation sound speed model.
W(176) DCFORM -- Format code for perturbation sound speed model.
W(177) DCID -- Data-set for perturbation sound speed model.
\(W(178) W(199)--\) Parameters for perturbation sound speed model.
W(200) TMODEL -- Check number for background temperature model.
W(201) TFORM -- Format code for background temperature model.
W(202) TID -- Data-set ID for background temperature model.
W(203) W(224) -- Parameters for background temperature model.
\(W(225)\) DTMODEL -- Check number for perturbation temperature model.
W(226) DTFORM -- Format code for perturbation temperature model.
W(227) DTID -- Data-set ID for perturbation temperature model.
W(228) W(249) -- Parameters for perturbation temperature model.
```

```
W(250) MMODEL -- Check number for molecular weight model.
W(251) MFORM -- Format code for molecular weight model.
W(252) MID -- Data-set ID for molecular weight model.
W(253) W(274) -- Parameters for molecular weight model.
W(275) RMODEL -- Check number for receiver surface model.
W(276) RFORM -- Format code for receiver surface model.
W(277) RID -- Data-set ID for receiver surface model.
W(278) W(299) -- Parameters for receiver surface model.
W(300) GMODEL -- Check number for background terrain model.
W(301) GFORM -- Format code for background terrain model.
W(302) GID -- Data-set ID for background terrain model.
W(303) W(324) -- Parameters for background terrain model.
W(325) DGMODEL -- Check number for perturbation terrain model.
W(326) DGFORM -- Format code for perturbation terrain model.
W(327) DGID -- Data-set ID for perturbation terrain model.
\(W(328) W(349)\)-- Parameters for perturbation terrain model.
W(400) W(500) Parameters for supplementary programs.
W(500) AMODEL -- Check number for viscosity/conductivity model.
W(501) AFORM -- Format code for viscosity/conductivity model.
W(502) AID -- Data-set ID for viscosity/conductivity model.
\(W(503) W(524)\)-- Parameters for viscosity/conductivity model.
W(525) DAMODEL -- Check number for perturbation viscosity/conductivity model.
W(526) DAFORM -- Format code for perturbation viscosity/conductivity model.
W(527) DAID -- Data-set ID for perturbation viscosity/conductivity model.
```

```
W(528) W(549) -- Parameters for perturbation viscosity/conductivity model.
W(550) PMODEL -- Check number for background pressure model.
W(551) PFORM -- Format code for background pressure model.
W(552) PID -- Data-set ID for background pressure model.
W(553) W(574) -- Parameters for background pressure model.
W(575) DPMODEL -- Check number for perturbation pressure model.
W(576) DPFORM -- Format code for perturbation pressure model.
W(577) DPID -- Data-set ID for perturbation pressure model.
W(578) W(599) -- Parameters for perturbation pressure model.
\(W(600) W(999)\)-- Assigned to future atmospheric models
```


### 5.4 Specifying Tabular Input

In addition to providing values to the $W(n)$ array, the Input Data file lets you enter tabular data to be used by atmospheric model subroutines. In the following discussion, refer to the Input Data File for the sample case (Fig. 5.1) for examples of tabular data.

### 5.4.1 Changing to the Tabular Format

When the sign of the $W$-array index $n$ is read (in columns $1-3$ ), it is checked for a valid negative value, which signals a change in the format of the data to follow. Any valid negative value selects a corresponding "input common block" that has been dedicated to a particular model subroutine. Table 5.2 shows which values select which common blocks. The line in Figure 5.1 that begins with -1 and has the comment "ENTER DATA SUBSET FOR BACKGROUND WIND MODEL" is an example selecting common block/B1/ to receive data. Because this line must conform to the $W$-array format, comments must begin after column 24.

Table 5.2--Description of the identifying numbers in the first three columns of the Input Data File

Code number	Prefix for commonblock variables*	Description
1-999		Input to elements 1-999 of the $W$ array as described in Table 4.4 and Section 5.3.2
-1	U	Signals start of tabular input to common block /B1/ (wind velocity) (see Table 4.2)
-2	DU	Signals start of tabular input to common block /B2/ (perturbation wind velocity)
-3	C	Signals start of tabular input to common block /B3/ (sound speed)
-4	DC	Signals start of tabular input to common block /B4/ (perturbation sound speed)
-5	T	Signals start of tabular input to common block /B5/ (temperature)
-6	DT	Signals start of tabular input to common block /B6/ (perturbation temperature)
-7	M	Signals start of tabular input to common block /B7/ (molecular weight)
-8	R	Signals start of tabular input to common block /B8/ (receiver surface)
-9	G	Signals start of tabular input to common block /B9/ (terrain)
-10	DG	Signals start of tabular input to common block /B10/ (terrain perturbation)
-17	V	Signals start of tabular input to common block /B17/ (viscosity/conductivity)
-18	DV	Signals start of tabular input to common block /B18/ (viscosity/conductivity perturbation)
-19	PR	Signals start of tabular input to common block /B19/ (pressure)
-20	DP	Signals start of tabular input to common block /B20/ (pressure perturbation)
0		Signals end of tabular input to one of the above common blocks, or if that is not appropriate, end of the input data

See Table 4.5.

### 5.4.2 The Format Line

The line following the negative value of $n$ begins with an integer that specifies the format of the data to follow. The formats are numbered according to the method shown in Table 5.3.

Format $A$ is alphanumeric and lets you enter descriptive comments on the rest of the line that begins with the format number. That comment is reproduced at the beginning of the program printout. The comment "LOGARITHMIC EASTWARD WIND PROFILE" in Figure 5.1 is an example.

Formats 1, 2, and 3 specify 1, 2, and 3 columns, respectively, of floatingpoint numbers. If formats 1,2 , or 3 are selected, then columns 4-16 of the format line must contain an end-of-data terminator, such as 999.0 in the sample case. The rest of the format line can contain coments describing the tabular data.

### 5.4.3 The Units Line

The line following the format line is a line containing unit-conversion specifications for the columnar data to follow. The conversion specifications follow the conventions described in Table 5.1 . The 5 characters must be placed in the same 13 -character columns as the tabular data to be converted with the extra condition that at least one space must separate adjacent conversion specifications.

### 5.4.4 The Data Lines

Any number of data lines can follow the format line. They must contain numeric data in the format specified in the format line and must be terminated with the number given in the format line as specifying end-of-data. Data values are read until the terminator is encountered. The data following the "U.S. STANDARD ATMOSPHERE 1962 TEMPERATURE PROFILE" comment in Figure 5.1 is an example of 3-column data entry (format 3) into the common block /B5/, which contains data used by temperature model TTANH5. If the number of data values read in exceeds the maximum allocated in the model subroutine, an error will occur and the program will stop.

Table 5.3--Tabular input data formats available*

Format number	Data block	Format	Data read	Cycle length	Number of columns	Number of arrays in data block
0	1	13	Indicates end of data read into the common block	NA	NA	NA
A	1	I3, 10A8	Format number,** alphanumeric data that describe the atmospheric model	1	NA	1
1	1 last	$\begin{aligned} & \text { I3,G13.6 } \\ & \text { G13.6 } \\ & \text { G13.6 } \end{aligned}$	Format number, terminator data read consecutively into the data block spaced by the cycle length   Terminator indicates end of data for this data block	Equals dimension of arrays in data block	1	Usually 1
2	1   2-   last	$\begin{aligned} & 13, G 13.6 \\ & 2 \mathrm{G} 13.6 \end{aligned}$ $\text { 2G13. } 6$	Format number, terminator data read consecutively into the data block   spaced by the cycle length   Terminator indicates end of data for this data block	Equals dimension of arrays in data block	2	Usually 2
3	1   2-   last	$\begin{aligned} & \text { I3, G13.6 } \\ & \text { 3G13.6 } \\ & \\ & \text { 3G13.6 } \end{aligned}$	Format number, terminator data read consecutively into the data block spaced by the cycle length   Terminator indicates end of data for this data block	Equals dimension of arrays in data block	3	Usually 3
Except for format $A$, the structure of the data block is a single variable (whose value will be set equal to the number of data values read in to the data block) followed by the data block arrays. This structure must be set up in the subroutines that define the atmospheric model in question.						
Format A implies the data will go into data block 1.						
Format numbers 1 through 6 imply the data will go into data block 2. The maximum number of columns is now 6.						

### 5.4.5 The Return Line

After the end-of-data number signifies the end of tabular input, you will usually put a line beginning with a 0 in column 3 to return to the $W$-array data format.

## PART III: HOW THE PROGRAM WORKS

## 6. The Ray-Tracing Equations

### 6.1 Hamilton's Equations in Spherical Polar Coordinates

HARPA calculates raypaths by numerically integrating Hamilton's equations. Lighthill (1965, 1978) gives Hamilton's equations in four dimensions (three spatial and one temporal) for Cartesian coordinates. Haselgrove (1954) gives Hamilton's equations in three dimensions for spherical polar coordinates, a more useful coordinate system for geophysical media. Combining the two gives Hamilton's equations in four dimensions in which the three spatial coordinates are earth-centered spherical polar (see Table 6.1 for a definition of the symbols):

$$
\begin{align*}
& \frac{d r}{d \tau}=\frac{\partial H}{\partial k_{r}},  \tag{6.1}\\
& \frac{d \theta}{d \tau}=\frac{1}{r} \frac{\partial H}{\partial k_{\theta}},  \tag{6.2}\\
& \frac{d \phi}{d \tau}=\frac{1}{r \sin \theta} \frac{\partial H}{\partial k_{\phi}},  \tag{6.3}\\
& \frac{d t}{d \tau}=-\frac{\partial H}{\partial \omega},  \tag{6.4}\\
& \frac{d k_{r}}{d \tau}=-\frac{\partial H}{\partial r}+k_{\theta} \frac{d \theta}{d \tau}+k_{\phi} \sin \theta \frac{d \phi}{d \tau},  \tag{6.5}\\
& \frac{d k_{\theta}}{d \tau}=\frac{1}{r}\left(-\frac{\partial H}{\partial \theta}-k_{\theta} \frac{d r}{d \tau}+k_{\phi} r \cos \theta \frac{d \phi}{d \tau}\right),  \tag{6.6}\\
& \frac{d k_{\phi}}{d \tau}=\frac{1}{r} \sin \theta\left(-\frac{\partial H}{\partial \phi}-k_{\phi} \sin \theta \frac{d r}{d \tau}-k_{\phi} r \cos \theta \frac{d \theta}{d \tau}\right),  \tag{6.7}\\
& \frac{d \omega}{d \tau}=\frac{\partial H}{\partial t} \cdot \tag{6.8}
\end{align*}
$$

The variables $r, \theta, \phi$ are the (Earth-centered) spherical polar coordinates of a point on the raypath; $k_{r}, k_{\theta}$, and $k_{\phi}$ are the local Cartesian components of the propagation vector (a vector whose magnitude,

Table 6.1--The more important symbols and their definitions

A	In Section 6.1.2, absorption in dB
C	Sound speed
Cref	A reference sound speed ( $=.344 \mathrm{~km} / \mathrm{s}$ )
$f$	Wave frequency (in Hz )
$\Delta f$	Frequency shift of a wave due to a time-varying medium
H	Hamiltonian
$\mathbf{k}_{\mathbf{r}}, \mathbf{k}_{\boldsymbol{\theta}}, \mathbf{k}_{\boldsymbol{\phi}}$	Components of the propagation vector in the $r, \theta, \phi$ directions--a vector normal to the wave front having a magnitude $2 \pi / \lambda=\omega / v$
$\mathbf{k}_{\text {disp }}$	Complex wave number determined by the dispersion relation
M	Mean molecular atmospheric weight (the average is over molecular constituents)
P	Phase path length, phase of the wave divided by the reference wave number ( $2 \pi / \lambda_{0}=\omega / C_{\text {ref }}$ )
$\mathrm{P}^{\prime}$	Group path length $=\mathrm{C}_{\text {ref }} \mathrm{t}$
p	Atmospheric pressure
R	Gas constant $=8.31436 \times 10^{-3} \mathrm{~kg}(\mathrm{~kg} \mathrm{~mole})^{-1} \mathrm{~km}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
$\mathbf{r}, \boldsymbol{\theta}, \boldsymbol{\phi}$	Spherical polar coordinates of a raypath point
s	Geometric raypath length
T	Atmospheric temperature
t	Time of travel of a wave packet (in some cases, used to express the time dependence of the propagation medium)
V	Wind velocity
$\mathrm{V}_{\mathrm{r}}, \mathrm{V}_{\boldsymbol{\theta}}, \mathrm{V}_{\boldsymbol{\phi}}$	Components of the wind velocity in the r, $\theta$, $\phi$ direction
	Wave phase velocity
$\boldsymbol{\gamma}$	$=1.4$, the ratio of specific heat at constant pressure to that at constant density
$\theta$	Colatitude in spherical polar coordinates
$\lambda$	Wavelength
$\lambda_{0}=(2 \pi / \omega) \mathrm{C}_{\text {ref }}$	Reference wavelength
$\rho$	Atmospheric density
T	Independent variable in Hamilton's equations (no physical significance)
$\phi$	Longitude in spherical polar coordinates
$\Omega$	$=\omega-\vec{k} \cdot \overrightarrow{\mathrm{v}}$, the intrinsic wave frequency, the wave frequency as seen by an observer moving with the medium
$\omega=2 \pi f$	Radian wave frequency
$\Delta \omega=2 \pi \Delta f$	Radian frequency shift

$$
\begin{equation*}
k=\sqrt{k_{r}^{2}+k_{\theta}^{2}+k_{\phi}^{2}}=2 \pi / \lambda, \tag{6.9}
\end{equation*}
$$

is the wave number, and that points in the wave normal direction) in the $r$, $\theta$, and $\phi$ directions; $t$ is time--in (6.4) it is the propagation time of a wave packet; in (6.8) it expresses the variation with time of a time-varying medium; $T$ is a parameter whose value depends on the choice of the Hamiltonian H. Section 6.4 explains how the Hamiltonian is defined.

For actual calculation, HARPA uses group path $P^{\prime}=C_{r e f} t$ (where $C_{r e f}$ is a standard reference speed) as the independent variable because the derivatives with respect to $P^{\prime}$ are independent of the choice of Hamiltonian, allowing the program to switch Hamiltonians in the middle of a path. This choice automatically causes the program to take smaller steps in real path length where the calculations are more critical, as when refractive index varies rapidly. These equations are obtained by dividing (6.1) through (6.8) by Cref times (6.4):

$$
\begin{align*}
& \frac{d r}{d P^{\prime}}=-\frac{1}{C_{r e f}} \frac{\partial H / \partial k_{r}}{\partial H / \partial \omega},  \tag{6.10}\\
& \frac{d \theta}{d P^{\prime}}=-\frac{1}{r C_{r e f}} \frac{\partial H / \partial k_{\theta}}{\partial H / \partial \omega},  \tag{6.11}\\
& \frac{d \phi}{d P^{\prime}}=-\frac{1}{r C_{r e f} \sin \theta} \frac{\partial H / \partial k_{\phi}}{\partial H / \partial \omega},  \tag{6.12}\\
& \frac{d k_{r}}{d P^{\prime}}=\frac{1}{C_{r e f}} \frac{\partial H / \partial r}{\partial H / \partial \omega}+k_{\theta} \frac{d \theta}{d P^{\prime}}+k_{\phi} \sin \theta \frac{d \phi}{d P^{\prime}},  \tag{6.13}\\
& \frac{d k_{\theta}}{d P^{\prime}}=\frac{1}{r}\left(\frac{1}{C_{r e f}} \frac{\partial H / \partial \theta}{\partial H / \partial \omega}-k_{\theta} \frac{d r}{d P^{\prime}}+k_{\phi} r \cos \theta \frac{d \phi}{d P^{\prime}}\right),  \tag{6.14}\\
& \frac{d k_{\phi}}{d P^{\prime}}=\frac{1}{r \sin \theta}\left(\frac{1}{C_{r e f}} \frac{\partial H / \partial \phi}{\partial H / \partial \omega}-k_{\phi} \sin \theta \frac{d r}{k P^{\prime}}-k_{\phi} r \cos \theta \frac{d \theta}{d P^{\prime}}\right),  \tag{6.15}\\
& \frac{d(\Delta f)}{d P^{\prime}}=\frac{1}{2 \pi} \frac{d \Delta \omega}{d P^{\prime}}=\frac{1}{2 \pi} \frac{d \omega}{d P^{\prime}}=-\frac{1}{2 \pi} \frac{\partial H / \partial t}{\partial H / \partial \omega} . \tag{6.16}
\end{align*}
$$

Equation (6.16) for the frequency shift of a wave propagating through a time-varying medium follows directly from Hamilton's equations (6.4) and (6.8). An alternative derivation is given by Bennett (1967). Large frequency shifts should be accumulated along the raypath and the shifted frequency used in calculations at each point on the raypath. Equations (6.1) through (6.8) imply that all eight dependent variables vary along the path, and that at each point on the path the instantaneous value of all parameters (including frequency) is used in further evaluations of the equations.
However, the time variation of the atmosphere due to natural causes is so slow that the resulting frequency shifts have negligible effect on the propagation. For this reason, HARPA calculates frequency shift to compare with
frequency-shift measurements, but does not adjust the frequency of the wave used in the propagation calculations.

The first six differential equations, (6.10) through (6.15), are always integrated. By setting $W(59)$, the user can choose whether to have the program integrate (6.16) to calculate the frequency shift.

### 6.1.1 Phase Path

Three other quantities can be calculated by integration along the raypath. The phase path $P$ (phase divided by the reference wave number $2 \pi / \lambda_{0}=$ $\omega / C_{\text {ref }}$ ) is calculated by integrating

$$
\begin{align*}
\frac{d P}{d P^{\prime}} & =\frac{C_{r e f}}{\omega}\left(k_{r} \frac{d r}{d P^{\prime}}+k_{\theta} r \frac{d \theta}{d P^{\prime}}+k_{\phi} r \sin \theta \frac{d \phi}{d P^{\prime}}\right) \\
& =-\frac{1}{\omega} \frac{k_{r} \frac{\partial H}{\partial k_{r}}+k_{\theta} \frac{\partial H}{\partial k_{\theta}}+k_{\phi} \frac{\partial H}{\partial k_{\phi}}}{\partial H / \partial \omega} . \tag{6.17}
\end{align*}
$$

### 6.1.2 Absorption

If the absorption per wavelength is small (as it must be for this type of ray tracing to be valid), then an approximate formula can be integrated to give the absorption in decibels:

$$
\begin{align*}
\frac{d A}{d P^{\prime}} & =-\frac{10}{\log _{e} 10} \frac{\omega}{C_{r e f}} \frac{i m a g\left(k_{d i s p}^{2}\right)}{k_{r}^{2}+k_{\theta}^{2}+k_{\phi}^{2}} \frac{d P}{d P^{\prime}} \\
& =\frac{10}{\log _{e} 10} \frac{i m a g\left(k_{d i s p}^{2}\right)}{k_{r}^{2}+k_{\theta}^{2}+k_{\phi}^{2} \frac{\partial H}{\partial k_{r}}+k_{\theta} \frac{\partial H}{\partial k_{\theta}}+k_{\phi} \frac{\partial H}{\partial k_{\phi}}} C_{r e f}^{\partial H / \partial \omega} \tag{6.18}
\end{align*}
$$

where $k_{\text {disp }}$ is the (complex) wave number determined by the dispersion relation. If you want to include the effects of absorption from some independent formula for absorption, then you can add that as a new equation to HANLTN. The appropriate equation would be

$$
\begin{equation*}
d A / d P^{\prime}=\omega / C_{\text {ref }} \alpha / k_{\text {real }} d P / d P^{\prime} \text {, } \tag{6.19}
\end{equation*}
$$

where $\alpha$ is an absorption in $d B / k m$, and $A$ will be the absorption in $d B$.

The geometrical path length of the ray can be calculated by integrating

$$
\begin{align*}
\frac{d s}{d P^{\prime}} & =\sqrt{\left(\frac{d r}{d P^{\prime}}\right)^{2}+r^{2}\left(\frac{d \theta}{d P^{\prime}}\right)^{2}+r^{2} \sin ^{2} \theta\left(\frac{d \phi}{d P^{\prime}}\right)^{2}} \\
& =\frac{\sqrt{\left(\frac{\partial H}{\partial k_{r}}\right)^{2}+\left(\frac{\partial H}{\partial k_{\theta}}\right)^{2}+\left(\frac{\partial H}{\partial k_{\phi}}\right)^{2}}}{C_{r e f}|\partial H / \partial \omega|} \tag{6.20}
\end{align*}
$$

The user can choose to integrate and print frequency shift, phase time, absorption, or path length using Equations (6.16), (6.17), (6.18), or (6.20) by setting the appropriate values of $W(59), W(57), W(58), W(60)$, respectively, in the Input Data File (Figure 2.19).

The user can add differential equations to the program by modifying HAMLTN, the subroutine that evaluates Hamilton's equations.

The Hamiltonian and its derivatives are calculated by one of the versions of dispersion-relation subroutine (with entry point DISPER), which also calculates $\mathbf{k}_{\text {disp }}{ }^{2}$.

### 6.2 Numerical Integration

Subroutines RKAM and RKAM1 integrate the differential equations numerically using an Adams-Moulton predictor-corrector method with a Runge-Kutta starter. RKAM1 was adapted from a program in the CDC CO-OP library called RKAMSUB, written by G. J. Lastman and dated March 1964. The program executes one integration step by one of four methods the user can specify using $W(41)$. The subroutine is called once for each advance of the independent variable. The flow charts of Figures 6.1 through 6.5 show how the integration routine works.

Usually, RKAM1 is run in mode 3, that is, Adams-Moulton integration with relative-error checking. The user can trade execution time for accuracy by varying the single-step integration error, $W(42)$. RKAM1 will increase or decrease the step length to maintain the specified error. Table 6.2 gives an


Figure 6.1. Flow chart for subroutine RKAM. The term "pipeline" refers to the sequence of four consecutive integration steps kept by the Adams-Moulton integration method.


Pigure 6.2. Flow chart for subroutine RKAM1.


Figure 6.3. Flow chart for the Runge-Kutta procedure. The variables $y_{1}, y_{2}, \ldots y_{n}$ are the dependent variables, $n$ is the order of the system, and $y_{n+1}$ is the independent variable.


Figure 6.4. Flow chart for the Adams-Moulton integration method. The four starting values needed for this method are supplied by the Runge-Kutta method.


Figure 6.5. Flow chart for the single-step error analysis. The symbol $E$ represents the maximum single-step error, and $E, E, \bar{h}$, and $h$ represent the maximum and minimum acceptable single-step error and the maximum and minimum mesh size, respectively.

Maximum integration   error, $W(42)$	Run time   $(\mathrm{s})$	Range error
$10^{-9}$	9.9	$<10^{-7}$
$10^{-8}$	7.1	$<10^{-7}$
$10^{-7}$	4.5	$1 \times 10^{-7}$
$10^{-6}$	3.3	$1 \times 10^{-6}$
$10^{-5}$	2.3	$6 \times 10^{-6}$
$10^{-4}$	1.7	$1.7 \times 10^{-4}$
$10^{-3}$	1.2	$5.7 \times 10^{-3}$

Note: Data obtained using model OT2; elevation angle $=4.46^{\circ}$; range $=1000$ km; computer: CYBER 750.
idea of how the tradeoff works for a single ray calculation using the ocean version, HARPO and a model of the ocean sound channel described by Georges et al. (1986).

The user can vary other parameters, $W(43)-W(47)$, that control the way RKAM1 adjusts its step length and controls errors (see Sec. 5.3.2), but the initial values assigned in the sample case have been found to work best for most cases met in practice. If the scale of the model differs greatly from the sample case, the initial step length, $W(44)$, should be adjusted.

### 6.3 The Atmospheric Sound-Speed Model (Subroutine GAMRTDM)

Atmospheric sound-speed models can be specified either directly as $C(r, \theta, \phi, t)$, or they can call models of other atmospheric variables such as temperature $T(r, \theta, \phi, t)$ using a connecting definition of $C(T)$. One choice we provide assumes that the atmosphere is a perfect gas with the equation of state

$$
\begin{equation*}
p=\frac{\rho R T}{M}, \tag{6.21}
\end{equation*}
$$

where $p$ is the pressure, $\rho$ is the density,

$$
\begin{equation*}
R=8.31436 \times 10^{-3} \mathrm{~kg}(\mathrm{~kg} \text { mole })^{-1} \mathrm{~km}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1} \tag{6.22}
\end{equation*}
$$

is the universal gas constant, $T$ is the absolute temperature in Kelvins, and

$$
\begin{equation*}
M=M(r, \theta, \phi) \tag{6.23}
\end{equation*}
$$

is the mean molecular weight of the atmosphere.
The square of the sound speed is

$$
\begin{equation*}
C^{2}=\frac{\gamma R T}{M} \tag{6.24}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=1.4 \tag{6.25}
\end{equation*}
$$

is the ratio of the specific heat at constant pressure to the specific heat at constant density. Subroutine GAMRTDM implements Equation (6.24) in HARPA.

The temperature and its gradients are provided as a function of $t, r, \theta, \phi$ by one of the atmospheric temperature-model subroutines. The molecular weight and its gradients are provided as a function of $t, r, \theta, \phi$ by the molecular weight model subroutine. The average molecular weight generally decreases with height because the relative constituency of the atmosphere varies with height. The main effect is from the increase in the fraction of mono-atomic molecules with height. Although the height variation of molecular weight varies with season and time of day as the atmosphere expands and contracts, it can be accurately modeled as a function of the atmospheric pressure (Jones and Georges, 1976). The only molecular weight model included in the present models treats it as a constant, however.

The gradients of the square of the sound speed are as follows.

$$
\begin{align*}
& \frac{\partial C^{2}}{\partial t}=C^{2}\left(\frac{1}{T} \frac{\partial T}{\partial t}-\frac{1}{M} \frac{\partial M}{\partial t}\right)  \tag{6.26}\\
& \frac{\partial C^{2}}{\partial r}=C^{2}\left(\frac{1}{T} \frac{\partial T}{\partial r}-\frac{1}{M} \frac{\partial M}{\partial r}\right)  \tag{6.27}\\
& \frac{\partial C^{2}}{\partial \theta}=C^{2}\left(\frac{1}{T} \frac{\partial T}{\partial \theta}-\frac{1}{M} \frac{\partial M}{\partial \theta}\right)  \tag{6.28}\\
& \frac{\partial C^{2}}{\partial \phi}=C^{2}\left(\frac{1}{T} \frac{\partial T}{\partial \phi}-\frac{1}{M} \frac{\partial M}{\partial \phi}\right) \tag{6.29}
\end{align*}
$$

Table 7.11 shows how the output from the sound-speed model subroutine is organized in common block /CC/.

### 6.4 Acoustic Dispersion Relations

HARPA gains versatility without sacrificing speed by having several versions of some of the subroutines. For example, the four versions of the dispersion relation subroutine allow the user to decide in making up a run module (Section 3.3.2) whether to include or ignore winds and absorption. (If there are no winds (or absorption) in the calculation, it is much cheaper to leave them out of the equations than it is to make the calculations with zero wind, or zero absorption).

The input to the dispersion-relation subroutine is through blank common and common blocks /UU/, /CC/, /TT/, and /MM/. Output is through common block /RIN/. The dispersion-relation subroutine is called through the entry point DISPER. The subroutine names are used only for user identification.

HARPA has four versions of the dispersion-relation subroutine.
(1) ANWNL - Acoustic waves, No Winds, No Losses
(2) AWWNL - Acoustic waves, With Winds, No Losses
(3) ANWWL - Acoustic waves, No Winds, With Losses
(4) AWWWL - Acoustic Waves, With Winds, With Losses

All of these versions calculate a Hamiltonian and its derivatives and the square of the wave number that satisfies the dispersion relation. All of the above variables and some others are in the common block/RIN/ (described in Table 7.9), which has all of the output from the dispersion-relation subroutines.

### 6.4.1 ANWNL - Acoustic, No Winds, No Losses

The dispersion relation for pure acoustic waves is

$$
\begin{equation*}
\mathrm{k}^{2}=\mathrm{k}_{\mathrm{r}}^{2}+\mathrm{k}_{\theta}^{2}+\mathrm{k}_{\phi}^{2}=\frac{\omega^{2}}{\mathrm{c}^{2}} \tag{6.30}
\end{equation*}
$$

where $C(t, r, \theta, \phi)$ is the speed of sound (provided by one of the sound-speed model subroutines).

At the beginning of the numerical integration, the magnitude of $\overrightarrow{\mathbf{k}}$ is automatically set by the program so that the dispersion relation (4.1) is satisfied. During the numerical integration, the components of $\overrightarrow{\mathbf{k}}$ are allowed to vary according to Hamilton's equations. Because of integration errors, there will be slight differences between $\mathrm{k}^{2}$ and

$$
\begin{equation*}
\mathrm{k}_{\mathrm{disp}}^{2}=\frac{\omega^{2}}{\mathrm{c}^{2}} \tag{6.31}
\end{equation*}
$$

the value it would have according to the dispersion relation. As a check on the accuracy of the numerical integration and on the consistency of the equations, the quantity

$$
\begin{equation*}
\text { ERROR }=\frac{k^{2}}{k_{\text {disp }}^{2}}-1 \tag{6.32}
\end{equation*}
$$

is printed at each step of the raypath calculation. It is possible, however, for $E R R O R$ to exceed somewhat the maximum allowable single-step integration error (W42) because $k$ does not vary monotonically along the raypath. ERROR serves mainly as a check that the integration is proceeding correctly and that there are no errors in computing derivatives in the model subroutines. If ERROR is generally smaller than $W(42)$, then integrated quantities that vary monotonically (like travel time) will be computed with the accuracy given by $W(42)$.

We use the following form of the dispersion relation for the Hamiltonian:

$$
\begin{equation*}
H\left(t, r, \theta, \phi, \omega, k_{r}, k_{\theta}, k_{\phi}\right)=\omega^{2}-\left(k_{r}^{2}+k_{\theta}^{2}+k_{\phi}^{2}\right) c^{2}(t, r, \theta, \phi) . \tag{6.33}
\end{equation*}
$$

The partial derivatives of the Hamiltonian are

$$
\begin{align*}
& \frac{\partial H}{\partial t}=-k^{2} \frac{\partial C^{2}}{\partial t}  \tag{6.34}\\
& \frac{\partial H}{\partial r}=-k^{2} \frac{\partial C^{2}}{\partial r}  \tag{6.35}\\
& \frac{\partial}{\partial \theta}=-k^{2} \frac{\partial C^{2}}{\partial \theta}  \tag{6.36}\\
& \frac{\partial H}{\partial \phi}=-k^{2} \frac{\partial C^{2}}{\partial \phi}  \tag{6.37}\\
& \frac{\partial H}{\partial \omega}=2 \omega  \tag{6.38}\\
& \frac{\partial H}{\partial k}=-2 C^{2} k_{r}  \tag{6.39}\\
& \frac{\partial H}{\partial k_{\theta}}=-2 C^{2} k_{\theta}  \tag{6.40}\\
& \frac{\partial H}{\partial k_{\phi}}=-2 C^{2} k_{\phi}  \tag{6.41}\\
& k \cdot \frac{\partial H}{\partial k}=-2 C^{2} k^{2} . \tag{6.42}
\end{align*}
$$

### 6.4.2 AWWNL - Acoustic, With Winds, No Losses

The dispersion relation for pure acoustic waves in terms of the sound speed in the presence of winds is

$$
\begin{equation*}
\Omega^{2}-c^{2} k^{2}=0 \tag{6.43}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{k}^{2}=\mathbf{k}_{\mathrm{r}}^{2}+\mathrm{k}_{\theta}^{2}+\mathbf{k}_{\phi}^{2} \tag{6.44}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega=\omega-\overrightarrow{\mathbf{k}} \cdot \overrightarrow{\mathbf{V}}=\omega-\mathbf{k}_{\mathbf{r}} \mathbf{V}_{\mathbf{r}}-\mathbf{k}_{\theta} V_{\theta}-\mathbf{k}_{\phi} \mathbf{V}_{\phi} \tag{6.45}
\end{equation*}
$$

is the intrinsic frequency of the wave (the frequency seen by an observer moving with the wind). $\vec{V}(t, r, \theta, \phi)$ is the wind velocity (provided by a windvelocity model subroutine).

At the beginning of the numerical integration, the magnitude of $k$ is set by the program so that the dispersion relation (6.43) is satisfied. During the numerical integration, the components of $\vec{k}$ are allowed to vary according to Hamilton's equations. Because of integration errors, there will be slight differences between $K^{2}$ and

$$
\begin{equation*}
k_{\text {disp }}^{2}=\frac{\omega^{2}}{\left(c+\frac{\vec{k} \cdot \overrightarrow{\mathrm{~V}}}{k}\right)^{2}} \tag{6.46}
\end{equation*}
$$

the value it would have according to the dispersion relation. Notice that

$$
\begin{equation*}
\frac{\vec{k} \cdot \vec{v}}{k}=\frac{k_{r} v_{r}+k_{\theta} v_{\theta}+k_{\phi} v_{\phi}}{\sqrt{k_{r}^{2}+k_{\theta}^{2}+k_{\phi}^{2}}} \tag{6.47}
\end{equation*}
$$

is independent of the magnitude of $\vec{k}$, as it should be.
As a check on the accuracy of the numerical integration and on the consistency of the equations, the quantity in (6.32) is printed at each step of the raypath calculation.

We use the following form of the dispersion relation for the Hamiltonian:

$$
\begin{align*}
& H\left(t, r, \theta, \phi, \omega, k_{r}, k_{\theta}, k_{\phi}\right)= \\
& \quad \Omega^{2}\left(t, r, \theta, \phi, \omega, k_{r}, k_{\theta}, k_{\phi}\right)-\left(k_{r}^{2}+k_{\theta}^{2}+k_{\phi}^{2}\right) c^{2}(t, r, \theta, \phi), \tag{6.48}
\end{align*}
$$

where the intrinsic frequency $\Omega$ is given by (6.45)
The partial derivatives of the Hamiltonian are as follows.

$$
\begin{align*}
& \frac{\partial H}{\partial t}=2 \Omega \frac{\partial \Omega}{\partial t}-k^{2} \frac{\partial C^{2}}{\partial t}  \tag{6.49}\\
& \frac{\partial H}{\partial r}=2 \Omega \frac{\partial \Omega}{\partial r}-k^{2} \frac{\partial C^{2}}{\partial r}  \tag{6.50}\\
& \frac{\partial H}{\partial \theta}=2 \Omega \frac{\partial \Omega}{\partial \theta}-k^{2} \frac{\partial C^{2}}{\partial \theta}  \tag{6.51}\\
& \frac{\partial H}{\partial \phi}=2 \Omega \frac{\partial \Omega}{\partial \phi}-k^{2} \frac{\partial C^{2}}{\partial \phi}  \tag{6.52}\\
& \frac{\partial H}{\partial \omega}=2 \Omega  \tag{6.53}\\
& \frac{\partial H}{\partial k_{r}}=-2\left(\Omega V_{r}+C^{2} k_{r}\right)  \tag{6.54}\\
& \frac{\partial H}{\partial k_{\theta}}=-2\left(\Omega V_{\theta}+C^{2} k_{\theta}\right) \tag{6.55}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial H}{\partial k_{\phi}}=-2\left(\Omega v_{\phi}+c^{2} k_{\phi}\right)  \tag{6.56}\\
& k \cdot \frac{\partial H}{\partial k}=k_{r} \frac{\partial H}{\partial k_{r}}+k_{\theta} \frac{\partial H}{\partial k_{\phi}}+k_{\phi} \frac{\partial}{\partial k_{\phi}}=-2\left(\Omega \vec{k} \cdot \vec{v}+C^{2} k^{2}\right), \tag{6.57}
\end{align*}
$$

where

$$
\begin{align*}
& \frac{\partial \Omega}{\partial t}=-k_{r} \frac{\partial v_{r}}{\partial t}-k_{\theta} \frac{\partial V_{\theta}}{\partial t}-k_{\phi} \frac{\partial V_{\phi}}{\partial t}  \tag{6.58}\\
& \frac{\partial \Omega}{\partial r}=-k_{r} \frac{\partial v_{r}}{\partial r}-k_{\theta} \frac{\partial V_{\theta}}{\partial r}-k_{\phi} \frac{\partial V_{\phi}}{\partial r}  \tag{6.59}\\
& \frac{\partial \Omega}{\partial \theta}=-k_{r} \frac{\partial v_{r}}{\partial \theta}-k_{\theta} \frac{\partial V_{\theta}}{\partial \theta}-k_{\phi} \frac{\partial v_{\phi}}{\partial \theta}  \tag{6.60}\\
& \frac{\partial \Omega}{\partial \phi}=-k_{r} \frac{\partial v_{r}}{\partial \phi}-k_{\theta} \frac{\partial V_{\theta}}{\partial \phi}-k_{\phi} \frac{\partial V_{\phi}}{\partial \phi} . \tag{6.61}
\end{align*}
$$

### 6.4.3 ANWWL - Acoustic, No Winds, With Losses and <br> AWWWL - Acoustic, With Winds, With Losses

Propagation losses for acoustic waves in the atmosphere occur when viscosity and thermal conductivity are included in the Navier-Stokes equations that describe fluid dynamics. The acoustic wave dispersion relation that results gives a complex wave number. The imaginary part of that wave number leads to absorption as explained in Section 6.1.2.

If the imaginary part of the wave number is small ( $\mathrm{k}_{\text {imag }}^{2} \ll \mathrm{k}_{\text {real }}^{2}$ ) (as it must be for ordinary ray tracing such as described here to be valid), then we can neglect the effect of viscosity and thermal conductivity on the real part of the wave number so that the raypaths will be unaffected by viscosity and thermal conductivity.

Within this assumption, we can approximate (the square of) the imaginary part of the acoustic wave number for propagation through a perfect gas as (Gossard and Hooke, 1975, pp. 230-233)

$$
\begin{equation*}
k_{\text {imag }}^{2}=-\Omega /(\gamma P)\left[4 / 3 \mu+(\gamma-1)^{2} \mathrm{M} /(\gamma \mathrm{R}) k\right] \mathrm{k}_{\text {real }}^{2} \text {, } \tag{6.62}
\end{equation*}
$$

where $\gamma=1.4$ is the ratio of specific heat at constant pressure to that at constant density, $P$ is the atmospheric pressure, $\mu$ is the viscosity, $M$ is the
atmospheric mean molecular weight, $R$ is the universal gas constant, and $K$ is the thermal conductivity.

Whenever you use a dispersion relation with losses (ANWWL or AWWWL), you have to supply models for $P, \mu, K$ and $M$. We provide one model for $\mu$ and $K$ (MUARDC), one for $P$ (PEXP), and one for $M$ (MCONST).

### 6.5 Reflecting Rays From Irregular Terrain

This section describes the method HARPA uses to find the intersections of a ray with any terrain surface and to compute the correct reflected ray, even in an anisotropic medium (an atmosphere with winds). A more detailed discussion of terrain-reflection algorithms is given in the report by Jones (1982). Essentially the same methods are used to detect receiver-surface crossings.

### 6.5.1 Detecting Ray Intersections With the Terrain

Detecting that the ray has crossed the terrain surface is straightforward for the simple case shown in Figure 6.6. Figure 6.7 shows a more difficult example in which the ray crosses the terrain surface twice. It is difficult to distinguish such a raypath from the example in Figure 6.8, knowing only the raypath coordinates and ray directions between the integration steps (shown by dots in Figures 6.7 and 6.8). A further difficulty is that iteration of the numerical integration in Figure 6.7 might lead to finding the wrong intersection with the surface of discontinuity, a problem shared by the example in Figure 6.9.

Although infrequent, the difficulties illustrated in Figures 6.7, 6.8 and 6.9 occur of ten enough that any useful algorithm must be able to handle them. These difficult cases obviously occur more of ten when large integration steps are used. This section derives algorithms that can handle these difficult cases in addition to the straightforward cases. Figure 6.10 illustrates cases that HARPA's intersection algorithm will not correctly handle unless step length is decreased or the terrain model is made smoother.

HARPA accepts only terrain models whose surface is smooth and whose slope and curvature are continuous. Thus, wedge-shaped surfaces, for example, are


Figure 6.6. Three steps in calculating the intersection and reflection of a ray at a terrain surface: (a) recognition that the ray has crossed the terrain surface (numbers indicate successive positions of the ray after each integration step; the raypath is curved because the atmosphere is inhomogeneous); (b) iteration by numerical integration to find the intersection of the ray with the terrain surface; and (c) computation of the reflected ray ready to start numerical integration in a new direction in the atmosphere. The same algorithm could be used to compute ray refraction at discontinuities of refractive index.
not allowed. Not only are diffraction effects important at such edges, but some of the algorithms developed in this report may not work properly for surfaces with edges. In addition, the algorithms used by HARPA may not always properly handle surfaces that contain caves or tunnels.

At each integration step in the raypath calculation, we assume that the following information is available:
(1) The position of the ray point (r, $\theta$, $\phi$ ) in spherical polar (Earthcentered) coordinates,
(2) The local Cartesian components ( $\mathrm{k}_{\mathrm{r}}, \mathrm{k}_{\theta}, \mathrm{k}_{\boldsymbol{\phi}}$ ) of the wave vector (a vector pointing in the wave-normal direction and normalized so that the magnitude equals the wave number),
(3) The accumulated group time delay, $t$, of the ray, (which is also the independent variable for the numerical integration), and


Figure 6.7. A ray crossing a terrain or receiver surface and crossing back again between integration steps. An algorithm that checked only to see if the ray at point 2 was in a different medium than point 1 would miss the interseclions.


Figure 6.8. A ray that nearly intersects a terrain or receiver surf ce. A usefurl intersection algorithm must be able to distinguish this case from the one depicted in figure 6.7.


Figure 6.9. A ray crossing a terrain or receiver surface and ending closer to a second intersection. A useful algorithm must step backward and find the first intersection. HARPA will correctly handle the three cases on this page.


Figure 6.10. Examples of terrain (or receiver-surface) encounters that HARPA's intersection algorithm will not correctly handle. Step length must be decreased, or the terrain model must be smoothed.
(4) The derivatives

$$
\begin{align*}
& \dot{r}=\mathrm{dr} / \mathrm{dt}  \tag{6.63}\\
& \dot{\theta}=\mathrm{d} \theta / \mathrm{dt}  \tag{6.64}\\
& \dot{\phi}=\mathrm{d} \phi / \mathrm{dt}  \tag{6.65}\\
& \dot{k}_{\mathbf{r}}=\mathrm{d} \mathbf{k}_{\mathbf{r}} / \mathrm{dt}  \tag{6.66}\\
& \dot{\mathbf{k}}_{\boldsymbol{\theta}}=\mathrm{dk}_{\theta} / \mathrm{dt}  \tag{6.67}\\
& \dot{\mathbf{k}}_{\phi}=\mathrm{dk}_{\phi} / \mathrm{dt} \tag{6.68}
\end{align*}
$$

We assume also that the values of any of these variables can be saved from one step to the next for comparison. In particular, we make the following approximations,

$$
\begin{align*}
& \left.\ddot{r} \approx\left(\dot{r}\left(t_{2}\right)-\dot{r}\left(t_{1}\right)\right) / t_{2}-t_{1}\right)  \tag{6.69}\\
& \ddot{\theta} \approx\left(\dot{\theta}\left(t_{2}\right)-\dot{\theta}\left(t_{1}\right)\right) /\left(t_{2}-t_{1}\right)  \tag{6.70}\\
& \ddot{\phi} \approx\left(\dot{\phi}\left(t_{2}\right)-\dot{\phi}\left(t_{1}\right)\right) /\left(t_{2}-t_{1}\right), \tag{6.71}
\end{align*}
$$

which allow us to estimate the curvature of ray. In using these algorithms, it would probably be useful to incorporate a test of the validity of the above approximations by evaluating both sides of (6.69)-(6.71), but HARPA does not do that.

The simplest method for predicting whether an extension of the raypath from a point will intersect the terrain surface (or the receiver surface) is to extend the ray in a straight line and see if it meets the terrain when the surface is extended as a plane by using the local slope. However, whenever the curvature of the ray and the terrain are small enough for that approximation to be useful, the ray would probably eventually go below the terrain on one of the integration steps, and the prediction from the simplest algorithm would not be needed.

Because we want an algorithm sophisticated enough to estimate the time of nearest intersection (if one occurs) in cases like those in Figures 6.7 or 6.8, we should include at least the local curvature in any approximations. Also, because it would be difficult to deal with a higher order approximation, a quadratic approximation to both the ray and the terrain seems to be the best compromise.

In addition, when searching for an intersection with the terrain (or receiver) surface, the intersection must be in the correct direction. In the case of the terrain, the intersection will always be into the ground. In the case of the receiver surface, the correct direction of crossing will alternate from one crossing to the next, but for each crossing, the direction will be known. For the purposes of the present development, it is useful to define a parameter $S$ that is equal to +1 if the wanted crossing is upward and -1 if the wanted crossing is downward. Thus, the value of $S$ will always be -1 for a terrain crossing.

### 6.5.2 The Surface Model

HARPA expresses an arbitrary model of a terrain or receiver surface in the form

$$
\begin{equation*}
\mathbf{f}(\mathbf{r}, \theta, \phi)=0 \tag{6.72}
\end{equation*}
$$

Because $f$ is zero only on the surface, it always has one sign on one side of the surface and the opposite sign on the other side. Let us call the side of the surface that is underground the inside and the other side the outside.
Then we can arbitrarily require that $f$ be positive outside of the surface and negative inside the surface. We can similarly designate an inside and an outside for the receiver surface and make the same requirement on $f$.

Thus, we have

$$
\begin{equation*}
f(r, \theta, \phi)>0 \tag{6.73}
\end{equation*}
$$

outside the surface and

$$
\begin{equation*}
\mathbf{f}(\mathbf{r}, \theta, \phi)<0 \tag{6.74}
\end{equation*}
$$

inside the surface. The time derivative of $f$ (which indicates the rate that the ray is moving away from the surface) is

$$
\begin{equation*}
\dot{f}=f_{r} \dot{r}+f_{\theta} \dot{\theta}+f_{\phi} \dot{\phi} \tag{6.75}
\end{equation*}
$$

where a subscript indicates a partial derivative with respect to the subscript. The time derivative of (6.75) is
$\ddot{f}=f_{r} \ddot{r}+f_{\theta} \ddot{\theta}+f_{\phi} \ddot{\phi}+f_{r r} \dot{r}^{2}+f_{\theta \theta} \dot{\theta}^{2}+f_{\phi \phi} \dot{\phi}^{2}+2 f_{r \theta} \dot{r} \dot{\theta}+2 f_{r \phi} \dot{r} \dot{\phi}+2 f_{\theta \phi} \dot{\theta} \dot{\phi}$.

Assuming that (6.76) is nearly constant locally, we have

$$
\begin{equation*}
f=f_{1}+\dot{f}_{1}\left(t-t_{1}\right)+\frac{1}{2} \ddot{f}_{1}\left(t-t_{1}\right)^{2} \tag{6.77}
\end{equation*}
$$

where the subscript 1 refers to the values at the time $t_{1}$. We want to find the value of $t$ for which the ray intersects the surface, that is, where $f=0$. Let $t_{c}$ be the value for which $f=0$. Then

$$
\begin{equation*}
0=f_{1}+\dot{f}_{1}\left(t_{c}-t_{1}\right)+\frac{1}{2} \ddot{f}_{1}\left(t_{c}-t_{1}\right)^{2} \tag{6.78}
\end{equation*}
$$

For simplicity, let us drop the subscript 1 in (6.78), but remember that $f$ and $t$ without subscripts refer to the integration step on the raypath where we are trying to estimate the time $t_{c}$ where the ray will intersect the surface. Then (6.78) becomes

$$
\begin{equation*}
0=f+\dot{f}\left(t_{c}-t\right)+\frac{1}{2} \ddot{f}\left(t_{c}-t\right)^{2} \tag{6.79}
\end{equation*}
$$

The solution of (6.79), for which the ray is crossing from inside to outside when $S=+1$ and crossing from outside to inside when $S=-1$, is

$$
\begin{equation*}
t_{c}-t=\frac{-\dot{f}+s \sqrt{\dot{f}^{2}-2 f}}{\ddot{f}} \tag{6.80}
\end{equation*}
$$

Within the approximation made here, the ray will intersect the surface if

$$
\begin{equation*}
\dot{f}^{2}-2 f \ddot{f}>0 \tag{6.81}
\end{equation*}
$$

but will make a closest approach to the surface if

$$
\begin{equation*}
\dot{\mathbf{f}}^{2}-2 f \ddot{\mathrm{f}}<0 \tag{6.82}
\end{equation*}
$$

In the latter case, we can estimate the time $t_{p}$ at which $f$ is a minimum.

$$
\begin{equation*}
t_{p}-t=-\frac{\dot{\mathbf{f}}}{\ddot{f}} \tag{6.83}
\end{equation*}
$$

This is close to the time when the ray makes a closest approach to the surface. If the second derivative in (6.76) is very small, then the formula in (6.80) may be impractical. In that case, the solution

$$
\begin{equation*}
t_{c}-t=\frac{-2 f}{\dot{f}+s \sqrt{\dot{f}^{2}-2 f \ddot{f}}} \tag{6.84}
\end{equation*}
$$

is more useful. The advantage of (6.84) is that it is uniformly valid as $f$ 'approaches zero.

In HARPA, different formulas are used in different circumstances: statement 501 in TRACE uses (6.84) to estimate $t_{c}$. Subroutine BACKUP uses

$$
\begin{equation*}
\mathbf{t}_{\mathbf{c}}=\mathbf{t}-\mathbf{f} / \dot{\mathbf{f}} \tag{6.85}
\end{equation*}
$$

when it is stepping to an intersection. Subroutine BACKUP uses (6.83) to step to a closest approach. When BACKUP has tried to step to a closest approach and fails after 10 tries, it tries to find an intersection. In that case, it uses (6.80) to give a first estimate for $t_{c}$, then uses (6.85) for iterating. Statement 30 in TRACE uses (6.83) to estimate the time of closest approach. See Section 7.3 for flow charts of these functions.

### 6.5.3 Reflecting the Ray From the Terrain Surface

Once the intersection with the terrain has been found, the ray must be properly reflected. For an isotropic medium, this is straightforward. The algorithm must first project the wave vector into two components parallel to the surface and the component perpendicular to the surface. It then changes sign on the component perpendicular to the surface.

An anisotropic medium (such as an atmosphere with wind) is more difficult. The two components parallel to the surface remain unchanged, as before, but the component perpendicular to the surface must be changed so that the dispersion relation is satisfied. Although this principle is the same for allmedia, the solution depends on the dispersion relation. At this point, we must specialize to the particular medium of interest, namely, acoustic waves in the presence of winds.

We need to first separate the wave vector $\vec{k}$ into components perpendicular and parallel to the surface. Let $\vec{n}$ be a unit vector pointing out of the surface. Then the component of $\vec{k}$ normal to the surface is

$$
\begin{align*}
& k_{1}=\vec{k} \cdot \vec{n}  \tag{6.86}\\
& \vec{k}_{1}=(\vec{k} \cdot \vec{n}) \vec{n} \tag{6.87}
\end{align*}
$$

and the part parallel to the surface is

$$
\begin{equation*}
\overrightarrow{\mathbf{k}}_{\|}=\overrightarrow{\mathbf{k}}-(\overrightarrow{\mathbf{k}} \cdot \overrightarrow{\mathbf{n}}) \overrightarrow{\mathbf{n}} \tag{6.88}
\end{equation*}
$$

The dispersion relation for acoustic waves in the presence of winds is

$$
\begin{equation*}
-\Omega^{2}+c^{2} k^{2}=0 \tag{6.89}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega \equiv \omega-\vec{k} \cdot \vec{v} \tag{6.90}
\end{equation*}
$$

is the intrinsic frequency, $\omega$ is the wave frequency, and $\vec{v}$ is the wind velocity.

With the help of (6.90), we can separate (6.89) as follows:

$$
\begin{equation*}
-\left(\omega-\vec{k}_{\perp} \cdot \vec{v}-\vec{k}_{\|} \cdot \vec{v}\right)^{2}+c^{2}{k_{1}}^{2}+c^{2}{k_{\|}}^{2}=0 \tag{6.91}
\end{equation*}
$$

We want to solve (6.91) for $k_{\perp}$, assuming $\vec{k}_{\|}$to be known. We can rewrite (6.89) as

$$
\begin{equation*}
\left(c^{2}-v_{\perp}^{2}\right) k_{\perp}^{2}+2 \Omega_{\|} v_{\perp} k_{\perp}-\Omega_{\|}^{2}+c^{2} k_{\|}^{2}=0 \tag{6.92}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{\|}=\omega-\overrightarrow{\mathbf{k}}_{\|} \cdot \overrightarrow{\mathbf{v}} \tag{6.93}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{v}_{\perp}=(\vec{v} \cdot \vec{n}) \vec{n} \quad, \quad v_{\perp}=\vec{v} \cdot \vec{n} \tag{6.94}
\end{equation*}
$$

is the component of wind normal to the surface. The quadratic formula gives the solution to (6.92) as

$$
\begin{equation*}
k_{\perp}=\frac{\left.-\Omega_{\|} v_{\perp} \pm c \sqrt{\Omega_{\|}^{2}-k_{\|}^{2}\left(C^{2}-v_{1}^{2}\right.}\right)}{c^{2}-v_{1}^{2}} \tag{6.95}
\end{equation*}
$$

One solution of (6.95) should be the normal component of $\vec{k}$ for the incident wave, the other the normal component of $\vec{k}$ for the reflected wave. To convert from the incident wave to the reflected wave, it is necessary simply to change the sign of

$$
\begin{equation*}
k_{1}+\frac{\Omega_{\|} v_{\perp}}{c^{2}-v_{1}^{2}} \tag{6.96}
\end{equation*}
$$

To do this, we can use (6.87) and (6.88) to write

$$
\begin{equation*}
\vec{k}=\vec{k}-(\vec{k} \cdot \vec{n}) \vec{n}+(\vec{k} \cdot \vec{n}) \vec{n} \tag{6.97}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
\vec{k}=\vec{k}-(\vec{k} \cdot \vec{n}) \vec{n}-\frac{\Omega_{\|} v_{1}}{c^{2}-v_{\perp}^{2}} \vec{n}+(\vec{k} \cdot \vec{n}) \vec{n}+\frac{\Omega_{\|} v_{1} \vec{n}}{c^{2}-v_{1}^{2}} \tag{6.98}
\end{equation*}
$$

Let us assume that (6.98) applies to the incident wave, that is,

$$
\begin{equation*}
\vec{k}_{\text {inc }}=\vec{k}_{\text {inc }}-\left(\vec{k}_{i n c} \cdot \vec{n}\right) \vec{n}-\frac{\Omega_{\|} v_{\perp}}{c^{2}-v_{\perp}{ }^{2}} \vec{n}+\left(\vec{k}_{i n c} \cdot \vec{n}\right) \vec{n}+\frac{\Omega_{\|} v_{\perp} \vec{n}}{c^{2}-v_{\perp}{ }^{2}} \tag{6.99}
\end{equation*}
$$

where the subscript inc signifies the incident wave. To get the wave vector for the reflected wave, we need only reverse the sign of the last two terms in (6.99), that is,

$$
\begin{equation*}
\vec{k}_{r e f}=\vec{k}_{i n c}-2\left(\vec{k}_{i n c} \cdot \vec{n}\right) \vec{n}-2 \frac{\Omega_{\|} v_{\perp} \vec{n}}{c^{2}-v_{1}^{2}} \tag{6.100}
\end{equation*}
$$

where the subscript ref signifies the reflected wave.
To be more explicit, we can write (6.100) in terms of components. We assume an earth-centered spherical polar-coordinate system ( $\mathrm{r}, \boldsymbol{\theta}, \boldsymbol{\phi}$ ). We then consider Cartesian components of $\vec{k},\left(k_{r}, k_{\theta}, k_{\phi}\right)$ in the $r, \theta$, and $\phi$ directions. We also consider components of $n,\left(n_{r}, n_{\theta}, n_{\phi}\right)$ in the $r, \theta$, and $\phi$ directions. Then (6.100) is equivalent to

$$
\begin{align*}
& k_{r_{\text {ref }}}=k_{r \text { inc }}-2\left(\vec{k}_{\text {inc }} \cdot \vec{n}\right) n_{r}-\frac{2 \Omega_{\|} v_{\perp} n_{r}}{c^{2}-v_{\perp}{ }^{2}}  \tag{6.101a}\\
& k_{\theta \text { ref }}=k_{\theta \text { inc }}-2\left(\vec{k}_{\text {inc }} \cdot \vec{n}\right) n_{\theta}-\frac{2 \Omega_{\|} v_{\perp}}{c^{2}-v_{\perp}^{2}} n_{\theta}  \tag{6.101b}\\
& k_{\phi \text { ref }}=k_{\phi \text { inc }}-2\left(\vec{k}_{\text {inc }} \cdot \vec{n}\right) n_{\phi}-\frac{2 \Omega_{\|} v_{\perp}}{c^{2}-v_{\perp}^{2}} n_{\phi} . \tag{6.101c}
\end{align*}
$$

One might wonder whether it is realistic to allow a component of the wind normal (or even parallel) to the surface of the terrain. Rather than debate this point here, we simply point out that HARPA does not check wind models to see if they satisfy continuity or physical boundary conditions (in fact, many of our models don't). This is the responsibility of those who design wind models, if such conditions are important in their applications. The last term
in (6.101) guarantees that the dispersion relation will be satisfied for the reflected wave, even if the wind does not vanish at the surface.

### 6.5.4 Unit-Normal Directions From the Surface

The previous section requires unit normal directions to the surface. Because $f$ is a constant along the surface, the gradient of $f$ is in the same direction as the unit normal. That is

$$
\begin{equation*}
\vec{\nabla} f=\mathbf{f}_{r} \hat{\mathbf{i}}_{r}+\frac{\mathbf{f}_{\theta}}{\mathbf{r}} \hat{\mathbf{i}}_{\theta}+\frac{\mathbf{f}_{\phi}}{\mathbf{r} \sin \theta} \hat{\mathbf{i}}_{\theta} \propto \overrightarrow{\mathbf{n}} \tag{6.102}
\end{equation*}
$$

Taking the ratio of components gives

$$
\begin{equation*}
n_{\theta}=\frac{f_{\theta}}{r f_{r}} n_{r} \tag{6.103}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{\phi}=\frac{f_{\phi}}{f_{r} r \sin \theta} n_{r} \tag{6.104}
\end{equation*}
$$

The solution of (6.103), and (6.104), while requiring $n_{r}^{2}+n_{\theta}^{2}+n_{\phi}^{2}=1$, is

$$
\begin{equation*}
n_{r}=\frac{f_{r}}{\sqrt{f_{r}^{2}+\frac{f_{\theta}^{2}}{r^{2}}+\frac{f_{\phi}^{2}}{r^{2} \sin ^{2} \theta}}} \tag{6.105}
\end{equation*}
$$

$$
\begin{equation*}
n_{\theta}=\frac{f_{\theta}}{r \sqrt{f_{r}^{2}+\frac{f_{\theta}^{2}}{r^{2}}+\frac{f_{\phi}^{2}}{r^{2} \sin ^{2} \theta}}} \tag{6.106}
\end{equation*}
$$

$$
\begin{equation*}
n_{\phi}=\frac{f_{\phi}}{r \sin \theta \sqrt{f_{r}^{2}+\frac{f_{\theta}^{2}}{r^{2}}+\frac{f_{\phi}^{2}}{r^{2} \sin ^{2} \theta}}} \tag{6.107}
\end{equation*}
$$

### 6.6 Coordinate Systems

HARPA uses two different earth-centered spherical polar-coordinate systems, one geographic and one computational, because it is easier to express some models in a different coordinate system. Input data for the coordinates of the transmitter, $W(4)$ and $W(5)$, and input data for the coordinates of the north pole of the computational coordinate system, $W(24)$ and $W(25)$, are entered in geographic coordinates. Putting $W(25)$ equal to $0^{\circ}$ and $W(24)$ equal to $90^{\circ}$ would superimpose the two north poles and equate the two coordinate systems.

When the two coordinate systems do not coincide, the atmospheric models calculate wind, sound speed, temperature, and molecular weight in terms of the computational coordinate system. Dudziak (1961) describes the transformations between these coordinate systems.

## 7. Structure of the Program

This chapter explains how the parts of HARPA work together, including a brief description of each program subroutine and detailed flow charts of the central ray-tracing parts. Also included are hierarchical or organization diagrams that show the calling sequences of the principal ray-tracing operations and details of the common-block structure and usage.

### 7.1 Description of the Subroutines

Following is a list of all the programs, subroutines, and functions that constitute HARPA, that is, the functions inside the dashed lines of Figure 1.1. They are listed in the order they appear in Files 3, 4 , and 5 of the distribution tape and in the source-code listings of Appendix $D$. The routines are divided into a RAY-TRACING "CORE," the set of programs that is always required to do ray tracing, DISPERSION-RELATION ROUTINES, from which you must select one, and ATMOSPHERIC MODEL SUBROUTINES, from which you select the routines that correspond to the atmospheric models you want to use. A more detailed description of the distribution-tape structure is given in Sec. 3.3.1.

### 7.1.1 Ray-Tracing Core

PROGRAM RAYTRC -- The main program; sets the initial conditions for each ray and calls TRACE.

SUBROUTINE DFSYS -- Contains system-dependent functions such as date, time (user must modify).

SUBROUTINE DFCNST -- Defines machine-dependent constants (user must modify).
SUBROUTINE READW1 -- Reads variable-length tabular data from input data table.
SUBROUTINE GTUNIT -- Interprets units line in tabular input data.
SUBROUTINE SREAD1 -- Handles unassigned labeled-common blocks.
FUNCTION READW -- Reads input data table into $W$ array, converting units.
SUBROUTINE CLEAR -- Sets $n$ elements of an array to zero.
FUNCTION ND2B -- Converts decimal digits to positionally equivalent binary numbers when reading $W(29)$.

FUNCTION UCON -- Provides keyword units conversion for input data.
SUBROUTINE TRACE -- Calculates a raypath for the requested number of hops.
FUNCTION PCROSS -- Tests whether ray crosses a surface.
SUBROUTINE RCROSS -- Estimates point where ray crosses a surface.
SUBROUTINE HAMLTN -- Calculates Hamilton's equations for ray tracing and other quantities to be integrated.

SUBROUTINE RKAM -- Keeps track of integration steps performed by RKAM1 and makes them available to calling subroutines.

SUBROUTINE RKAM1 -- Numerically integrates Hamilton's equations.
SUBROUTINE BACKUP -- Moves the ray point to the last intersection with receiver or terrain surface.

FUNCTION REPLECT -- Computes normal and parallel components of K vector at ground reflections.

## SUBROUTINE FIT -- Computes 3 types of parabolic fit to raypath relative to terrain.

FUNCTION GET -- Gets the value of the terrain function and fts derivatives; calls the terrain model subroutine if necessary.

FUNCTION GET1 -- Second version of GET to avoid self-calls.
FUNCTION ITEST -- Passes integer values through for variables typed real.
SUBROUTINE CONBLK -- Data-initialization and file-opening service routine.
FUNCTION WCHANGE -- Determines equivalence of two $W$ arrays for producing raysets.
FUNCTION RENORM -- Normalizes a vector to a specified magnitude.
SUBROUTINE SET2 -- Sets $n$ components of vector to a specified single value.
SUBROUTINE PRINTR -- Prints details of the raypath calculation at specified intervals and produces computer-readable output (raysets).

SUBROUTINE ATMOSHD -- Includes page headings in printout.
SUBROUTINE PUTDES -- Prints model information on printout header.
FUNCTION NUMSTG -- Converts a numeric value to a string.
SUBROUTINE SFILL -- Fills a string with $n$ specified characters.
FUNCTION STRIM -- Determines position of last nonblank character of a string.
FUNCTION RERR -- Computes for subroutine PRINTR the largest relative integration error.

```
SUBROUTINE RERROR -- Reports error conditions and stops program.
SUBROUTINE STOPIT -- Prints error condition and stops program.
SUBROUTINE PUTKST -- Multiple ENTRY points to produce line-printer output while
 accounting for line count, new page, etc.
SUBROUTINE OPNREP -- Increases portability among FORTRAN 77 systems for opening
 files with replacement.
SUBROUTINE OVERRD -- Tests for "zero-override" condition in input data
 (Sec. 5.3.1).
SUBROUTINE SFILTR -- Filters extraneous characters from plot annotations.
FUNCTION ALCOSH -- Compute log[cosh(x)] and use large-argument approx.
SUBROUTINE GAUSEL -- Calculates coefficients of functions to fit points in
 TTABLE.
```

[PLOTTING ROUTINES]
SUBROUTINE RAYPLT -- Main plotting program; initializes, reads input, plots projections of rays on a vertical or horizontal plane.

SUBROUTINE PLOT -- XY plotting routine, called by RAYPLT.
SUBROUTINE LABPLT -- Labels rayplots.
[TICK/ANNOTATION ROUTINES]
SUBROUTINE PLTHLB -- Plots horizontal ticks and annotation for rayplot.
SUBROUTINE PLTANH -- Generic horizontal tick annotation.
SUBROUTINE SETXY -- Plot initialization; sets projection parameters.
SUBROUTINE TIKLINE -- Draws straight line with ticks at intervals.

SUBROUTINE PLTANOT -- Puts general annotations on plots.
SUBROUTINE DRAWTKS -- Draws plot boundary, ticks, and labels for horizontal ray projection.

SUBROUTINE PLTLB -- Puts vertical tick annotations on rayplots.
SUBROUTINE ARCTIC -- Draws curved range axis for rayplot.
BLOCK DATA PLOTBL -- Initializes plot range variables.

SUBROUTINE DDINIT -- Initializes plotting process (writes header line to TAPE5).
SUBROUTINE DDBP -- Sets a vector origin (writes IX,IY to TAPE5).
SUBROUTINE DDVC -- Plots a vector (writes IX,IY for vector end point to TAPE5).
SUBROUTINE DDTEXT -- Writes an array (character string) to TAPE 5 in tabular text mode.

SUBROUTINE DDTAB -- Sends instruction to TAPE5 that initializes tabular (text) plotting.

SUBROUTINE DDFR -- Sends instruction to TAPE5 to advance a microfilm frame.
SUBROUTINE DDEND -- Empties plot buffer and releases plotting command file to microfilm plot queue.

SUBROUTINE DASH -- Sets dashed-line mode; that is, all plotted curves will be dashed instead of solid after a call to subroutine DASH.

SUBROUTINE RESET('DASH') -- Sets solid-line mode; that is, all plotted curves will be solid lines after this call.

SUBROUTINE HEIGHT -- If you do not have the DISSPLA* plotting package, load SUBROUTINE SMPANN instead of SUBROUTINE FULANN, and you can ignore this routine.

SUBROUTINE MX1ALF -- If you do not have the DISSPLA* plotting package, load SUBROUTINE SMPANN instad of SUBROUTINE FULANN, and you can ignore this routine.

SUBROUTINE MX2ALF -- If you do not have the DISSPLA* plotting package, load SUBROUTINE SMPANN instead of SUBROUTINE FULANN, and you can ignore this routine.

SUBROUTINE SCMPLX -- If you do not have the DISSPLA* plotting package, load SUBROUTINE SMPANN instead of SUBROUTINE FULANN, and you can ignore this routine.

### 7.1.2 Dispersion Relation Routines

SUBROUTINE ANWNL -- Acoustic wave, no winds, no losses.
SUBROUTINE AWWNL -- Acoustic wave, with wind, no losses.
SUBROUTINE ANWWL -- Acoustic wave, no wind, with losses.
SUBROUTINE AWWWL -- Acoustic wave, with wind, with losses.

[^3]
### 7.1.3 Atmospheric Model Subroutines

SUBROUTINE WLINEAR -- Constant upward or northward background wind; linear eastward wind profile.

SUBROUTINE WTIDE -- Eastward and northward background wind profiles that are sinusoidal in height and time and are in time quadrature.

SUBROUTINE ULOGZ2 -- Logarithmic atmospheric boundary-layer profile; eastward background wind only.

SUBROUTINE VVORTX3 -- Vertical vortex wind perturbation with viscous core and Gaussian height profile.

SUBROUTINE WGAUSS2 -- Eastward perturbation wind that decays in three dimensions (jet).

SUBROUTINE NPWIND -- Do-nothing wind perturbation model.
SUBROUTINE GAMRTDM -- Sound-speed model: $C^{2}=\gamma$ RT/M.
SUBROUTINE CSTANH -- Background sound-speed profile with linear segments joined smoothly.

SUBROUTINE NPSPEED -- Do-nothing sound-speed-perturbation model.
SUBROUTINE CBLOB2 -- Sound-speed perturbation with Gaussian decay in three dimensions.

SUBROUTINE TLINEAR -- Background linear temperature profile.

SUBROUTINE TTANH5 -- Background height profile of temperature with linear segments joined smoothly.

SUBROUTINE TTABLE -- Background tabular temperature profiles with cubic interpolation between points.

SUBROUTINE NTEMP -- Do-nothing background temperature model.
SUBROUTINE TBLOB2 -- Temperature perturbation with Gaussian decay in three dimensions.

SUBROUTINE NPTEMP -- Do-nothing temperature perturbation model.

SUBROUTINE MCONST -- Constant molecular weight model.
[TERRAIN MODELS]
SUBROUTINE GHORIZ -- Terrain model at fixed height above sea level.
SUBROUTINE GLORENZ -- Lorentzian-ridge terrain model.
SUBROUTINE GTANH -- 2-D terrain model with a series of linear segments joined smoothly.

```
 [ABSORPTION MODELS]
SUBROUTINE NPTERR -- Do-nothing terrain-perturbation model.
SUBROUTINE MUARDC -- ARDC background absorption formula.
SUBROUTINE NPABSR -- Do-nothing absorption-perturbation model.
SUBROUTINE PEXP -- Exponential background pressure profile.
SUBROUTINE NPPRES -- Do-nothing pressure-perturbation model.
[RECEIVER-SURFACE MODELS]
SUBROUTINE RHORIZ -- Horizontal receiver-surface model.
SUBROUTINE RTERR -- Receiver-surface model at fixed height above terrain.
SUBROUTINE RVERT -- Vertical (conical) receiver surface at a fixed radius from a
 specified origin.
[ANNOTATION MODELS]
SUBROUTINE SMPANN -- Initializes plot in draft mode (must be used if you don't
SUBROUTINE FULANN -- Initializes plot in publication-quality mode (requires
 DISSPLA).
```


### 7.2 HARPA Organization Diagrams

```
This section contains hierarchical diagrams, Figures 7.1 through 7.4, that show how the principal subroutines are interrelated by calling sequences. These diagrams are not flow charts; they show how control passes among the program modules. Not all subroutines are shown, only the major ones that perform the ray-tracing function.
```



[^4]Figure 7.2. Continuation of the block diagram of the ray-tracing program (Fig. 7.1), showing the relations among the atmospheric model subroutines during the initialization stage (immediately after new input data are read in).

* ANWNL (Atmospheric waves, No Winds, No Losses) AWWNL (Atmospheric waves, With Winds, No Losses), ANWWL, and AWWWL are the names of the versions of the dispersion-relation subroutine available with this version of the program.
** Continued from Figure 7.1 .



Figure 7.3. Block diagram (not a flow chart) of the ray-tracing program showing the relations (hierarchy, what calls what) among the main program and the subroutines during the raypath calculation stage (after the initialization stage) .

* ANWWL (Acoustic, No Winds, No Losses) and AWWNL (Acoustic, With Winds, No Losses), AWWWL and ANWWL are the names of the versions of the dispersionrelation subroutine.
** Figure 7.4 shows the continuation of the block diagram that shows the relations among the atmospheric model subroutines.

Figure 7.4. Continuation of the block diagram of the ray-tracing program (Fig. 7.3) that shows the relations (hierarchy, what calls what, a block diagram is not a flow chart) among the atmospheric model subroutines during the raypath calculation stage (after the initialization stage).

* ANWNL (Atmospheric waves, No Winds, No Losses) and AWWNL (Atmospheric waves, With Winds, No Losses), AWWWL and ANWWL are the names of the versions of the dispersion-relation subroutine. ** Continued from Figure 7.3.

$\longrightarrow$| SUBROUTINE (anyname) |
| :--- |
| ENTRY ABSRP <br> Calculates the viscosily <br> and thermal conductivity. |
| ENTRY I ABSRP <br> Initialization with new <br> input data. |

五


### 7.3 Flow Charts for Program RAYTRC and Subroutines TRACE and BACKUP

These three routines contain the central logic of the raypath calculations and so are described in detail in flow-chart form.

This ray-tracing program consists of various subroutines that perform specific tasks in calculating raypaths. The division of labor makes it easier to modify the program to solve specific problems. Often it may be necessary to change only one or two subroutines to convert the program to a different use.

The main program (RAYTRC) sets up the inftial conditions (transmitter location, wave frequency, and direction of transmission) for each ray trace. In setting up the initial conditions for each ray trace, the main program (RAYTRC) steps frequency, azimuth angle of transmission, and elevation angle of transmission (see Figs. 7.5 and 7.6). Then subroutine TRACE calculates one raypath for the requested number of crossings of the specified receiver height. Subroutine TRACE is the heart of the ray-tracing prograr. It is the most complicated subroutine included, but also the most important to understand. The flow charts in Figures 7.6 and 7.7 explain how TRACE works.

Subroutine RKAM integrates the differential equations numerically using an Adams-Moulton predictor-corrector method with a Runge-Kutta starter. Subroutine HAMLTN evaluates the differential equations to be integrated. Subroutine DISPER calculates the Hamiltonian and its derivatives, the wave number from the dispersion relation, and the wave polarization. (Four versions of subroutine DISPER are included.) Subroutines WIND, SPEED, TEMP, MOLWT, RECUR, TOPOG, ABSRP, and PRES calculate the atmospheric wind speed, sound speed, temperature, mean molecular weight, receiver surface, terrain, viscosity/thermal conductivity, and pressure. Several versions of these eight subroutines are included, and it is easy to add more. Subroutine BACKUP finds an intersection of the ray with the receiver surface or with the terrain. The flow charts in Figures 7.8 through 7.10 and Section 6.5 explain how BACKUP works.

Subroutine PRINTR prints information describing the raypath and outputs the results in computer-readable form (raysets). Subroutine RAYPLT plots the raypath. The block diagrams in Figures 7.1 through 7.4 show the relationships among these (and other) subroutines.


Figure 7.5. Flow chart for program RAYTRC. Circled block numbers correspond to program statement numbers.
*4 There are no evanescent regions for pure acoustic waves (with no cutoff frequency).
*5 Subroutine TRACE calculates one raypath.




Figure 7.7. Flow chart showing some details of finding crossings of and closest approaches to receiver surface. Circled block numbers correspond to program statement numbers in subroutine TRACE.

* See Figure 7.8 for details (subroutine BACKUP).
** See Figure 7.8 for details (entry point GRAZE in subroutine BACKUP).


Figure 7.8. Flow chart for subroutine BACKUP. Circled block numbers correspond to program statement numbers. Entry BACKUP steps the ray to a crossing with a specified height. Entry GRAZE steps the ray to a point of closest approach to the specified height. The calling routine (subroutine TRACE) specifies the height with which the ray is to intersect, the direction of crossing (up or down), and estimates the time of crossing (group time delay). Asterisks identify supplementary procedures.

* See Figure 7.9 for details of the algorithm that steps the ray by numerical integration to the nearest crossing of a specified height.
** See Figure 7.10 for details of the algorithm that steps the ray by numerical integration to a closest approach to a specified height.


Figure 7.9. Flow chart for the algorithm that steps the ray by numerical integration to a crossing of a specified height. Circled block numbers correspond to program statement numbers.

* See Equation (6.85) to estimate the time of the nearest crossing of the specified height.
** The step size should be no larger than that being used by the numerical integration routine to maintain accuracy in the error-checking mode.
*** $0.5 \times 10^{-4} \mathrm{~km}$.
**** Small enough to ensure the required accuracy and smaller than the smallest allowable step size.


Figure 7.10. Flow chart for the algorithm that steps the ray by numerical integration to a point of closest approach to a specified height. Circled block numbers correspond to program statement numbers.

* See Equation (6.91) to estimate the time of the nearest crossing of the specified height.
** The step size should be no larger than that being used by the numerical integration routine to maintain accuracy in the error-checking mode.


## *** $\quad 10^{-6} \mathrm{~km} / \mathrm{km}$.

**** Small enough to ensure the required accuracy and smaller than the smallest allowable step size.

The listings of most of the subroutines have comments that should help in understanding how they work. In addition, Tables 7.1 through 7.40 define the variables in the common blocks.

Table 7.1--Definitions of the parameters in blank common

Position in common	Variable name	Definition
1-20	R	The dependent variables in the differential equations being integrated-the definitions of the first six are fixed, but the others may be varied by the program user
1	$\mathrm{R}(1)$ or R	r
2	R(2) or TH	$\theta$
3	R(3) or PH	$\phi$
4	R(4) or KR	$\mathrm{k}_{\mathrm{r}}$
5	R(5) or KTH	$\mathbf{k}_{\boldsymbol{\theta}}$
6	R(6) or KPH	$\mathbf{k}_{\boldsymbol{\phi}}$
7-12 or	R(7)-R(12)   RKVARS (1)-   RKVARS (6)	Those variables the user has chosen to integrate, taken in the following order:   $P$-phase path in kilometers   A -absorption in decibels   $\Delta f$-Doppler shift in hertz   $s$-geometrical path length in kilometers
13-20	R(13)-R(20)	Reserved for future expansion
21	TPULSE	Group path length in kilometers (the independent variable in the differential equations)
22	CSTEP	Step length in group path
23-42	DRDT	The derivatives of the dependent variables with respect to the independent variable TPULSE

$R$ and TPULSE are initialized in program RAYTRC and changed in subroutines TRACE, RKAM, and BACK UP.

CSTEP is calculated in subroutine RKAM.
DRDT is calculated in subroutine HAMLTN and used in subroutine RKAM.

### 7.4 Common-Block Structure and Usage

We use common blocks instead of calling sequences to pass information between subroutines and functions because it is faster. This section describes how those common blocks are organized and which blocks link which program modules, and defines the variables in each block.

Table 7.1 defines the variables in blank common. These are mostly the dependent variables in the numerical integration and their derivatives. Nearly all of the subprograms use this common block.

Table 7.2 describes the common block /MCONST/, which contains mathematical constants. Table 7.3 describes the common block/PCONST/, which contains physical constants.

Many common blocks are used to communicate among the various routines in the program. Table 7.4 lists those common blocks and shows which routines use those common blocks. Blank common, common blocks /MCONST/, /PCONST/, /WW/, and the common blocks listed in Tables 4.2 and 4.3 are not included in Table 7.4. Table 7.5 lists the variable names in these common blocks that are used for input and output by each routine. Tables 7.6 through 7.32 list all of the variables in these common blocks and give the meanings of those variables.

Table 7.17 describes common block /RIN/, which contains parameters output by all of the versions of the dispersion relation subroutines (all of which have the entry point name DISPER). Tables 7.33 through 7.40 describe the common blocks /UU/, /CC/, /TT/, /MM/, /RR/, /GG/, /AA/, and /PP/, which contain the parameters output by the various atmospheric models.

Table 7.2--Definitions of the parameters in common block/MCONST/*

Position in   common	Variable   name	Definition
1	PI	$\pi$
2	PIT2	$2 \pi$
3	PID2	$\pi / 2$
4	DEGS	$180.0 / \pi$
5	RAD	$\pi / 180.0$
6	ALN10	$\log _{e} 10$

* These parameters are set in program RAYTRC.

Table 7.3--Definitions of the parameters in common block/PCONST/

Position in common	Variable name	Definition
1	CREF	A reference sound speed ( $0.344 \mathrm{~km} / \mathrm{s}$ ), the reference sound speed in air at $20^{\circ} \mathrm{C}$, Handbook of Chemistry and Physics (1954, page 2312), used to convert group delay time in seconds to an equivalent group path length in kilometers, and to convert a phase time in seconds to an equivalent phase-path length in kilometers
2	RGAS	The gas constant, $=8.31436 \times 10^{-3}$ kg ( kg mole) $)^{-1} \mathrm{~km}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$ (this value of the gas constant gives a sound speed in $\mathrm{km} / \mathrm{s}$ )
3	GAMMA	$\gamma$, the ratio of specific heat at constant pressure to that at constant density, $=1.4$

Table 7.4.--Common block usage by the core routines


## Notes:

1. "I" signifies that the routine uses information from the common block.
2. " 0 " signifies that the routine puts information into the common block.
3. Blank common, common blocks/MCONST/,/PCONST/,/WW/, and the common blocks listed in Tables 4.2 and 4.3 are not included in this table.

Table 7.5--Input and output variables to routines in common blocks other than blank common and labeled common blocks /MCONST/. /PCONST/, and /WW/ and other than the common blocks listed in Tables 4.2 and 4.3

Routine	Input parameters		Output parameters	
	common block	parameter name	common block	parameter name
RAYTRC	/FLG/	IHOP	/HDRC/	DAT
	/RIN/	KAY2	/HDRC/	INITID
	/FLG/	LINES	/FLG/	LINES
	/RK/	NEQS	/FLG/	NEWWP
	/ERR/	NERG	/FLG/	NEWWR
	/ERR/	NERP	/Filec/	NPLTDP
	/ERR/	NERR	/FLGP/	NSET
	/ERR/	NERT	/HDR/	SEC
	/RAYDEV/	NRYIND	/HDRC/	TOD
	/RIN/	OMEGMAX	/RK/	RSTART
	/RIN/	OMEGMIN		
	/FLG/	PENET		
	/RIN/	SGN		
DPCNST			/CRMACH/	RMACH
READW1		NDEVTMP		
	/RAYDEV/	NRYIND		
READW	/B1/ $\rightarrow$ /B20/		/B1/-/B20/	
	/FLG/	LINES		
	/RAYDEV/	NDEVTMP		
	/RAYDEV/	NFRMAT		
	/RAYDEV/	NRYIND		
	/PLGP/	NSET		
UCON	/UCONC/	CNVC	/UCONV/	CNVV
	/UCONV/	CNVV		
	/UCONC/	PCV		
TRACE	/TRAC/	D22	/TRAC/	DROLD
	/TRAC/	GROUND	/RK/	E1MAX
	/CRKTIME/	IRKTIME	/RK/	E1MIN
	/TRAC/	RAD	/RK/	E2MAX
	/TRAC/	RAD1	/RK/	E2MIN
	/TRAC/	THERE	/RK/	FACT
	/TRAC/	ZDOT	/TRLOCAL/	FDOT
	/TRLOCAL/	RSIGN	/TRLOCAL/	GDOLD
	/TRLOCAL/	HOME	/TRLOCAL/	GDOT
	/TRLOCAL/	FDOT	/TRLOCAL/	GOLD
			/TRAC/	GROUND
			/TRAC/	HOME
			/FLG/	HPUNCH
			/FLG/	IHOP

Table 7.5--(continued)


Table 7.5--(continued)

Routine	Input parameters		Output parameters	
	common block	parameter name	common block	parameter name
BACKUP	/TRAC/	DROLD	/RK/	MODE
	/TRAC/	D2Z	/RK/	RSTART
	/RK/	E1MAX	/RK/	STEP
	/RK/	E2MIN	/TRAC/	THERE
	/RK/	FACT	/TRAC/	TOLD
	/RK/	MODE	/TRAC/	ZDOT
	/TRAC/	RAD1		
REFLECT	/FNDER/	NPZPH		
	/FNDER/	NPZR		
	/FNDER/	NPZTH		
FIT	/TRAC/	DROLD	/TRAC/	D2Z
	/FNDER/	NPZPH	/TRAC/	OSMT
	/FNDER/	NPZPHPH	/TRAC/	RAD
	/FNDER/	NPZR	/TRAC/	RADI
	/FNDER/	NPZRPH	/TRAC/	SMT
	/FNDER/	NPZRR	/TRAC/	ZDOT
	/FNDER/	NPZRTH		
	/FNDER/	NPZTH		
	/FNDER/	NPZTHPH		
	/PNDER/	NPZTHTH		
	/FNDER/	NZ		
	/TRAC/	TOLD		
GET	/CRKTIME/	IRKTIME		
	/CRKTIME/	RKTIME	/FNDER/	NPZPHPH
	/CRMACH/	RMACH	/FNDER/	NPZR
			/FNDER/	NPZRPH
			/FNDER/	NPZRR
			/FNDER/	NPZRTH
			/FNDER/	NPZTH
			/FNDER/	NPZTHPH
			/FNDER/	NPZTHTH
			/FNDER/	NSELECT
			/FNDER/	NTIME
			/FNDER/	NZ
			/CGET/	ZERO
GET1	/CRKTIME/	IRKTIME	/CGET/	ZERO
	/CRKTIME/	RKTIME		
	/CRMACH/	RMACH		
CONBLK	/RAYDEV/	NRYIND	/UCONC/	CNVC
			/UCONV/	CNVV
			/CRKTIME/	IRKTIME
			/RIN/	KVECT



Table 7.5--(continued)

Routine	Input parameters		Output parameters	
	common block	parameter name	common block	parameter name
PLOT	/PLT/	ALPHA	/DD/	IX
	/PLT/	APLT	/DD/	IY
	/PLT/	RESET	/PLT/	RESET
	/PLT/	RMAX		
	/PLT/	RMIN		
	/PLT/	XMAXO		
	/PLT/	XMINO		
	/PLT/	YMAXO		
	/PLT/	YMINO		
LABPLT	/HDRC/	DAT	/DD/	IOR
	/RIN/	MODRIN	/DD/	IS
			/DD/	IT
			/DD/	IX
			/DD/	IY
PLTANH	/RAYCON/	MCONP	/DD/	IOR
	/LABCLT/	PROJCT	/DD/	IX
	/LABCLT/	RMAX	/DD/	IY
	/LABCLT/	RMIN		
	/LABCLT/	THMAX		
	/LABCLT/	THMIN		
SETXY			/LABCLT/	PROJCT
			/LABCLT/	RMAX
			/LABCLT/	RMIN
			/LABCLT/	THMAX
			/LABCLT/	THMIN
PLOTANOT	/ANNCTC/	ANOTES	/DD/	IOR
	/ANNCTC/	HNOTES	/DD/	IX
	/DD/	IX	/DD/	IY
	/DD/	IY		
	/ANNCTL/	LENA		
	/ANNCTL/	LENHA		
	/LABCLT/	THMAX		
	/LABCLT/	THMIN		
PLTLB	/DD/	IX	/DD/	IOR
	/DD/	IY	/DD/	IX
	/LABCLT/	PROJCT		
	/LABCLT/	RMAX		
	/LABCLT/	RMIN		

Table 7.5--(continued)


Table 7.6--Definitions of the parameters in common block/HDR/

Position in   common	Variable   name	Definition
1	SEC	Total elapsed computer calculation   time at end of calculating previous   raypath

Table 7.7--Definitions of the parameters in common block/UCONC/

Position in   common	Variable   name	Definition
$1-4$	PCV	List of valid unit types for units   conversion: blank (no conversion),   AN (angle), LN (length), FQ (fre-   quency
$5-20$	CNVC	An array of lists of valid physical   units for each unit type for units   conversion: blank (no conversion),   $M$ (meters), KM (kilometers),   DG (degrees), etc

Table 7.8--Definitions of the parameters in common block/UCONV/

Position in   common	Variable   name	Definition
1-16	CNVV	An array of units conversion factors   corresponding to the array CNVC   in common block /UCONC/

Table 7.9--Definitions of the parameters in common block/RKAMS/

Position in common	Variable name	Definition
1-5	XV	Values of independent variable for 5 integration steps
6-85	FV	Values of the derivatives of the 20 dependent variables for 4 integration steps
86-285	$\mathbf{Y U}$	Values of the 20 dependent variables for 5 integration steps (in double precision)
286	EPM	The amount by which the independent variable changed during the previous call to SUBROUTINE RKAM1
287	ALPHA	Value of the independent variable at the beginning of the latest integration step
288	MM	Relative integration step number (varies from 1 to 4)

Table 7.10--Definitions of the parameters in common block /CGET/

Position in   common	Variable   name	Definition   1
ZERO	A great circle distance at sea level   corresponding to a central earth	
angle that is twice the smallest		
floating point variable that can be		
stored in one single precision word		
in the computer being used		

Table 7.11--Definitions of the parameters in common block/CRMACH/

Position in common	Variable name	Definition
1	RMACH ( 1 )	Smallest positive magnitude $=\mathrm{B}^{* *}$ (EMIN-1)
2	RMACH ( 2 )	Largest magnitude $=\mathrm{B}^{* *} \operatorname{EMAX}^{*}\left(1-\mathrm{B}^{* *}(-\mathrm{T})\right)$
3	RMACH (3)	$\begin{aligned} & \text { Smallest relative spacing } \\ & =B^{* *}(-T) \end{aligned}$
4	RMACH ( 4 )	Largest relative spacing $=B^{* *}(1-T)$
5	RMACH ( 5 )	$\log _{10} B=\log _{10} 2$

Notes: 1. $B=$ the number base used by the computer (= 2 for most computers)
2. $T=$ the number of bits in the mantissa of a floating point number
3. EMIN $=$ the most negative allowable exponent
4. $E M A X=$ the largest allowable positive exponent

Table 7.12--Definitions of the parameters in common block/CRKTIME/

Position in   common	Variable   name	Definition
1	IRKTIME	The number of times that SUBROUTINE   RKAM has been called   (used to compare FTIME or GTIME with   to know whether F or G need to be   updated)
1	RKTIME	Floating point name of IRKTIME

Table 7.13--Definitions of the parameters in common block/TRLOCAL/

Position in common	Variable name	Definition
1	RSIGN	+1 if next receiver-surface crossing is going up; -1 if going down
2	HOME	TRUE. if ray is going away from receiver surface; .FALSE. otherwise
3	FDOT	Rate of change of distance of ray above the receiver surface
4	GDOT	Rate of change of distance of ray above the terrain
5	GOLD	Value of $G$ at previous integration step (= distance of ray above terrain)
6	GDOLD	Value of GDOT at previous integration step

Table 7.14--Definitions of the parameters in common block /RK/*

Position in common	Variable name	Definition
1	N	The number of equations being integrated
2	STEP	The initial step in group path in kilometers
3	MODE	Defines type of integration used (same as W41), see Section 5.3.2
4	E1MAX	Maximum allowable single step error (same as W42)
5	E1MIN	Minimum allowable single step error (= W42/W43)
6	E2MAX	Maximum step length (same as W45)
7	E2MIN	Minimum step length (same as W46)
8	FACT	Factor to use to decrease step length (same as W47)
9	RSTART	Nonzero to initialize numerical integration, zero to continue integration

* These parameters are calculated in subroutine READW (some are temporarily reset in subroutine BACKUP) and are used in subroutine RKAM.

Table 7.15--Definitions of the parameters in common block/TRAC/*

Position in common	Variable name	Definition
1	GROUND	.TRUE. if the ray is on the surface of the Earth
2	PERIGE	.TRUE. if the ray has just made a perigee
3	THERE	.TRUE. if the ray is at the receiver height
4	MINDIS	.TRUE. if the ray has just made a closest approach to the receiver height
5	NEWRAY	Not used in this version of the program
6	SMT	An estimation of the vertical distance to an apogee or perigee of the ray
7	OSMT	Value of SMT at previous integration step
8-27	ROLD	Value of $R(1)$ ( $=r$ in $r, \theta, \phi$ earthcentered spherical polar coordinate system) at previous integration step
28-47	DROLD	Value of dr/dt at previous integration step
48	TOLD	```Value of t (= independent variable for numerical integration) at previous integration step```
49	ZDOT	$\mathrm{dZ} / \mathrm{dt}$ (= dF/dt or $\mathrm{dG} / \mathrm{dt}$, depending on the situation)
50	D2Z	$\begin{aligned} & d^{2} z / d t^{2}\left(=d^{2} F / d t^{2} \text { or } d^{2} G / d t^{2},\right. \\ & \text { depending on the situation) } \end{aligned}$
51	RAD	$(d Z / d t)^{2}-2 \mathrm{Z} \mathrm{d}^{2} \mathrm{Z} / \mathrm{dt}{ }^{2}$
52	RAD1	$\sqrt{\text { RAD }}$

[^5]Table 7.16-Definitions of the parameters in common block/FNDER/

Position in common	Variable name	Definition	Value
1	NZ	```Relative position of F in common block /RR/ (or G in common block /GG/)```	1
2	NPZR	```Relative position of PFR in common block /RR/ (or PGR in common block /GG/)```	2
3	NPZRR	```Relative position of PFRR in common block /RR/ (or PGRR in common block /GG/)```	3
4	NPZRTH	```Relative position of PFRTH in common block /RR/ (or PGRTH in common block /GG/)```	4
5	NPZRPH	```Relative position of PFRPH in common block /RR/ (or PGRPH in common block /GG/)```	5
6	NPZTH	```Relative position of PFTH in common block /RR/ (or PGTH in common block /GG/)```	6
7	NPZPH	```Relative position of PFPH in common block /RR/ (or PGPH in common block /GG/)```	7
8	NPZTHTH	```Relative position of PFTHTH in common block /RR/ (or PGTHTH in common block /GG/)```	8
9	NPZPHPH	```Relative position of PFPHPH in common block /RR/ (or PGPHPH in common block /GG/)```	9
10	NPZTHPH	Relative position of PFTHPH in common block /RR/ (or PGTHPH in common block /GG/)	10
11	NSELECT	```Relative position of FSELECT in common block /RR/ (or GSELECT in common block /GG/)```	11
12	NTIME	```Relative position of FTIME in common block /RR/ (or GTIME in common block /GG/)```	12

Table 7.17--Definition of the parameters in common block /RIN/*


Table 7.18--Definitions of the parameters in common block /ERR/

Position in   common	Variable   name	Definition
1	NERG	Index number for the dependent   variable for the integration that   gives $G$
3	NERR	Index number for the dependent   variable for the integration that   gives $\partial G / \partial r$
4	NERT	Index number for the dependent   variable for the integration that   gives $\partial G / \partial \theta$

Table 7.19--Definitions of the parameters in common block/RAYDEV/

Position in   common	Variable   name	Definition
1	NRYIND	Device unit number for input data
2	NDEVTMP	Device unit number for temporary   output and input
4	NFRMAT	Device unit number for secondary   input file (not used by ray tracing   program)
5	Device unit number for graphics output	

Table 7.20--Definitions of the parameters in common block /FLGP/

Position in common	Variable name	Definition
1	NSET	Runset number
Table 7.21--Definitions of the parameters in common block/RINPL/		
Position in common	Variable name	Definition
1	DISPM	Character string identifier for the dispersion relation model


Position in common	Variable	Definition
1	NTYP	Wave polarization indicator (not used in this version of program)
2	NEWWR	Set equal to. TRUE. to tell subroutine RAYPLT there is a new $W$ array
3	NEWWP	Set equal to .TRUE. to tell subroutine PRINTR there is a new $W$ array
4	PENET	Set equal to. TRUE. if the ray left the allowed region of the atmosphere
5	LINES	Number of lines printed on the current page
6	IHOP	Hop number (at the beginning of each ray, subroutine TRACE sets this parameter to zero so that subroutine RAYPLT will begin a new line in plotting the raypath, and subroutine PRINTR will print column headings and punch a transmitter rayset)
7	HPUNCH	The height to be output on the raysets

[^6]Table 7.23--Definitions of the parameters in common block /RINPL/

Position in   common   name	Definition   1	DISPM
Table 7.24--Definitions of the parameters in common block /FILEC/		

Table 7.25--Definitions of the parameters in common block /PLT/*

Position in common	Variable name	Definition
1	XMIṄO, XL	The $x$-coordinate of the left side of the plotting area in kilometers
2	XMAXO, XR	The $x$-coordinate of the right side of the plotting area in kilometers
3	XMINO, YB	The $y$-coordinate of the bottom of the plotting area in kilometers
4	XMAXO, YT	The $y$-coordinate of the top of the plotting area in kilometers
5	RESET	Set equal to one whenever the plotting area is changed

[^7]Table 7.26--Definitions of the parameters in common block/RAYCON/

Position in   common	Variable   name	Definition   1
MCONP	Set to zero for the raytracing   program to indicate that the abscissa   in raypath plots is a central-earth	
angle in radians, set non-zero for the		
contouring program to indicate that		
the abscissa in contour plots is a		
great-circle distance in kilometers		

Table 7.27--Definitions of the parameters in common block /ANNCTC/

Position in   common	Variable   name	Definition
$1-8$	ANOTES	Character strings to label the   ordinate of raypath plots
$9-20$	HNOTES	Character strings to label the   abscissa of raypath plots

Table 7.28--Definitions of the parameters in common block/ANNCTL/

Position in   common	Variable   name	Definition   $1-4$   $5-7$
LENHA	Lengths of the character strings   that label the ordinate of raypath   plots	
	Lengths of the character strings   that label the abscissa of raypath   plots	

Table 7.29--Definitions of the parameters in common block/LABCLT/

Position in common	Variable name	Definition
1	PROJCT	Number that indicates which type of projection is being used for raypath plots
2	THMIN	$\begin{aligned} & \theta_{\text {min }} \text { minimum value of the abscissa } \\ & \text { of a raypath plot } \end{aligned}$
3	THMAX	$\begin{aligned} & \theta_{\text {max }} \text { maximum value of the abscissa } \\ & \text { of a raypath plot } \end{aligned}$
4	RMIN	$\begin{aligned} & r_{\text {min }} \text { minimum value of the ordinate } \\ & \text { of a raypath plot } \end{aligned}$
5	RMAX	$r_{\text {max }}$, maximum value of the ordinate of a raypath plot

Table 7.30--Definitions of the parameters in common block/DD/

Position in common	Variable name	Definition
1	IN	Intensity
		IN = 0 specifies normal intensity
		IN = 1 specifies high intensity
2	IOR	Orientation
		IOR = 0 specifies upright orientation
		IOR = 1 specifies rotated orientation ( $90^{\circ}$ counterclockwise)
3	IT	Italics (Font)
		IT = 0 specifies non-italic (Roman) symbols
		IT $=1$ specifies italic symbols
4	IS	Symbol size
		IS $=0$ specifies miniature size
		IS = 1 specifies small size
		IS = 2 specifies medium size
		IS $=3$ specifies large size
5	IC	Symbol case
		IC $=0$ specifies uppercase
		IC = 1 specifies lowercase
6	ICC	Character code, 0-63 (R1 format)
		ICC and IC together specify the
7	IX	X-coordinate, 0-1023
8	IY	y-coordinate, 0-1023

Table 7.31--Definitions of the parameters in common block/KNKN/

Position in   common	Variable   name	Definition
1	KNBP	Number of times SUBROUTINE DDBP was   called
3	KNVC	Number of times SUBROUTINE DDVC was   called
Number of times SUBROUTINE DDTEXT was   called		

Table 7.32--Definitions of the parameters in common block /DDLIM/

Position in	
common	Variable
name	


1	MXIX	Maximum value of IX
2	MXIY	Maximum value of IY
3	MNIX	Minimum value of IX
4	MNIY	Minimum value of IY

Table 7.33--Definitions of the parameters in common block/UU/

Position in common	Variable name	Definition
1-4	MODU	Wind-velocity model and parameter identification
1	MODU (1)	Name of wind-velocity subroutine
2	MODU ( 2 )	Wind-velocity parameter identification number
3	MODU (3)	Name of wind-velocity perturbation subroutine
4	MODU (4)	Wind-velocity perturbation parameter identification number
5	V	$\|\mathrm{V}\|$, wind speed in $\mathrm{km} / \mathrm{s}$
6	PVT	$a\|v\| / \partial t$
7	PVR	$\partial\|V\| / \partial r$
8	PVTH	$\partial\|v\| / \partial \theta$
9	PVPH	$\partial\|v\| / \partial \phi$
10	VR	$\mathrm{V}_{\mathrm{r}}$, upward component of wind velocity
11	PVRT	$\partial V_{r} / \partial t$
12	PVRR	$\partial V_{r} / \partial r$
13	PVRRTH	$\partial \mathrm{V}_{\mathrm{r}} / \partial \theta$
14	PVRPH	$\partial V_{r} / \partial \phi$
15	VTH	$V_{\theta}$, southward component of wind velocity
16	PVTHT	$\partial V_{\theta} / \partial t$
17	PVTHR	$\partial V_{\theta} / \partial r$
18	PVTHTH	$\partial V_{\theta} / \partial \theta$
19	PVTHPH	$\partial V_{\theta} / \partial \phi$
20	VPH	$V_{\phi}$, eastward component of wind velocity
21	PVPHT	$\partial V_{\phi} / \partial t$
22	PVPHR	$\partial V_{\phi} / \partial r$
23	PVPHTH	$\partial V_{\phi} / \partial \theta$
24	PVPHPH	$\partial V_{\phi} / \partial \phi$

Table 7.34--Definitions of the parameters in common block/CC/

Position in	Variable	Definition common
$1-4$	MODC	Sound-speed model and parameter   identification
1	$\operatorname{MODC(1)}$	Name of sound-speed subroutine   2
MODC(2)	Sound-speed parameter identifica-   tion number	
4	$\operatorname{MODC(3)}$	Name of sound-speed perturbation   subroutine
5	$\operatorname{MODC(4)}$	Sound-speed perturbation parameter   identification number
6	$\operatorname{PCST}$	$C^{2}$, square of sound speed in $\mathrm{km}^{2} / \mathrm{s}^{2}$

Table 7.35--Definitions of the parameters in common block/TT/

Position in common	Variable name	Definition
1-4	MODT	Temperature model and parameter identification
1	MODT ( 1 )	Name of temperature subroutine
2	MODT ( 2 )	Temperature parameter identification number
3	MODT (3)	Name of temperature-perturbation subroutine
4	MODT (4)	Temperature-perturbation-parameter identification number
5	T	T, temperature in kelvins
6	PTT	$\partial T / \partial t$
7	PTR	$\partial \mathrm{T} / \partial \mathrm{r}$
8	PTTH	$\partial T / \partial \theta$
9	PTPH	$\partial \mathrm{T} / \mathrm{\partial} \mathrm{\phi}$

Table 7.36--Definitions of the parameters in common block /MM/

Position in   common	Variable   name	Definition
$1-4$	MODM	Molecular weight model and parameter   identification
2	MODM(1)	Name of molecular weight subroutine
3	MODM(2)	Parameter identification number for   molecular weight model
4	MODM(4)	Unused now
5	MMT	Unused now
6	PMR	M, mean molecular weight
7	PMTH	$\partial M / \partial t$
8	PMPH	$\partial M / \partial r$
9		$\partial M / \partial \theta$

Table 7.37--Definitions of the parameters in common block/RR/

Position in common	Variable name	Definition
1-4	MODREC	Receiver-surface model and parameter identification
1	MODREC (1)	Name of receiver-surface subroutine
2	MODREC (2)	Parameter identification number for receiver-surface model
3	MODREC (3)	Unused now
4	MODREC (4)	Unused now
5	F	$\mathrm{f}(\mathrm{r}, \theta, \phi)$ defined in (6.72)-(6.74)
6	PFR	$\partial f / \partial r$
7	PFRR	$\partial^{2} f / \partial r^{2}$
8	PFRTH	$\partial^{2} f / \partial r \partial \theta$
9	PFRPH	$\partial^{2} \mathrm{f} / \partial \mathrm{r} \partial \phi$
10	PFTH	$\partial f / \partial \theta$
11	PFPH	$\partial f / \partial \phi$
12	PFTHTH	$\partial^{2} f / \partial \theta^{2}$
13	PFPHPH	$\partial^{2} f / \partial \phi^{2}$
14	PFTHPH	$\partial^{2} \mathrm{f} / \partial \theta \partial \phi$
15	FSELECT	= "RECEIVER"
16	FTIME	An integer that is initialized to equal -1 at the beginning of each raypath calculation and is incremented by 1 at each integration step so that it is possible to determine whether the variables in this common block are current

Table 7.38--Definitions of the parameters in common block/GG/

Position in common	Variable name	Definition
1-4	MODG	Terrain model and parameter identification
1	MODG (1)	Name of terrain subroutine
2	MODG (2)	Terrain-parameter identification number
3	MODG (3)	Name of terrain-perturbation subroutine
4	MODG (4)	Terrain-perturbation parameter identification number
5	G	$g(r, \theta, \phi)$ defined in the same way as $f(r, \theta, \phi)$ in (6.72)-(6.74)
6	PGR	$\partial g / \partial r$
7	PGRR	$\partial^{2} g / \partial r^{2}$
8	PGRTH	$\partial^{2} g / \partial r \partial \theta$
9	PGRKPH	$\partial^{2} g / \partial r \partial \phi$
10	PGTH	$\partial g / \partial \theta$
11	PGPH	$\partial g / \partial \theta$
12	PGTHTH	$\partial^{2} g / \partial \theta^{2}$
13	PGPHPH	$\partial^{2} g / \partial \phi^{2}$
14	PGTHPH	$\partial^{2} g / \partial \theta \partial \phi$
15	GSELECT	= "TERRAIN"
16	GTIME	An integer that is initialized to equal -1 at the beginning of each raypath calculation and is incremented by 1 at each integration step so that it is possible to determine whether the variables in this common block are current


Position in   common	Variable   name	Definition
$1-4$	MODA	Viscosity/thermal conductivity model   and parameter identification
1	MODA(1)	Name of viscosity/thermal conductivity   subroutine
2	MODA(2)	Viscosity/thermal conductivity param-   eter identification number
4	MODA(3)	Name of viscosity/thermal conductivity   perturbation subroutine
5	MU	Viscosity/thermal conductivity per-   turbation parameter identification
6.	number	

Table 7.40--Definitions of the parameters in common block /PP/

Position in   common	Variable   name	Definition
$1-4$	MODP	Pressure model and parameter   identification
1	MODP(1)	Name of pressure subroutine
2	MODP(2)	Pressure-parameter identifica-   tion number
4	MODP(3)	Name of pressure-perturbation   subroutine
5	PODP(4)	Pressure-perturbation parameter   identification number
6	PPT	P, pressure
7	PPTH	$\partial p / \partial t$
9	PPPH	$\partial p / \partial r$

## REFERENCES

Bennett, J. A. (1967): The calculation of Doppler shifts due to a changing ionosphere. J. Atmos. Terr. Phys., 29, 887-891.

Budden, K. G. (1961): Radio Waves in the Ionosphere. University Press, Cambridge, England.

Budden, K. G. (1972): The theory of coupling of characteristic radio waves in the ionosphere. J. Atmos. Terr. Phys., 34, 1909-1921.

Croft, T. A., and L. Gregory (1963): A fast, versatile ray-tracing program for IBM 7090 digital computers. Rept. SEL-63-107 (TR 82), Contract No. 225(64), Stanford Electronics Laboratories, Stanford, Calif.

Cornyn, J. J. (1973): GRASS: A digital computer ray-tracing and transmission-loss-prediction system. Vol. 1, NRL Report 7621, Naval Research Laboratory, Washington, D.C.

Courant, R., and D. Hilbert (1962): Methods of Mathematical Physics, vol. II, Partial Differential Equations. Interscience Publishers, John Wiley and Sons, New York.

Dudziak, W. F. (1961): Three-dimensional ray trace computer program for electromagnetic wave propagation studies. RM 61 TMP-32, DASA 1232, G. E. TEMPO, Santa Barbara, Calif.

Felsen, L. B., and N. Marcuvitz (1973): Radiation and Scattering of Waves. Prentice-Hall, Englewood Cliffs, N.J.

Feynman, R. P., and A. R. Hibbs (1965): Quantum Mechanics and Path Integrals. McGraw-Hill, New York.

Garabedian, P. R. (1964): Partial Differential Equations. John Wiley and Sons, New York.

Georges, T. M. (1967): Ionospheric effects of atmospheric waves. ESSA Tech. Rept. IER 57-ITSA-54, ESSA Institute for Telecommunication Sciences, Boulder, Colo.

Georges, T. M., and J. J. Stephenson (1968): HF radar signatures of traveling ionospheric irregularities: 3D ray-tracing simulation. Radio Sci., 4 , 679-696.

Georges, T. M. (1970): Amplification of ionospheric heating and triggering of 'spread-F' by natural irregularities. J. Geophys. Res., 75, 6436-6438.

Georges, T. M. (1971): A program for calculating three-dimensional acousticgravity ray paths in the atmosphere. NOAA Tech. Rep. ERL 212-WPL 16, NOAA Environmental Research Laboratories, Boulder, Colo.

Georges, T. M. (1972): Acoustic ray paths through a model vortex with a viscous core. J. Acoust. Soc. Am., 51, 206-209.

Georges, T. M., and W. H. Beasley (1977): Refraction of infrasound by upper atmospheric winds. J. Acoust. Soc. Am., 61, 28-34.

Georges, T. M., R. M. Jones, and J. P. Riley (1986): Simulating ocean acoustic tomography measurements with Hamiltonian ray tracing. IEEE J. Oceanic Engr., OE11, 58-71.

Gossard, E. E., and W. H. Hooke (1975): Waves in the Atmosphere. Elsevier, New York.

Haselgrove, J. (1954): Ray theory and a new method for ray tracing. Report of Conference on the Physics of the Ionosphere (London Physical Society), 355-364.

Jones, R. M. (1966): A three-dimensional ray tracing computer program. ESSA Tech. Rep., IER 17-ITSA 17, ESSA Institute for Telecommunication Sciences, Boulder, Colo.

Jones, R. M. (1968): Modifications to the three-dimensional ray tracing program described in IER 17-ITSA 17. ESSA Tech. Memo. ERLTM-ITS 134, ESSA Institute for Telecommunication Sciences, Boulder, Colo.

Jones, R. M. (1970): Ray theory for lossy media. Radio Sci., 6, 793-801.
Jones, R. M., and J. J. Stephenson (1975): A versatile three-dimensional ray tracing computer program for radio waves in the ionosphere. OT Rep.

75-76, U.S. Department of Commerce/Office of Telecommunications, Boulder, Colo.

Jones, R. M., and T. M. Georges (1976): Infrasound from convective storms. III. Propagation to the ionosphere. J. Acoust. Soc. Am., 59, 765-779.

Jones, R. M. (1981a): Bending of a ray in a random inhomogeneous medium. NOAA Tech. Memo. ERL WPL-77, NOAA Environmental Research Laboratories, Boulder, Colo.

Jones, R. M. (1981b): The frequency shift of a pulse by a time-independent dispersive, lossy medium. NOAA Tech. Memo. ERL WPL-80, NOAA Environmental Research Laboratories, Boulder, Colo.

Jones, R. M. (1982): Algorithms for reflecting rays from general topographic surfaces in a ray-tracing program. NOAA Tech. Memo. ERL WPL-98, NOAA Environmental Research Laboratories, Boulder, Colo., 58 pp.

Jones, R. M., J. P. Riley, and T. M. Georges (1982): A versatile threedimensional Hamiltonian ray-tracing computer program for acoustic waves in the atmosphere. NOAA Tech. Memo. ERL WPL-103, NOAA Environmental Research Laboratories, Boulder, Colo., 242 pp.

Jones, R. M. (1983): A survey of underwater-acoustic ray-tracing techniques. NOAA Tech. Memo. ERL WPL-111, NOAA Environmental Research Laboratories, Boulder, Colo.

Jones, R. M., T. M. Georges, and J. P. Riley (1984): Modeling acoustic remote sensing in the Florida Straits with ray tracing. IEEE Trans. Geosci. Remote Sens., GE-22, 633-640.

Jones, R. M., J. P. Riley, and T. M. Georges (1986): HARPO--A versatile threedimensional Hamiltonian ray-tracing program for acoustic waves in an ocean with arbitrary bottom. NOAA Special Rep., NOAA Environmental Research Laboratories, Boulder, Colo.

Keller, J. B. (1962): Geometrical theory of diffraction. J. Opt. Soc. Am., $\underline{\text { S2, }}$ 116-130.

Lighthill, M. J. (1965): Group velocity. J. Inst. Math. Appl., 1, 1-28.

Lighthill, M. J. (1978): Waves in Fluids. Cambridge Univ. Press, Cambridge, England, Sec. 4.5.

Ludwig, D. (1966): Uniform asymptotic expansions at a caustic. Commun. Pure Appl. Math., 19, 215-250.

NOAA, NASA, and USAF, "U.S. Standard Atmosphere, 1976". U.S. Government Printing Office, Washington, D.C. October 1976, p. 19.

Pedersen, M. A. (1961): Acoustic intensity anomalies introduced by constant velocity gradients. J. Acoust. Soc. Am., 33, 465-474.

Pierce, A. D. (1965): Extension of the method of normal modes to sound propagation in an almost-stratified medium. J. Acoust. Soc. Am., 37, 19-27.

Raspet, R., S. W. Lee, E. Kuester, D. C. Chang, w. F. Richards, R. Gilbert, and N. Bong (1985): Fast-field program for sound propagation in a layered atmosphere above an impedance ground. J. Acoust. Soc. Am., 77, 345-352.

Roberts, B. G., Jr. (1974): Horizontal-gradient acoustical ray-trace program TRIMAIN. NRL Report 7827, Naval Research Laboratory, Washington, D.C.

Sears, F. W. (1956): An Introduction to Thermodynamics, the Kinetic Theory of Gases, and Statistical Mechanics. Second Edition, Addison-Wesley, Reading, Massachusetts.

Stephenson, J. J., and T. M. Georges (1969): Computer routines for synthesizing ground-backscatter from three-dimensional raysets. ESSA Tech. Rep. ERL 120-ITS84, NOAA Environmental Research Laboratories, Boulder, Colo.

Tappert, F. D. (1977): The parabolic approximation method. In Wave Propagation in Underwater Acoustics, edited by J. B. Keller and J. S. Papadakis, Springer-Verlag, New York.

Tolstoy, I., and C. S. Clay (1966): Ocean Acoustics, Theory and Experiment in Underwater Sound. McGraw-Hill, New York.

Valley, S. L. (1965): Handbook of Geophysics and Space Environments. McGraw-Hill, New York.

White, D., and M. Pedersen (1981): Evaluation of shadow-zone fields by uniform asymptotics and complex rays. J. Acoust. Soc. Am., 69, 1029-1059.

## APPENDIX A: PRINTOUT AND RAYSET LISTING FOR THE SAMPLE CASE

This appendix contains an abbreviated printout and rayset listing for the sample case. To save space, we have listed the printout for an elevation-angle increment of $20^{\circ}$ instead of $5^{\circ}$, the increment used to produce the ray plots and raysets. Users should compare their sample-case output with this printout to be sure they are identical. The meanings of the printed quantities are explained in Sections 2.5.1 and 2.5.2, and the meanings of rayset quantities are listed in Figures 2.9 and 2.10.
86／03／21．10．53．06．
HAMILTONIAN ACOUSTIC RAY－TRACING PROGRAM FOR THE ATMOSPHERE

$$
\begin{aligned}
& \text { BY } \\
& \text { R. M. JONES, J. P. RILEY AND T. M. GEORGES } \\
& \text { WAVE PROPAGATION LABORATORY } \\
& \text { NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION } \\
& \text { BOULOER, COLORADO } 80303
\end{aligned}
$$

RUN SET NUMBER 1

## cos－QI 7ヨoow ЭİヨHdSOWLV

REV ．2－10－86
ON－SAMPLE CASE FOR HARPA DOCUMENTATION
ATMOSPHERIC MODEL DESCRIPTION－

OGARITHMIC EASTWARD WIND PROFILE，U＊＝．5 M／S，$Z 0=1 \mathrm{KM}$
NO WIND PERTURBATION
SOUND SPEED IN TERMS OF TEMPERATURE MODEL
50\％INCREASE IN SQ．SOUND SPEED AT 125KM HT， $335 \mathrm{KM} \mathrm{N}, 125 \mathrm{KM}$ E
50\％INCREASE IN SQ．SOUND SPEED AT 125KM H

OLECULAR WEIGHT $=29$ IN HM
RIDGE 2－KM HIGH，30－KM WIDE ALONG EQUATOR
NO TERRAIN PERTURBATION
ARDC VISCOSITY AND THERMAL CONDUCTIVITY MODEL
NO VISCOSITY／CONDUCTIVITY PERTURBATION
EXPONENTIAL PRESSURE MODEL，SCALE HEIGHT $=8.5 \mathrm{KM}$
RECEIVER SURFACE 5 KM ABOVE TERRAIN

88
$m$
：。a
88．
－ig
1.00
.00
1.00 88 $-$ AWWNL GAMRTDM CBLOB2 TTANH5
TBLOB2

MCONST
GLORENZ
MUARDC
NPABSR

DISPERSION RELATION
BACKGROUND WIND VELOCITY BACKGROUND WIND VELOCITY
WIND VELOCITY PERTURBATION

BACKGROUND SOUND SPEED
SOUND SPEED PERTURBATION
BACKGROUND TEMPERATURE
BACKGROUND TEMPERATURE
TEMPERATURE PERTURBATION
MOLECULAR WEIGHT
BACKGROUND TERRAIN
TERRAIN PERTURBATION
BACKGROUND VISCOSITY／
VISCOSITY／THERMAL
CONDUCT IVITY PERTURBATION
BACKGROUND PRESSURE
PRESSURE PERTURBATION
RECEIVER SURFACE
86/03/21. 10.53.06.
INPUT DATA FILE FOR RUN SET NUMBER

86/03/21. 10.53.06.

180	335.	AN KM	N. LATITUDE OF MAXIMUM INCREASE, KM
181	125.	AN KM	E. LONGITUDE OF MAXIMUM INCREASE, KM
182	25.		gaussian width in height of increase, km
183	50.	AN KM	N-S WIDTH Of The INCREASE, KM
184	25.	AN KM	E-W WIDTH Of THE INCREASE, KM
200	7.		TTANH5 TEMPERATURE MODEL CHECK NUMBER
202	1.		BACKGROUND TEMPERATURE DATA SET ID
225	2.		TBLOB2 MODEL CHECK NUMBER
227	2.		TEMPERATURE PERTURBATION DATA SET ID
228	. 5		FRACTIONAL TEMPERATURE INCREASE
229	0.		HEIGHT OF MAXIMUM INCREASE, KM
230	185.	AN KM	N. LATITUDE OF MAXIMUM INCREASE, KM
231	-105.	AN KM	E. LONGITUDE OF MAXIMUM INCREASE, KM
232	0		GAUSSIAN WIDTH IN HEIGHT OF INCREASE, KM
233	50.	AN KM	N-S WIDTH OF THE INCREASE, KM
234	25.	AN KM	E-W WIDTH OF THE INCREASE, KM
250	1.		MCONST MOLECULAR WEIGHT MODEL CHECK NUMBER
252	29.		MOLECULAR WEIGHT DATA SET ID
253	29.		MOLECULAR WEIGHT
275	2.		RTERR RECEIVER MODEL CHECK NUMBER
300	4.		GLORENZ TERRAIN MODEL CHECK NUMBER
302	2.		TERRAIN MODEL DATA SET ID
303	2.		HEIGHT OF THE RIDGE, KM
304	0.		N. LATITUDE OF THE RIDGE CENTER
305	30.	AN KM	HALF-WIDTH OF THE RIDGE, KM
325	0.		NPTERR NO TERRAIN PERTURBATION
500	1.		MUARDC VISC/COND MODEL CHECK NUMBER
502	1.		VISC/COND MODEL DATA SET ID
503	1.458E-06		VISCOSITY COEFFICIENT BETA
504	110.4		SUTHERLAND'S CONSTANT, KELVINS
505	1.91		PRANDTL NUMBER
525	0.		NPABS NO VISC/COND PERTURBATION
550	1.		PEXP PRESSURE MODEL CHECK NUMBER
552	1.		BACKGROUND PRESSURE MODEL DATA SET ID
553	101328.		PRESSURE AT SEA LEVEL, N/SQ.M.
554	8.5		PRESSURE SCALE HEIGHT, KM
575	0.		NPPRES NO PRESSURE PERTURBATION
-1	DATA SUBSET FOR BACKGROUND WIND MODEL		
A	LOGARITHMIC EASTWARD WIND PROFILE, U*=. $5 \mathrm{M} / \mathrm{S}, \quad Z 0=1 \mathrm{kM}$ RETURN TO W ARRAY DATA SET		
0			
-2	do data subset for wind perturbation model		
A	NO WIND PERTURBATION		
0	RETURN	TO W ARR	ray data set
-3	dind data SUBSET FOR BACKGROUND SOUND-SPEED MODEL		
A	SOUND SPEED IN TERMS OF TEMPERATURE MODEL   RETURN TO W ARRAY DATA SET		
0			
4	DATA SUBSET FOR SOUND-SPEED PERTURBATION MODEL		
A	RETURN TO W ARRAY DATA SET		
0			
-5	DATA SUBSET FOR TEMPERATURE MODEL		
A U.S. STANDARD ATMOSPHERE 1962 TEMPERATURE PROFILE			
3	999.0		TEMPERATURE PROFILE FOR 1962 STD ATMOSPHERE
		288.000	10. 0000
	55.0000	190.500	
		320.000	7.50000

86／03／21．10．53．06．

86/03/21. 10.53.06.

#   $W(N)$ <br>  O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $N$    <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
</tbody>
</table>
<table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">88</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">88</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">80</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">80</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">80</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
</tr>
</tbody>
</table>
<table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">0</td>
</tr>
</tbody>
</table>
<table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">88</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">88</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">08</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">08</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">88</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">0.8</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">N</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">6</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">-6</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 88 |
| :--- |
| 88 |
| 08 |
| 08 |
| 88 |
| 0.8 |
| N |
| 6 |
| -6 |</table-markdown></div> 8 0 8 8 8 8 8 8 8 0 0 <br> $\qquad$ <br>  

$$
\begin{aligned}
& \text { z }
\end{aligned}
$$






## 0000 DEG














AZIMUTH ANGLE OF TRANSMISSION $=45.000000$ DEG
ELEVATION ANGLE OF TRANSMISSION $=40.000000$ DEG ELEVATION


















PHASE TIME ABSORPTION PATH LENGTH

PULSE TIME	PHASE TIME	ABSORPTION PATH LENGTH	
SEC	SEC	DB	KM
.0000	.0000	.0000	.0000
73.7000	73.7000	.0000	23.0919
203.3000	203.2999	.0000	67.6482
302.5000	302.4998	.0009	100.5561
382.5000	382.4998	.1114	143.1468
462.5000	462.4997	48.2402	200.5408
500.9000	500.8997	1076.3153	230.6701

 LATITUDE $=$
LONGITUDE $=$









 SP No









道 ELEVATION ANGLE OF TRANSMISSION $=120.0000$ DEG

PHASE TIME ABSORPTION PATH LENGTH  ..... 0
$\sim$
$\sim$
$N$
$N$
$N$

霹








-


ERROR	EVENT
-.7E-14	XMTR
-. $2 \mathrm{E}-06$	
-. $2 \mathrm{E}-06$	
-. 5E-06	
-. 2E-06	APOGEE
-. $2 \mathrm{E}-06$	WAVE REV
-.7E-06	
.4E-05	
. 2E-05	RCVR
. $2 \mathrm{E}-05$	GRND REF
.1E-05	RCVR
. 1E-05	
.2E-05	MAX LONG
. $5 \mathrm{E}-06$	MAX LONG
.2E-07	
.2E-06	APOGEE
. 2E-66	Wave Rev
.8E-06	
.4E-06	max LONG
.9E-06	MAX LONG
. 1E-05	
.1E-05	RCVR
.1E-05	MAX HOPS

86/03/21. 10.53.06.
PAGE 11
hamiltonian acoustic ray-tracing progran for the atmosphere
R. M. JONES, J. P. RILEY AND T. M. GEORGES
NATIONAL OCEANIC AND ATMOSPPERIC ADMINISTRATION
boulder, colorado be303
乙 8JEWRN 13S Nחy
atmospheric model id - so3

REV. 2-10-86
DESCRIPTION

dispersion relation	AWWL		acoustic wave ... With wind
BACKGROUND WIND VELOCITY	ULOGZ2	3.00	LOGARITHMIC EASTWARD WIND PROFILE, U*=.5 M/S, $20=1 \mathrm{kM}$
WIND VELOCITY PERTURBATION	NPWIND	. 08	NO WIND PERTURBATION
BACKGROUND SOUND SPEED	GAMRTDM	. 00	SOUND SPEED IN TERMS OF TEMPERATURE MODEL
SOUND SPEED PERTURBATION	CBLOB2	2.00	50\% INCREASE IN SQ. SOUND SPEED AT 125 KM HT, 335KM $\mathrm{N}, 125 \mathrm{KM}$
BACKGROUND TEMPERATURE	Ttant5	1.00	U.S. STANDARD ATMOSPHERE 1962 TEMPERATURE PROFILE ${ }^{\text {a }}$, 125 KM
TEMPERATURE PERTURBATION	TBLOB2	2.00	50\% CYLINDRICAL INCREASE IN TEMPERATURE AT 105KM N . . 105 KM
MOLECULAR WEIGHT	MCONST	29.00	MOLECULAR WEIGHT $=29$ ( 29 L
BACKGROUND TERRAIN	GLorenz	2.00	RIDGE 2-KM HIGH, 30-KM WIDE ALONG EQUATOR
terrain perturbation BACKGROUND VISCOSITY/	NPTERR	00	NO TERRAIN PERTURBATION
THERMAL CONDUCTIVITY VISCOSITY/THERMAL	MUARDC	1.00	ARDC VISCOSITY AND THERMAL CONDUCTIVITY MODEL
CONOUCTIVITY PERTURBATION	NPABSR		No VISCOSITY/CONDUCTIVITY PERTURBATION
BACKGROUND PRESSURE	PEXP	1.00	EXPONENTIAL PRESSURE MODEL, SCALE HEIGHT $=8.5$
PRESSURE PERTURBATION	NPPRES	. 00	NO PRESSURE PERTURBATIO
RECEIVER SURFACE	RTERR	.00	RECEIVER SURFACE 5 km Above terrain

86/03/21. 10.53.06.
INPUT DATA FILE FOR RUN SET NUMBER 2

[^8] **
86/03/21. 10.53 .06

INPUT OVERRIDDEN

S03-2

ABSORPTION PATH LENGTH	
DB	KM
.0000	.0000
.0000	32.0196
.0000	30.6168
.0000	30.6167
.0000	60.3988
.0000	57.9268
.0000	57.9268
.0000	85.3987
.0000	85.2361
.0000	85.2361
.0000	202.4308
.0000	202.4308
.0000	318.4730
.0000	317.1400
.0000	317.1400
.0000	317.1400

THIS RAY CALCULATION TOOK 2.009 SEC








 $i i \cdot i i i j \cdot i j \cdot i ; i j$






$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$

[^9]PATH LENGTH
KM
.0000
86.3124
86.3124
202.3515
201.1925
201.1925
231.0486
228.5831
228.5831
256.1279
255.9751
255.9751
373.1773
373.1773
489.2314
487.9710
487.9710
487.9710



介介opopiopopopo o o o o o


ERROR

5E-06 MAX HOPS

.0000
230.6701
. 944 SEC
.0000
.2698
98.5992
218.9079 967 SEC

$\begin{array}{rrr}.0000 & .0000 & .0000 \\ 500.9000 & 500.8997 & 1076.3153\end{array}$
THIS RAY CALCULATION TOOK this ray calculation took







2ne



$$
\begin{aligned}
& \mathrm{KM}^{\text {RANGE }}
\end{aligned}
$$


9


 ELEVATION ANGLE OF TRANSMISSION $=$ $\begin{array}{lll}224.5590 & 224.5294 & 88.0081\end{array}$ $\begin{array}{lll}\text { ELEVATION ANGLE OF TRANSMISSION }=100.0000 \text { DEG } \\ -.7 E-14 \text { XMTR } & 13.0440 \quad 13.0000 & .0000\end{array}$


80.000



 .2690
98.5992
218.9079 4
0
0
0

AZIMUTH ANGLE OF TRANSMISSION $=$
ELEVATION ANGLE OF TRANSMISSION $=$
 $.0 E+00$ XMTR
$-.1 E-05$ EXTINC $.2 \mathrm{E}-12$ MAX LONG
$-.1 \mathrm{E}-05 \mathrm{MAX}$ LONG
$-.1 \mathrm{E}-05$ EXTINC
FREQUENCY $=\quad .050000 \mathrm{HZ}$
SINGLE STEP ERROR $=1.000000 \mathrm{E}-06$


: II
LATITUDE
LONGITUDE


8
81 i

 XMTR


AZIMUTH ANGLE OF TRANSMISSION $=45.000000$ DEG
ELEVATION ANGLE OF TRANSMISSION $=120.000000$ DEG
ELEVATION ANGLE OF TRANSMISSION $=120.000000$

> 930
7850









## EVENT <br> ERROR

APOGEE
WAVE REV
MAX






 11P1 NN义





S03-1
ULOGZ2
TTANH5
PEXP
GLORENZ

SAMPLE CASE FOR HARPA DOCUMENTATION
REV. 2-10-86

LOGARITHMIC EASTWARD WIND PROFILE
NO WIND PERTURBATION
SOUND SPEED IN TERMS OF TEMPERATURE MODEL
50\% INCREASE IN SQ. SOUND SPEED AT $125 \mathrm{KM} H T, 335 \mathrm{KM} \mathrm{N}, 125 \mathrm{KM}$ E U.S. STANDARD ATMOSPHERE 1962 TEMPERATURE PROFILE

50\% CYLINDRICAL INCREASE IN TEMPERATURE AT 105KM N., 105 KM W MOLECULAR WEIGHT $=29$
RIDGE 2-KM HIGH, 30-KM WIDE ALONG EQUATOR




## APPENDIX B: BLANK INPUT-PARAMETER FORMS

This appendix provides blank Input Parameter Forms for all of the atmospheric models (including terrain and receiver-surface models) that we have developed for HARPA. The forms describe each model mathematically and list the variable input parameters you have to specify. We recommend reproducing these forms and filling them out when setting up atmospheric models for HARPA. The filled-out forms should then be saved as a record of the models you have defined.
The FORTRAN source codes for the corresponding model subroutines are listed in Appendix $D$ under the model name. No forms are given for the donothing versions NTEMP, NPTEMP, NPSPEED, NPTERR, NPPRES, and NPWIND. The forms are arranged as follows:
Page
3-D RAYPATH CALCULATION ..... 199
RAYPATH PLOT PROJECTION ..... 200
ATMOSPHERIC MODELS ..... 201
BACKGROUND CURRENT MODELS
WLINEAR -- A linear profile of $u$; constant $v$ and $w$ ..... 202
WTIDE -- Sinusoidal $u$ and $v$ profiles ..... 203
ULOGZ2 -- A logarithmic u profile ..... 204
VVORTX3 -- A vertical vortex with a solid-rotating core ..... 205
WGAUSS2 -- A jet of $u$ that decays in three dimensions ..... 206
BACKGROUND SOUND-SPEED MODELS
GAMRTDM -- Defines $C$ in terms of temperature ..... 207
CSTANH -- C profile with linear segments smoothly joined ..... 208
SOUND-SPEED PERTURBATION MODELS
CBLOB2 -- A blob of $C$ increase that decays in three dimensions ..... 209
BACKGROUND TEMPERATURE MODELS
TLINEAR -- Linear T profile ..... 210
TTANH5 -- T profile with linear segments smoothly joined ..... 211
TTABLE -- A tabular temperature profile in cubic segments ..... 212
TEMPERATURE PERTURBATION MODELS
TBLOB2 -- A blob of $T$ increase that decays in three dimensions ..... 213
MOLECULAR WEIGHT
MCONST -- A constant molecular weight ..... 214
VISCOSITY/CONDUCTIVITY
MUARDC -- ARDC formula ..... 215
PRESSURE
PEXP -- Exponential decrease with constant scale height ..... 216
TERRAIN MODELS
GHORIZ -- A horizontal surface at a specified height above sea level ..... 217
GLORENZ -- A Lorentzian ridge along a latitude line ..... 218
GTANH -- 2-D, linear segments smoothly joined ..... 219
RECEIVER-SURFACE MODELS
RHORIZ -- A surface at a fixed height above sea level ..... 220
RTERR -- A surface at a fixed height above the terrain ..... 221
RVERT -- A vertical receiver surface at a fixed range from an origin ..... 222

FORM TO SPECIFY INPUT DATA FOR A THREE-DIMENSIONAL RAYPATH CALCULATION


Model ID: $\qquad$

Plot directly during raypath calculations $\qquad$ or plot from precomputed raypaths $\qquad$ in disk file $\qquad$

Normal or apogee plots:
Normal $\qquad$ $(W 80=0.0)$

Plot apogees only $\qquad$ $(W 80=1.0)$

Projection:
Vertical plane, polar plot, rectangular expansion $\qquad$ (W81=1.0)

Horizontal plane, lateral expansion $\square$ (W81 = 2.0 )

Vertical plane, polar plot, radial expansion $\qquad$ (W81=3.0)

Vertical plane, rectangular plot
$(W 81=4.0)$
Superimpose these raypath plots on the graph of the previous runset:
Yes $\qquad$ (W81 negative.)

No $\qquad$ (W81 positive.)

Vertical or lateral expansion factor
Coordinates of the left edge of the graph:
Latitude = $\qquad$ (rad, deg, km) north (W83)

Longitude $=$ $\qquad$ (rad, deg, km) east (W84)

Coordinates of the right edge of the graph:
Latitude $=$ (rad, deg, km) north (W85)
Longitude = $\qquad$ (rad, deg, km) east (W86)

Distance between horizontal tick marks = $\qquad$ rad, deg, km (W87)

Height above sea level of bottom of graph $=$ $\qquad$ km (W88)

Height above sea level of top of graph = $\qquad$ km (W89)

Distance between vertical tick marks = $\qquad$ km (W96)

## FORM TO SPECIFY AN ATMOSPHERIC MODEL (including terrain model)

Name___	Date	
Atmospheric ID (3 characters)		
Coordinates of the north pole of the	al coordinate system:	
North geographic latitude:	$\ldots$ _rad, $\mathrm{km}, \mathrm{deg}$ (W24)	
East geographic longitude:	rad, km , deg (W25)	
Models:		
	Subroutine Name	Data set ID
Dispersion relation		
Wind velocity		_ (W102)
Wind-velocity perturbation		_ (W127)
Sound speed		[ (W152)
Sound-speed perturbation		_(W177)
Temperature		_ (W202)
Temperature perturbation		(W227)
Molecular weight		_(W252)
Terrain		_ (W302)
Terrain perturbation		_(W327)
Viscosity/conductivity		_(W502)
Viscosity/conductivity perturbation		_(W527)
Pressure		_(W552)
Pressure perturbation		_ (W557)
Receiver surface*		
Plot-annotation model*		

*The receiver-surface model and plot-annotation model are not considered part of the atmospheric ID

This subroutine specifies constant radial (upward), zonal (eastward) and meridional (southward) winds, allowing a linear height gradient of the zonal component.

$$
\begin{aligned}
& \mathrm{u}_{\theta}=\mathrm{U}_{\theta \mathrm{o}} \\
& \mathrm{u}_{\phi}=\mathrm{u}_{\phi \mathrm{o}}+\frac{\mathrm{du}}{\phi} \mathrm{dz} \\
& \mathrm{z} \\
& \mathrm{u}_{\mathrm{r}}=\mathrm{U}_{\mathrm{ro}}
\end{aligned}
$$

$z=r-r_{e}$, where $r_{e}$ is the Earth radius, and $r$ is the radial coordinate of ray point.

## Specify--

the model check for WLINEAR $=1.0 \quad$ ( $\mathbf{W} 100$ )
the input data-format code $=$ $\qquad$ (W101)
an input data-set identification number $=$ $\qquad$ (W102)
an 80-character description of the wind-velocity profile:
the constant upward wind, $U_{\text {ro }}=$ $\qquad$ km/s, m/s (W103)
the constant southward wind, $\mathrm{U}_{\theta 0}=$ $\qquad$ $\mathrm{km} / \mathrm{s}$, m/s (W104)
the ground value of the eastward wind, $U_{\phi 0}=$ $\qquad$ km/s, m/s (W105)
the height gradient of $u_{\phi}, d u_{\phi} / d z=$ $\qquad$ $\mathrm{km} / \mathrm{s} / \mathrm{km}$, m/s/km (W106)
(This subroutine can be used with its input parameters zero when no wind field is desired.)

OTHER MODELS REQUIRED: Any wind-perturbation model. Use NPWIND if no perturbation is desired.

This subroutine represents the wind field of the atmospheric tides by zonal and meridional height profiles that are sinusoidal and in phase quadrature. The profiles progress downward with time, giving a corkscrew effect:

$$
\begin{aligned}
& u_{\theta}=U_{\theta 0} \sin \left\{2 \pi\left(\frac{z}{\lambda_{z}}+\frac{t}{T}\right)\right\} \\
& u_{\phi}=U_{\phi o} \cos \left\{2 \pi\left(\frac{z}{\lambda_{z}}+\frac{t}{T}\right)\right\}
\end{aligned}
$$

$z=r-r_{e}$, where $r_{e}$ is the Earth radius, and $r$ is the radial coordinate of the ray point.

Specify--
the model check for WTIDE $=\frac{5.0}{}(\mathrm{~W} 100)$
the input data-format code $=$ $\qquad$ (W101)
an input data-set identification number $=$ $\qquad$ (W102)
an 80 -character description of the model, including description of parameter values:
the amplitude of the meridional component, $\mathrm{U}_{\boldsymbol{\theta} \boldsymbol{o}}=$ $\qquad$ $\mathrm{km} / \mathrm{s}$, m/s (W104)
the amplitude of the zonal component, $\mathrm{U}_{\phi 0}=$ $\qquad$ $\mathrm{km} / \mathrm{s}$, m/s (W103)
the vertical wavelength, $\lambda_{z}=$ $\qquad$ km (W105)
the time in wave periods, $t / \tau=$ $\qquad$ (W106)
the wave period, $\tau=$ $\qquad$ $\sec (W 107)$
(The Earth's poles should be avoided in ray calculations because discontinuities appear there.)

OTHER MODELS REQUIRED: Any wind-perturbation model. Use NPWIND if no perturbation is desired.

## FORM TO SPECIPY INPUT DATA

FOR WIND-VELOCITY MODEL ULOGZ2

A logarithmic wind profile of the atmospheric boundary layer neglecting Coriolis forces. The eastward wind is given by

$$
\begin{array}{lll}
u_{\phi}=\frac{u_{*}}{k} \ln \frac{z}{z_{0}} & \text { for } & z>z_{0} e \\
u_{\phi}=\frac{u_{*}}{k} \frac{z}{z_{0} e} & \text { for } & z \leqslant z_{0} e
\end{array}
$$

where $z=G(r, \theta, \phi)$ is determined by the terrain model and is the height above or some kind of distance from the terrain, depending on the terrain model, and $r$ is the radial coordinate of the ray point. Specify--
the model check for ULOGZ2 = $\qquad$ (W100)
the input data-format code $=$ $\qquad$ (W101)
an input data-set identification number $=$ $\qquad$ (W102)
an 80-character description of the wind velocity profile:
the reference wind speed, $u_{*}=$ $\qquad$ $\mathrm{km} / \mathrm{s}, \mathrm{m} / \mathrm{s}$
von Kármán's constant, $k=$ $\qquad$ (W104) (.35 recommended)
the roughness height, $z_{0}=$ $\qquad$ km (W105)

OTHER MODELS REQUIRED: Any wind-perturbation model. Use NPWIND if no perturbation is desired.
( $\overline{u w}=-u_{*}{ }^{2}$ is the surface stress at the ground.)

This subroutine models a vortex with a viscous core and a Gaussian intensity profile in the vertical. The axis of the vortex is vertical and may be positioned above any geographic latitude and longitude. The vortex rotates anticlockwise looking down. The core (inside $r_{o}$ ) is essentially a solid-rotating fluid, while outside $r_{0},|u|$ falls off as the inverse radius.

$$
\begin{aligned}
& u_{\theta}=-\frac{1.397 R_{e} U_{0} r_{0}}{r^{2}}\left(1-e^{-1.26 r^{2} / r_{o}}{ }^{2}\right)\left(\phi-\phi_{0}\right) e^{-\left[\frac{h-h_{\max }}{w_{H}}\right]^{2}} \\
& u_{\phi}=\frac{1.397 R_{e} U_{0} r_{0}}{r^{2}}\left(1-e^{-1.26 r^{2} / r_{0}^{2}}\right)\left(\theta-\theta_{0}\right) e^{-\left[\frac{h-h_{\max }}{w_{H}}\right]^{2}},
\end{aligned}
$$

where $\theta_{0}=\pi / 2-\lambda_{0}$ and $r$ is the radial distance from the vortex center. The numerical constants normalize the function so that $|U|=U_{o}$ at $r=r_{0} . R_{e}$ is the radius of the Earth, $\theta$ is the colatitude, $\phi$ is the longitude, and $h$ is the height above sea level.

Specify--
the model check for VVORTX3 $=9.0 \quad$ (W100)
the input data-format code $=$ $\qquad$ (W101)
an input data-set identification number $=$ $\qquad$ (W102)
an 80 -character description of the model, including description of parameter values:
the maximum tangential wind, $\mathrm{U}_{\mathrm{o}}=$ $\qquad$ km/s, m/s (W103)
the radius of the vortex core (to $u=U_{0}$ ), $r_{0}=$ $\qquad$ km (W104) the latitude of the vortex center, $\lambda_{0}=$ $\qquad$ rad, deg, km N (W105)
the longitude of the vortex center, $\phi_{0}=$ $\qquad$ rad, deg, km E (W106)
the Gaussian width in height of the vortex, $W_{H}=$ $\qquad$ km, m (W107)
the height of the vortex, $\mathrm{h}_{\text {max }}=$ $\qquad$ km, m (W108)

OTHER MODELS REQUIRED: Any wind-perturbation model. Use NPWIND if no perturbation is desired.

This subroutine specifies a zonal (eastward) wind field whose intensity decays in a Gaussian manner in all three space dimensions.

$$
u_{\phi}=U_{\phi 0} \exp \left\{-\left(\frac{z-z_{0}}{w_{z}}\right)^{2}-\left(\frac{\theta-\theta_{0}}{W_{\theta}}\right)^{2}-\left(\frac{\phi-\phi_{0}}{W_{\phi}}\right)^{2}\right\}
$$

$z=r-r_{e}$, where $r_{e}$ is the Earth radius, $\theta_{0}=\pi / 2-\lambda_{0}$, and $r$ is the radial coordinate of the ray point. $\theta$ is the colatitude. $\phi$ is the longitude.

Notice that this wind field does not satisfy continuity if $W_{\phi} \neq 0$. Specify--
the model check for WGAUSS $2=\frac{8.0}{8}$ (W100)
the input data-format code $=$ (W101)
an input data-set identification number $=$ (W102)
an 80 -character description of the model, including description of
parameter values:
the maximum value of $u_{\phi}, U_{\phi 0}=\ldots \mathrm{km} / \mathrm{s}, \mathrm{m} / \mathrm{s}$ (W103)
the height where $u_{\phi}$, maximizes, $z_{0}=\ldots \quad k m$ (W107)
the Gaussian width in height of $u_{\phi}, W_{z}=\ldots \quad k m$ (W104)*
the latitude where $u_{\phi}$ maximizes, $\lambda_{0}=$ $\qquad$ rad, deg, km N (W108)
the meridional width of $u_{\phi}, W_{\theta}=$ $\qquad$ rad, deg, km (W105)*
the longitude where $u_{\phi}$, maximizes, $\phi_{0}=$ $\qquad$ rad, deg, km E (W109)
the zonal width of $u_{\phi}, w_{\phi}=$ $\qquad$ rad, deg, km (W106)*

OTHER MODELS REQUIRED: Any wind-perturbation model. Use NPWIND if no perturbation is desired.
*Setting $W_{z}, W_{\theta}$ or $W_{\phi}=0$ results in no space variation in that direction.

## FORM TO SPECIFY

 SOUND-SPEED MODEL GAMRTDMThis model specifies sound speed in terms of a background temperature model using

$$
C^{2}=\frac{Y R T}{M}
$$

where $\gamma=1.4, R$ is the universal gas constant, $T$ is the absolute temperature in Kelvins, and $M(r, \theta, \phi)$ is a model of the mean molecular weight of the atmosphere. See Sec. 6.3 for further description of this model. Specify --

The model check for GAMRTDM $=$ $\qquad$ (W150)

OTHER MODELS REQUIRED: Any background temperature model; any molecular weight model.

This model represents the sound speed (squared) profile by a sequence of linear segments that are smoothly joined by hyperbolic functions:

$$
\begin{aligned}
c^{2}=C_{0}^{2}+\frac{b_{1}}{2}\left(z_{-} z_{0}\right) & +\sum_{i=1}^{n} \delta_{i}\left(\frac{b_{i+1}-b_{i}}{2}\right) \quad \ell n\left\{\frac{\cosh \left(\frac{z_{i}-z_{i}}{\delta_{i}}\right)}{\cosh \left(\frac{z_{i}-z_{0}}{\delta_{i}}\right)}\right\}+\frac{b_{n+1}}{2}\left(z_{-z_{0}}\right) \\
\frac{d C^{2}}{d z} & =b_{1}+\sum_{i=1}^{n}\left(\frac{b_{i+1}-b_{i}}{2}\right) \quad\left(\tanh \left(\frac{z_{i}-z_{i}}{\delta_{i}}\right)+1\right\} \\
b_{i} & =\left(C_{i}^{2}-c_{i-1}^{2}\right) /\left(z_{i}-z_{i-1}\right)
\end{aligned}
$$

$z=r-r_{e}$, where $r_{e}$ is the Earth radius, and $r$ is the radial coordinate of the ray point. Thus, $\delta_{i}$ is the half-thickness of a region centered at approximately $z_{i} \mathrm{~km}$, in which $d C^{2} / d z$ changes from $b_{i}$ to $b_{i+1}$. Start by drawing a profile with linear segments, and get $C_{i}{ }^{2}$ and $z_{i}$ from the corners. Then select $\delta_{i}$ to round the corners. The final profile will not go through $\left(C_{i}{ }^{2}, z_{i}\right)$.
Specify--
the model check for CSTANH = $\qquad$ 2.0
the input data-format code $=$ $\qquad$ (W151)
an input data-set identification number $=$ $\qquad$ (W152)
an 80 -character description of the model with parameters:
and the profile values:
the number of points in the profile $-2=n=$ $\qquad$
the profile: i

$\underset{(\mathrm{km} / \mathrm{s}, \mathrm{m} / \mathrm{s}}{\mathrm{C}_{\mathrm{i}}}$
$\underset{(k m, m)}{\delta_{i}}$

OTHER MODELS REQUIRED:
Any sound-speed-perturbation model. Use NPSPEED if no perturbation is desired. FUNCTION ALCOSH.

## FORM TO SPECIFY INPUT DATA FOR SOUND-SPEED PERTURBATION MODEL CBLOB2

An increase (or decrease) in sound speed in a localized region that decays in a Gaussian manner in all three spatial directions.
 $C_{0}{ }^{2}(r, \theta, \phi)$ is the square of the sound speed specified by a sound-speed model. $(r, \theta, \phi)$ are the coordinates of the ray point in an Earth-centered spherical polar-coordinate system. $\theta_{0}=\pi / 2-\lambda_{0}$ and $z=r-r_{e}$, where $r_{e}$ is the Earth radius.

Specify--
the model check for subroutine CBLOB2 = $\qquad$ (W175)
the input data-format code $=$ $\qquad$ (W176)
an input data-set identification number $=$ $\qquad$ (W177)
an 80-character description for the sound-speed perturbation model, including description of parameter values:
the strength of the fractional increase (or decrease), $\Delta=$ $\qquad$ (W178)
the height of maximum effect, $z_{0}=$ $\qquad$ km (W179)
the latitude of maximum effect, $\lambda_{0}=$ $\qquad$ rad, deg, km N (W180)
the longitude of maximum effect, $\phi_{0}=$ $\qquad$ rad, deg, km E (W181)
the Gaussian width in height of the effect, $W_{z}=$ $\qquad$ km (W182)*
the meridional width of the effect, $W_{\theta}=$ $\qquad$ rad, deg, km (W183)*
the zonal width of the effect, $\omega_{\phi}=$ $\qquad$ rad, deg, km (W184)*

OTHER MODELS REQUIRED: none.

[^10]This subroutine specifies an atmospheric temperature that increases linearly with height.

```
 T= T
z = r - re, where re is the Earth radius and r is the radial coordinate of
the ray point.
Specify--
 the model check for TLINEAR = 1.0__(W200)
the input data-format code =
```

$\qquad$

``` (W201)
an input data-set identification number \(=\)
``` \(\qquad\)
``` (W202)
an 80 -character description of the model, including description of parameter values:
the ground temperature, \(\mathrm{T}_{0}=\)
``` \(\qquad\)
``` \({ }^{\circ} \mathrm{K}\) (W203)
the temperature gradient, \(d T / d z=\)
``` \(\qquad\)
``` \({ }^{\circ} \mathrm{K} / \mathrm{Km}\) (W204)
(set \(=0\) for isothermal atmosphere)
```

OTHER MODELS REQUIRED: Any temperature-perturbation model. Use NPTEMP if no perturbations are desired.

This model represents the temperature profile by a sequence of linear segments that are smoothly joined by hyperbolic functions:

$$
\begin{gathered}
T=T_{0}+\frac{c_{1}}{2}\left(z-z_{0}\right)+\sum_{i=1}^{n} \delta_{i}\left(\frac{c_{i+1}-c_{i}}{2}\right) \quad \ln \left\{\frac{\cosh \left(\frac{z^{-z_{i}}}{\delta_{i}}\right)}{\cosh \left(\frac{z_{i}-z_{0}}{\delta_{i}}\right)}\right\}+\frac{c_{n+1}}{2}\left(z-z_{0}\right) \\
\frac{d T}{d z}=c_{1}+\sum_{i=1}^{n}\left(\frac{c_{i+1}-c_{i}}{2}\right) \quad\left\{\tanh \left(\frac{z_{i}-z_{i}}{\delta_{i}}\right)+1\right\} \\
c_{i}=\left(T_{i}-T_{i-1}\right) /\left(z_{i}-z_{i-1}\right)
\end{gathered}
$$

$z=r-r_{e}$, where $r_{e}$ is the Earth radius, and $r$ is the radial coordinate of the ray point. Thus, $\delta_{i}$ is the half-thickness of a region centered at approximately $z_{i} k m$, in which $d T / d z$ changes from $c_{i}$ to $c_{i+1}$. Start by drawing a profile using linear segments and get $T_{i}$ and $z_{i}$ from the corners. Then select $\delta_{i}$ to round the corners. The final profile will not go through $\left(T_{i}, z_{i}\right)$.

Specify--
the model check for TTANH5 $=7.0$ (W200)
the input data-format code $=$ $\qquad$ (W201)
an input data-set identification number $=$ $\qquad$ (W202)
an 80 -character description of the model with parameters:
and the profile values:
the number of points in the profile $-2=n=$ $\qquad$
the profile: $i$

$\stackrel{\mathrm{T}_{\mathrm{i}}}{\left.{ }^{\circ} \mathrm{K}\right)}$


OTHER MODELS REQUIRED: Any temperature-perturbation model. Use NPTEMP if no perturbations are desired. FUNCTION ALCOSH.

This model represents the temperature profile by a sequence of cubic segments such that the temperature gradient is continuous through each profile point. This is not a cubic spline; the coefficients of the cubic fit in each segment depend on only the four nearest profile points.

The coefficients of the cubic are calculated as follows: each set of three successive points in the profile is first fit with a quadratic. The slope of that quadratic at the middle profile point is then assigned to that profile point. This procedure assigns a slope to every profile point except the first and last. A slope of zero is assigned to the first and last point. Between each pair of profile points the coefficients of the cubic are chosen so that the curve goes through the two points and matches the assigned slope at the two points. Those four conditions determine the four coefficients. Both the temperature and its gradient are continuous throughout the profile, even at the profile points. Specify--
the model check number for TTABLE $=$ $\qquad$ (W200)
the input data-format code $=\frac{2.0}{(W 201)}$
an input data-set identification number $=$ $\qquad$ (W202)
an 80-character description of the profile:
and the profile values:
the number of points in the profile, $n=$ the profile: height (km) Temperature (K)

Subroutine GAUSEL and any temperature-perturbation model. Use NPTEMP if no perturbations are desired.

An increase (or decrease) in temperature in a localized region that decays in a Gaussian manner in all three spatial directions.

$T_{0}(r, \theta, \phi)$ is the temperature specified by a temperature model. (r, $\left.\theta, \phi\right)$ are the coordinates of the ray point in an Earth-centered spherical polar coordinate system. $\theta_{0}=\pi / 2-\lambda_{0}$ and $z=r-r_{e}$, where $r_{e}$ is the Earth radius. Specify--
the model check for subroutine $\mathrm{TBLOB} 2=$ $\qquad$ (W225)
the input data-format code $=$ $\qquad$ (W226)
an input data-set identification number = $\qquad$ (W227)
an 80-character description for the temperature-perturbation model, including description of parameter values:
the strength of the increase (or decrease), $\Delta=$ $\qquad$ (W228)
the height of maximum effect, $z_{0}=$ $\qquad$ km (W229)
the latitude of maximum effect, $\lambda_{0}=$ $\qquad$ rad, deg, km N (W230) the longitude of maximum effect, $\phi_{0}=$ $\qquad$ rad, deg, km E (W231) the Gaussian width in height of the effect, $W_{Z}=$ $\qquad$ km (W232)* the meridional width of the effect, $W_{\theta}=$ $\qquad$ rad, deg, km (W233)* the zonal width of the effect, $\omega_{\phi}=$ $\qquad$ rad, deg, km (W234)*

OTHER MODELS REQUIRED: none.

[^11]FORM TO SPECIFY INPUT DATA FORATMOSPHERIC MOLECULAR-WEIGHT MODEL MCONST
A constant molecular weight (independent of height, longitude, latitude, and time)
Specify--
the model check for MCONST = ..... 1.0 ..... (W250)
the input data-format code $=$

$\qquad$
(W251)an input data-set identification number $=$
$\qquad$ (W252)
an 80-character description of the molecular weight:
the value of the constant molecular weight, $M=$ $\qquad$ (W253)

FORM TO SPECIFY INPUT DATA FOR VISCOSITY/CONDUCTIVITY MODEL MUARDC

This subroutine calculates the atmospheric molecular viscosity using the ARDC formula for viscosity and calculates atmospheric thermal conductivity from the value of viscosity using a Prandtl number specified by the user. This model is used only to calculate acoustic absorption when either AWWWL or ANWWL is used.

The ARDC formula for viscosity is (U.S. Standard Atmosphere, 1976, p. 19, NOAA, NASA, USAF, U.S. Government Printing Office, Washington, D.C., October 1976)

$$
\mu=\beta \mathrm{T}^{3 / 2} /(\mathrm{S}+\mathrm{T})
$$

where $T$ is the atmospheric temperature in Kelvins.
The atmospheric thermal conductivity using the Prandtl approximation (e.g., Francis Weston Sears, Thermodynamics, Addison-Wesley, 1956, pp. 267-9) is

$$
K=\gamma \mathrm{R} \mu /((\gamma-1) \mathrm{M} \operatorname{Pr}),
$$

where $\gamma$ is the ratio specific heats $=1.4$, $R$ is the universal gas constant, and $M$ is the mean atmospheric molecular weight.

Specify --
the model check for subroutine MUARDC = $\qquad$ (W500)
the input data-format code $=$ $\qquad$ (W501)
an input data-set identification number $=$ $\qquad$ (W502)
an 80-character description for the absorption model, including description of parameter values:
the viscosity constant, $\beta=$ $\qquad$ $\mathrm{kg} \mathrm{s} \mathrm{s}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-1 / 2}$
(W503)
( $1.458 \times 10^{-6} \mathrm{~kg} \mathrm{~s}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-1 / 2}$ suggested)

Sutherland's constant, $S=$ $\qquad$ Kelvins (W504)
(110.4 Kelvins suggested)

Prandtl number, $\operatorname{Pr}=$ $\qquad$ (W505) (0.733 suggested)
OTHER MODELS REQUIRED: Any atmospheric temperature model and any atmospheric molecular weight model.

## FORM TO SPECIFY INPUT DATA FOR PRESSURE MODEL PEXP

This model is used only to calculate absorption when either AWWWL or ANWWL is used. The pressure is given by

$$
P=P_{0} \exp (-z / H)
$$

where $z$ is the height above sea level.

```
Specify --
```

    the model check for subroutine \(P E X P=1.0 \quad\) (W550)
    the input data-format code \(=\)
    $\qquad$ (W551)
an input data-set identification number $=$ $\qquad$ (W552)
an 80-character description for the pressure model, including description of parameter values:
the pressure at sea level, $\mathrm{P}_{0}=$ $\qquad$ Newtons/m ${ }^{2}$
( $1.01328 \times 10^{5}$ Newtons $/ \mathrm{m}^{2}$ suggested)
the pressure scale height, $H=$ $\qquad$ km, m (W554)

A constant-height terrain model, i.e., a sphere concentric with the Earth.

$$
\begin{aligned}
& g(r, \theta, \phi)=h-z_{o}, \\
& \text { where } \quad h=r-r_{e}, \\
& \qquad \frac{\partial g}{\partial r}=1, \frac{\partial g}{\partial \theta}=0, \frac{\partial g}{\partial \phi}=0, \\
& \frac{\partial^{2} g}{\partial r^{2}}=\frac{\partial^{2} g}{\partial r \partial \theta}=\frac{\partial^{2} g}{\partial \theta \partial r}=\frac{\partial^{2} g}{\partial r \partial \phi}=\frac{\partial^{2} g}{\partial \phi \partial r}=\frac{\partial^{2} g}{2 \theta 2}=\frac{\partial^{2} g}{\partial \theta \partial \phi}=\frac{\partial^{2} g}{\partial \phi \partial \theta}=\frac{\partial^{2} g}{\partial \phi^{2}}=0,
\end{aligned}
$$

and $r_{e}$ is the radius of the Earth.
Specify --
The model check number for GHORIZ $=$ $\square$ 1.0 (W300)

The input data-format code number $=$ $\qquad$ (W301)

The input data-set identification number $=$ $\qquad$ (W302)
an 80-character description of the model including parameters:

The constant terrain height, $z_{0}=$ $\qquad$ km, (W303)

OTHER MODELS REQUIRED: Any terrain-perturbation model. Use NPTERR if no perturbation is desired.

An east-west Lorentzian-shaped ridge.

$$
g(\mathbf{r}, \theta, \phi)=\mathbf{h}-\mathbf{z},
$$

where

$$
\mathbf{h}=\mathbf{r}-\mathbf{r}_{\mathbf{e}},
$$

$$
z=z_{0} /\left(1+\left(\left(\theta-\theta_{0}\right) / \Delta \theta\right)^{2}\right)+z_{B}
$$

$$
\theta_{0}=\pi / 2-\lambda_{0},
$$

and $r_{e}$ is the radius of the Earth.
Specify--
the model check number for GLORENZ $=$ $\qquad$ (W300)
the input data-format code number $=$ $\qquad$ (W301)
the input data-set identification number = $\qquad$ (W302)
an 80-character description of the model including parameters:
the height of the ridge, $z_{0}=$ $\qquad$ km, m (W303)
the latitude of the ridge center, $\lambda_{0}=$ $\qquad$ rad, deg, km (W304)
the half-width of the ridge, $\Delta \theta=$ $\qquad$ rad, deg, km (W305)
base of the ridge (negative if below sea level) $z_{B}=$ $\qquad$ m, km (W306)

OTHER MODELS REQUIRED: Any terrain-perturbation model. Use NPTERR if no perturbation is desired.

This model represents the terrain by a sequence of linear segments that are smoothly joined by hyperbolic functions:

$$
\begin{aligned}
& g(r, \theta, \phi)=h-z(\theta), \text { where } \\
& z(\theta)=z_{0}+\frac{c_{1}}{2}\left(\theta-\theta_{0}\right)-\sum_{i=1}^{n} \delta_{i}\left(\frac{c_{i+1}-c_{i}}{2}\right) \quad \ln \left\{\frac{\cosh \left(\frac{{ }^{\theta-\theta_{i}}}{\delta_{i}}\right)}{\cosh \left(\frac{\left(\theta_{i}-\theta_{0}\right)}{\delta_{i}}\right)}\right\}+\frac{c_{n+1}}{2}\left(\theta-\theta_{0}\right) \\
& \frac{d z}{d \theta}=c_{1}+\sum_{i=1}^{n}\left(\frac{c_{i+1}-c_{i}}{2}\right)\left\{-\tanh \left(\frac{\theta-\theta_{i}}{\delta_{i}}\right)+1\right\} \\
& c_{i}=\left(z_{i}-z_{i-1}\right) /\left(\theta_{i}-\theta_{i-1}\right)
\end{aligned}
$$

$h=r-r_{e}$, where $r_{e}$ is the Earth radius, and $r$ is the radial coordinate of the ray point. $\theta_{i}=\pi / 2-\lambda_{i}$. Thus, $\delta_{i}$ is the half-thickness of a region centered at approximately $\theta_{i}$, in which $d z / d \theta$ changes from $c_{i}$ to $c_{i+1}$. Start by drawing a profile using linear segments, and $\theta_{i}$ and $z_{i}$ from the corners. Then select $\delta_{i}$ to round the corners. The final profile will not go through $\left(\theta_{i}, z_{i}\right)$.
Specify--
the model check for GTANH $=$ 3.0 (W300)
the input data-format code $=$ $\qquad$ (W301)
an input data-set identification number $=$ $\qquad$ (W302)
an 80-character description of the model with parameters:
and the profile values:
the number of points in the profile - $2=n=$ $\qquad$
the profile: 1

> (rad, deg)
$\underset{(\mathrm{km}, \mathrm{m})}{\mathrm{z}_{\mathrm{i}}}$
$\underset{(\mathrm{rad}, \mathrm{deg})}{\delta_{1}}$

FORM TO SPECIFY INPUT DATA

## FOR RECEIVER-SURFACE MODEL RHORIZ

A receiver-surface model that is a horizontal surface (i.e., a sphere concentric with the Earth).

$$
\mathbf{f}(\mathbf{r}, \boldsymbol{\theta}, \phi)=\mathbf{h}-\mathbf{z}_{\mathrm{R}}
$$

where

$$
\mathbf{h}=\mathbf{r}-\mathbf{r}_{\mathbf{e}}
$$

and
$r_{e}$ is the Earth radius

$$
\begin{aligned}
& \frac{\partial f}{\partial t}=\frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial \phi}=0 \\
& \frac{\partial f}{\partial r}=1.0
\end{aligned}
$$

Specify--

$$
\begin{aligned}
& \text { the model check number for subroutine } R H O R I Z=\frac{1.0}{(W)} \\
& \text { the input data-format code number }= \\
& \text { an } 80 \text {-character description of the model including parameters: }
\end{aligned}
$$ (W275)

the receiver surface height, $z_{R}=$ $\qquad$ km (W20)

A receiver-surface model in which the receiver surface is a fixed height above the terrain surface.

$$
\begin{aligned}
& f(r, \theta, \phi)=g(r, \theta, \phi)+z_{R} \\
& \frac{\partial f}{\partial r}=\frac{\partial g}{\partial r}, \frac{\partial f}{\partial \theta}=\frac{\partial g}{\partial \phi}, \frac{\partial f}{\partial \phi}=\frac{\partial g}{\partial \phi},
\end{aligned}
$$

where $g(r, \theta, \phi)$ and its derivatives are specified in common block/GG/ by the terrain model.

## Specify--

the model check number for subroutine RTERR = $-3.0$ (W275)
the input data-format code number $=$ $\qquad$ (W276)
an 80 -character description of the model including parameters:
the height of the receiver surface above the terrain, $z_{R}=$ km (W20)

A receiver surface that is a vertical (conical) surface a constant distance from a given origin on the Earth's surface

$$
\begin{aligned}
& f(r, \theta, \phi)=\sin \lambda_{0} \cos \theta+\cos \lambda_{0} \sin \theta \cos \left(\phi-\phi_{0}\right)-\cos \alpha_{0} \\
& \frac{\partial f}{\partial t}=\frac{\partial f}{\partial r}=0 \\
& \frac{\partial f}{\partial \theta}=-\sin \lambda_{0} \sin \theta+\cos \lambda_{0} \cos \theta \cos \left(\phi-\phi_{0}\right) \\
& \frac{\partial f}{\partial \phi}=-\cos \lambda_{0} \sin \theta \sin \left(\phi-\phi_{0}\right)
\end{aligned}
$$

Specify--
the model check number for subroutine RVERT $=\frac{-0}{-20}$ (W275)
the input data-format code number $=$ (W276)
an 80 -character description of the model including parameters:
the distance of the surface from the origin,
$\alpha_{0}=$ rad, deg, km (278)
the latitude of the origin, $\lambda_{0}=\ldots$ rad, deg, km N (W279)
the longitude of the origin, $\phi_{\mathrm{O}}=\ldots$ rad, deg, km E (W280)

## APPENDIX C: CDC 250 PLOT PACKAGE AND DISSPLA INTERFACE

This appendix describes the plotting commands used by DDPLOT, our local microfilm plotting system, and also an interface called DDSPLA to the DISSPLA* plot package in common use. Figure C1 shows the steps necessary to obtain graphical output from HARPA, if you have DISSPLA. If you do not have DISSPLA and want graphical output on your own plotting system, you will have to insert the equivalent instructions used by your system into a skeleton plotting routine DDALT. This information was taken with permission from "User's Guide to Cathode-Ray Plotter Subroutines" by L. David Lewis, ESSA Technical Memorandum ERL TM-ORSS5, January 1970. The routines used in this version of HARPA assume DISSPLA version 9.0 and are listed in Appendix D.

The CDC-250 Microfilm Recorder, under control of the NOAA Boulder CDC-CYBER 750 computer, plots data on the face of a high-resolution cathode ray tube, which is photographed onto standard size, perforated, 35-mm film.

The plotting area, called a frame, is a square. Plotting positions are described in rectangular coordinates. Coordinate values are integers in the range 0 - 1023; $(0,0)$ is the "lower left-hand corner."

Plotting specifications are transmitted to the DDPLOT routines via the following COMMON.

COMMON/DD/IN, IOR, IT, IS, IC, ICC , IX, IY

The usage of each of the eight variables is listed below, followed by an explanation of the subroutine calls.

IN
Intensity. IN=0 specifies normal intensity. IN=1 specifies high intensity.

IOR Orientation IOR=0 specifies upright orientation. $I O R=1$ specifies rotated orientation ( $90^{\circ}$ counterclockwise).

[^12]Italics (Font).
IT=0 specifies non-italic (Roman) symbols.
IT=1 specifies italic symbols.
IS Symbol size.
IS=0 specifies miniature size.
IS=1 specifies small size.
IS=2 specifies medium size.
IS=3 specifies large size.
IC Symbol case.
IC=0 specifies uppercase.
IC=1 specifies lowercase.
ICC Character code, 0-63 (R1 format).
ICC and IC together specify the symbol plotted.
X-coordinate, 0-1023.
Y-coordinate, 0-1023.

CALL DDINIT (N,ID) is required to initialize the plotting process.

ID is a string of characters to identify the person getting the plot and giving the telephone extension and the place to deliver the microfilm plot.
$N$ is the number of characters in the string "ID."
CALL DDBP defines a vector origin in position IX, IY.
CALL DDVC plots a vector (straight line), with intensity IN, from the vector origin defined by the previous DDBP or DDVC call, to the vector end position at IX, IY. A single call to DDBP followed by successive calls to DDVC (with changing IX and IY) plots connected vectors.

CALL DDTAB initializes tabular plotting.
CALL DDTEXT (N,NT) plots a given array in a tabular mode after initiating tabular plotting by using DDTAB, as described above. NT is an array of length $N$, containing "text" for tabular plotting. Text consists of character codes, packed eight per word (A8 Format). Text characters are plotted as tabular symbols until the command character $\neq$ (octal code 14 , card code 4,8 , or the alphabetic shift counterpart of the $=$ on the keypunch) occurs. The command character is not plotted. DDTEXT interprets the next character as a command; after the command is processed, tabular plotting resumes until $\neq$ is again encountered. $\neq$ means end of text: DDTEXT returns to the calling routine.

CALL DDFR
causes a frame advance operation. Plotting on the current frame is completed, and the film advances to the next frame.

CALL DDEND empties the plot buffer and releases the plotting command file to the microfilm plot queue.

DISSPLA CALLS

HARPA calls the following DISSPLA routines directly, rather than through the DDPLOT package. Therefore, if you want to do plotting with a plotting package other than DISSPLA, you will have to convert the following DISSPLA calls to corresponding calls in your plotting package.

CALL DASH sets dashed-line mode. That is, all plotted curves will be dashed instead of solid.

CALL RESET('DASH') sets solid-line mode. That is, all plotted curves will be solid lines after this call.

HARPA calls a routine named SETANN. SETANN is an entry point in SUBROUTINE FULANN and also in SUBROUTINE SMPANN. When running HARPA, you must make a choice whether to load FULANN or SMPANN. If you do not have the DISSPLA plotting package, then load SMPANN because it makes no special characater-generating calls to DISSPLA routines. If you do have the DISSPLA plotting package, then load FULANN. SUBROUTINE FULANN calls the following DISSPLA subroutines directly. If you have the DISSPLA plotting package, then the manual will explain the meaning of these routines. If you do not have the DISSPLA plotting package, then load SMPANN, and ignore these routines.

HEIGHT

MX1ALF

MX2ALF

SCMPLX


Figure C1. An organization chart that shows how graphical output is produced by a series of programs, some of which are a part of HARPA, and others of which are either supplied along with HARPA or are commercial packages.

## APPENDIX D: FORTRAN SOURCE CODE LISTING

This appendix contains the FORTRAN source-code listing for HARPA, including all of its subroutines and atmospheric models. Their order is the same as the order of the programs in Files 3 through 7 of the distribution tape and the list in Section 7.1. Table D1 lists the routines in alphabetical order, the page where the source code can be found, and the approximate size of each module in bytes.

Where DATA statements are used to initialize variables contained in labeled-common blocks, the sequence number (col. 73-80) contains the code "BL." To adhere strictly to the FORTRAN 77 standard, these statements must be put into separate BLOCK DATA modules. Most FORTRAN environments permit our syntax, however.

[^13]Table Dl-Alphabetical list of source-code modules

Module Name	Source Bytes	Page	Module   Name	Source Bytes	Page
ALCOSH	384	295	NUMSTG	512	291
ANWNL	4736	321	OPNREP	896	294
ANWWL	5376	326	OVERRD	1024	294
ARCTIC	1792	316	PCROSS	768	257
ATMOSHD	8192	286	PEXP	3712	385
AWWNL	5120	323	PLOT	3200	302
AWWWL	5760	329	PLOTBL	128	317
BACKUP	3968	264	PLTANH	2816	309
CBLOB2	4480	354	PLTANOT	2432	311
CLEAR	256	250	PLTHLB	128	309
CONBLK	7424	273	PLTLB	1792	314
CSTANH	4992	349	PRINTR	14720	278
DASH	128	319	PUTDES	512	291
DDALT	6016	405	PUTKST	2176	293
DDBP	512	317	RAYPLT	8320	297
DDEND	256	319	RAYTRC	8576	229
DDFR	128	319	RCROSS	2688	257
DDINIT	256	317	READW	8960	243
DDSPIA	15488	399	READW1	6656	237
DDTAB	128	318	REFLECT	2944	266
DDTEXT	384	318	RENORM	512	278
DDVC	512	318	RERR	512	292
DFCNST	1536	234	RERROR	256	293
DFSYS	1152	233	RESET	128	319
DRAWTKS	1280	313	RHORIZ	3584	390
FIT	2432	268	RKAM	1408	260
FULANN	1792	397	RKAM1	3072	262
GAMRTDM	3968	347	RTERR	3584	391
GAUSEL	2688	295	RVERT	8832	394
GET	3456	271	SCMPLX	128	320
GET1	2944	269	SET2	128	278
GHORIZ	3328	373	SETXY	384	307
GLORENZ	4480	375	SFILI	512	292
GTANH	5376	378	SFILTR	128	295
GTUNIT	128	240	SMPANN	1536	396
HAMLTN	2944	258	SREADI	512	242
HEIGHT	128	320	STOPIT	256	293
ITEST	256	271	STRIM	512	292
LABPLT	6400	305	TBLOB2	4480	367
MCONST	3456	371	TIKIINE	640	311
MUARDC	4096	381	TIINEAR	3840	356
MXIALF	128	320	TRACE	9344	252
MX2ALF	128	320	TTABLE	6016	361
ND2B	384	250	TTANH5	5120	359
NPABSR	3200	384	UCON	2432	250
NPPRES	3072	388	ULOGZ2	4480	337
NPSPEED	3072	352	VVORTX3	4992	340
NPTEMP	3072	369	WCHANGE	512	277
NPTERR	384	381	WGAUSS 2	4480	343
NPWIND	3456	345	WLINEAR	4096	333
NTEMP	3328	365	WTIDE	4352	335


	RAY-TRACING CORE (Tape File 3)	
	PROGRAM RAYTRC	RAYTRC 2
C	MAIN PROGRAM FOR THE RAY TRACING PACKAGE.	RAYTRC 3
C	SETS THE INITIAL CONDITIONS FOR EACH RAY AND CALLS TRACE	RAYTRC 4
C		RAYTRC 5
C	COMMON DECK "RAYDEV" INSERTED HERE	CRAYDEV2
C	DEVICE ASSIGNED TO RAYTRC INPUT FILE	CRAYDEV4
	COMMON/RAYDEV/NRYIND, NDEVTMP, NFRMAT, NDEVGRP, NDEVBIN	CRAYDEV5
	LOGICAL WCHANGE, FIRST	RAYTRC 7
	REAL WS (400)	RAYTRC 8
C	COMMON DECK "FILEC" INSERTED HERE	CFILEC 2
	COMMON /FILEC/NPLTDP	CFILEC 4
C	COMMON DECK "CERR" INSERTED HERE	CERR 2
	COMMON/ERR/NERG,NERR, NERT, NERP	CERR 3
C	COMMON DECK "GG" INSERTED HERE	CGG 2
	REAL MODG	CGG 4
	COMMON/GG/MODG (4)	CGG 5
	COMMON/GG/G, PGR, PGRR, PGRTH , PGRPH	CGG 6
	COMMON/GG/PGTH, PGPH , PGTHTH, PGPHPH, PGTHPH, GSELECT, GTIME	CGG 7
C	COMMON DECK "HDR" INSERTED HERE	CHDR 2
	CHARACTER*10 INITID*80,DAT,TOD	CHDR 4
	COMMON/HDR/SEC	CHDR 5
	COMMON/HDRC/INITID, DAT, TOD	CHDR 6
C	COMMON DECK "CONST" INSERTED HERE	CCONST 2
	COMMON/PCONST/CREF, RGAS, GAMMA	CCONST 4
	COMMON/MCONST/PI, PIT2, PID , DEGS, RAD, ALN10	CCONST 5
C	COMMON DECK "FLAG" INSERTED HERE	CFLAG 2
	LOGICAL NEWWR,NEWWP,NEWTRC, PENET	CFLAG 4
	COMMON /FLG/ NTYP, NEWWR, NEWWP, NEWTRC, PENET, LINES, IHOP, HPUNCH	CFLAG 5
	COMMON/FLGP/NSET	CFLAG 6
c	COMMON DECK "RINPLEX" INSERTED HERE	CRINPLE2
	REAL KAY2,KAY2I	CRINPLE4
	COMPLEX PNP, POLAR, LPOLAR	CRINPLE5
	LOGICAL SPACE	CRINPLE6
	CHARACTER DISPM*6	CRINPLE7
	COMMON/RINPL/DISPM	CRINPLE8
	COMMON /RIN/ MODRIN (8),RAYNAME (2, 3), TYPE (3), SPACE	CRINPLE9
	COMMON/RIN/OMEGMIN, OMEGMAX, KAY2, KAY2I	CRINPLIO
	COMMON/RIN/PNP (10) , POLAR, LPOLAR, SGN	CRINPLIl
C	COMMON DECK "RK" INSERTED HERE	CRK 2
C	DEFINE SIZE REQUIRED FOR RAY STATE SAVE ARRAY	CRK 4
	PARAMETER (LRKAMS $=87+2 * 100$, NXRKMS $=12+$ LRKAMS , MXEQPT=21)	CRK 5
	PARAMETER (NRKSAV=NXRKMS+MXEQPT-1)	CRK 6
	COMMON /RK/ NEQS, STEP, MODE, EIMAX,EIMIN, E2MAX, E2MIN, FACT, RSTART	CRK 7
C	COMMON DECK "RKAM" INSERTED HERE	RKAMCOM2
	REAL KR, KTH, KPH	RKAMCOM4
	COMMON//R, TH, PH, KR , KTH, KPH , RKVARS (14) , TPULSE, CSTEP, DRDT (20)	RKAMCOM5
C	COMMON DECK "WWR" INSERTED HERE	CWWR 2
	PARAMETER (NWARSZ=1000)	CWW1 3
	COMMON/WW/ID (10) , MAXW, W (NWARSZ)	CWW1 4
	REAL MAXSTP, MAXERR, INTYP, LLAT, LLON	CWW2 2
	EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)), (TLAT,W(4)),	CWW2 3
	1 (TLON,W(5)), (OW, W (6)) , (FBEG,W(7)), (FEND, W (8)), (FSTEP,W(9)) ,	CWW2 4
	2 (AZl, W(10)), (AZBEG,W(11)), (AZEND,W(12)), (AZSTEP,W(13)),	CWW2 5
	3 (BETA,W(14)),(ELBEG,W(15)), (ELEND,W(16)), (ELSTEP,W(17)),	CWW2 6
	8 (RCVRH,W(20)),	CWW2 7

```
 4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))CWW2 8
 5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)), CWW2 9
 6 (HMIN,W(27)),(RGMAX,W(28)),
 8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 ll
 6 (STEPl,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 12
 7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75))
 9 ((BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 14
 l (LLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86))
 2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
 CHARACTER TMP80*80
 DATA FIRST/.TRUE./
 C INITIALIZE FILES , SET CONTANTS AND MAKE SYSTEM CALLS
 CALI STDINI
C INITIALIZE LINE COUNTS FOR CURRENT AND LAST HEADER
 LINES=0
 LHDRPG=0
 REWIND NRYIND
 C INITIALIZE RAYSET FILE
5 READ(NRYIND,'(A)',END=8) TMP80
 WRITE(9,'(A)') TMP80
 GO TO 5
8 WRITE(9,'(A)') '****SOFT EOF***++++++'
 REWIND NRYIND
C READ IN USERS NAME AND TELEPHONE EXTENSION FOR IDENTIFYING
C MICROFILM PLOTS.
C REPOSITION DINP AFTER IDENTIFIER
 READ(NRYIND,'(A)',END=6000) TMP80
C********* READ W ARRAY AND PRINT NON-ZERO VALUES
 IRUN=0
 NSET=0
C
10 CALL READW
 NSET=NSET+1
 ICODE=ND2B (INT (RAYFNC))
C PROCESS RAYPATH CALCULATIONS ONLY IF W(29) IS BEING USED
 IF((RAYFNC.NE.O.).AND.(AND(ICODE,4).EQ.0)) GO TO 10
C
C********* LET ROUTINES PRINTR AND RAYPLT KNOW THERE IS A NEW W ARRAY
 NEWWP=.TRUE.
 NEWWR=.TRUE.
 IRUN=IRUN+1
C
C SET BINARY RAY FILE UNIT TO ZERO IF NO OUTPUT WANTED
 NPLTDP=0
 IF(BINRAY.NE.0.0) NPLTDP=NDEVBIN
C
C******** INITIALIZE THE MODELS VIA 'DISPER'
 CALL IDISPER
RAYTRC19
C
C
C
C
C
RAYTRC20
 RAYTRC21
 RAYTRC22
 RAYTRC23
 RAYTRC24
 RAYTRC25
 RAYTRC26
 RAYTRC27
 RAYTRC28
 RAYTRC29
 RAYTRC30
 RAYTRC3l
 RAYTRC32
 RAYTRC33
 RAYTRC34
 RAYTRC344
 RAYTRC36
 RAYTRC37
 RAYTRC38
 RAYTRC39
 RAYTRC40
 RAYTRC41
 RAYTRC41
 RAYTRC43
 RAYTRC44
 RAYTRC45
 RAYTRC46
 RAYTRC47
 RAYTRC48
 RAYTRC49
 RAYTRC50
 RAYTRC51
 RAYTRC52
 RAYTRC53
RAYTRC54
 RAYTRC55
 RAYTRC56
 RAYTRC57
 RAYTRC58
 RAYTRC58
 RAYTRC59
 RAYTRC60
 RAYTRC61
 RAYTRC62
 RAYTRC62
RAYTRC64
```

```
C
 IF(FIRST.AND.PLT.NE.0.) CALL DDINIT(8,INITID)
 IF(PLT.NE.0.) FIRST=.FALSE.
C
C PREVENT RERUNNING SAME MODEL CASES
 IF(IRUN.EQ.I) GO TO 12
 IF(.NOT.WCHANGE(WS(1),W(1))) GO TO 10
 PRINT *,'PROCESSING FOR RUNSET #',NSET
C
12 CALL RMOVE (WS,W,400)
C
 OW=0.
 BETA=0.
 AZl=0.
 C
 CALL HEADERI
 C
 C********* PRINT OUT THE CONTENTS OF THE 'W' ARRAY
 C********* DETERMINE TRANSMITTER LOCATION IN COMPUTATIONAL COORDINATE
 C********* SYSTEM (GEOMAGNETIC COORDINATES IF DIPOLE FIELD IS USED)
 SP=SIN (PLAT)
 CP=SIN (PID2-PL_AT)
 SDPH=SIN (TLON-PLON)
 CDPH=SIN (PID2-(TLON-PLON))
 SL=SIN (TLAT)
 CL=SIN (PID2-TLAT)
 ALPHA=ATAN2(-SDPH*CP,-CDPH*CP*SL+SP*CL)
 THO=ACOS (CDPH*CP*CL+SP*SL)
 PHO=ATAN2 (SDPH*CL , CDPH*SP*CL-CP*SL)
C
 R=EARTHR
 TH=THO
 PH=PHO
 CALL TOPOG
C
C OBTAIN ABSOLUTE HEIGHT OF THE TRANSMITTER.
C IF IT WAS SPECIFIED AS RELATIVE TO THE TERRAIN, THEN REMOVE
C THE FLAG VALUE 10**40 WHICH WAS ADDED AT INPUT.
C
 TMP=XMTRH
 IF(XMTRH .EQ. 1.E-40) XMTRH=0.0
 IF(ABS (XMTRH) .GE. 1.E20) XMTRH=XMTRH*1.E-40
 IF(TMP.NE.XMTRH) XMTRH=XMTRH-G/PGR
C
C CHECK THAT TRANSMITTER IS ABOVE TERRAIN.
C
 IF(-G/PGR .LE. XMTRH) GO TO 655
C
 PRINT 640, IRUN
 WRITE (3,640) IRUN
640 FORMAT('0****** TRANSMITTER BELOW TERRAIN. RUN ',I3
 l '' TERMINATED.'/'SEE W-ARRAY PRINTOUT. INPUT CONTINUES.'//)
 CALL SETOVR
 CALL PRINTW
 GO TO 10
RAYTRC65
RAYTRC66
RAYTRC67
RAYTRC68
RAYTRC69
RAYTRC70
RAYTRC71
RAYTRC72
RAYTRC73
RAYTRC74
RAYTRC75
RAYTRC76
RAYTRC77
RAYTRC78
RAYTRC79
RAYTRC80
RAYTRC81
RAYTRC82
RAYTRC83
RAYTRC84
RAYTRC85
RAYTRC86
RAYTRC87
RAYTRC88
RAYTRC89
RAYTRC90
RAYTRC91
RAYTRC92
RAYTRC93
RAYTRC94
RAYTRC95
RAYTRC96
RAYTRC97
RAYTRC98
RAYTRC99
RAYTRI00
RAYTRIO1
RAYTRI02
RAYTR103
RAYTR104
RAYTRI05
RAYTRI06
RAYTR107
RAYTRI08
RAYTRI09
RAYTRIlO
RAYTR111
RAYTRIl2
RAYTRIl3
RAYTRIl4
RAYTR115
RAYTR116
RAYTRIl7
RAYTR118
RAYTR119
```

```
C
 655 CALL SETOVR
 CALL PRINTW
 CALL IPRINTR
C******** INITIALIZE PRINT CONTROL PARAMTERS
 LINSPP=PAGLN
 LNPHPG=LINSPP/2
 IF(LNPHPG.LT.40) LNPHPG=LINSPP
C
C********** LOOP ON FREQUENCY, AZIMUTH ANGLE, AND ELEVATION ANGLE
 NFREQ=1
 IF (FSTEP.NE.O.) NFREQ=(FEND-FBEG)/FSTEP+1.5
 NAZ=1
 IF (AZSTEP.NE.O.) NAZ=(AZEND-AZBEG)/AZSTEP+1.5
 NBETA=1
 IF (ELSTEP.NE.O.) NBETA=(ELEND-ELBEG)/ELSTEP+1.5
 DO 50 NF=1,NFREQ
 OW=FBEG+(NF-1)*FSTEP
 DO 45 J=1,NAZ
 AZl=AZBEG+(J-1)*AZSTEP
 AZA=AZl*DEGS
 GAMMAl=PI-AZl+ALPHA
 SGAMMA=SIN (GAMMAI)
 CGAMMA=SIN (PID2-GAMMAI)
 DO 40 I=1,NBETA
 BETA=ELBEG+(I-1)*ELSTEP
 EL=BETA*DEGS
 CBETA=SIN (PID2-BETA)
 R=EARTHR+XMTRH
 TH=THO
 PH=PHO
 KR=SIN (BETA)
 KTH=CBETA*CGAMMA
 KPH=CBETA*SGAMMA
 TPULSE=0.
 RSTART=1.
C********* THE FOLLOWING LINE NEEDED FOR RAY TRACING IN COMPLEX SPACE
 SGN=1.0
C********* CALL MODELS
 CALL DISPER
C
 LINPG=LINES-LHDRPG
 IF(I.EQ.1 .OR. LINPG.GE.IINSPP-20) THEN
C
C PUT OUT SUBHEADERS FROM MEDIA AND PRINTR ROUTINES
 CAIL HEADER2
 CALL PRNHDI(' ')
C COMPUTE LINE COUNT OF THIS HEADER
 LHDRPG=LINES/LINSPP*LINSPP
 ELSEIF(LINPG.GE.LNPHPG-10 .AND. LINPG.LE.LNPHPG) THEN
 PUT OUT PAGE FEED WITH SUBHEADER IF AT HALF PAGE
 CALL PRNHD2('1')
 ELSE
 PUT OUT SUBHEADER
 RAYTR120
 RAYTR121
 RAYTRl22
 RAYTR123
 RAYTR124
 RAYTR125
 RAYTR126
 RAYTR127
 RAYTR128
 RAYTR129
 RAYTR130
 RAYTR131
 RAYTR132
 RAYTR133
 RAYTR134
 RAYTR135
 RAYTRI36
 RAYTRI37
 RAYTR138
 RAYTR139
 RAYTR140
 RAYTR141
 RAYTR142
 RAYTR143
 RAYTR144
 RAYTR145
 RAYTR146
 RAYTR147
 RAYTR148
 RAYTR149
 RAYTR150
 RAYTR151
 RAYTR152
 RAYTR153
 RAYTR154
 RAYTR155
 RAYTR155
 RAYTR156
 RAYTR157
 RAYTR158
 RAYTR159
 RAYTRI60
 RAYTR161
 RAYTRI62
 RAYTR163
 RAYTR164
 RAYTR165
 RAYTR166
 RAYTR167
 RAYTR168
 RAYTR169
 RAYTR170
 RAYTR171
 RAYTR172
 RAYTR173
RAYTR174
```

```
 CALL PRNHD2(' ')
 ENDIF
C
 IF (KAY2.GT.O.) GO TO 30
 WRITE (3,2900) OMEGMIN,OMEGMAX
 RAYTR175
 RAYTR176
 2900 FORMAT (58HOTRANSMITTER IN EVANESCENT REGION, TRANSMISSION IMPOSSIRAYTRI8O
 IBLE/2OHOMINIMUM FREQUENCY =,El7.10,20H MAXIMUM FREQUENCY =,EI7.10)RAYTRI81
 GO TO 44
30 CALL RENORM(KR,KAY2,3)
 CALL CLEAR(RKVARS,NEQS-6)
 CALL TOPOG
 IF (NERG.GT.0) RKVARS (NERG)=G
 IF (NERR.GT.0) RKVARS (NERR) =PGR
 IF (NERT.GT.0) RKVARS (NERT)=PGTH
 IF(NERP.GT.0) RKVARS (NERP) =PGPH
C
C CALCULATE ONE RAY PATH
 CALL TRACE
 OSEC=SEC
 CALL SYSSEC(SEC)
 DIFF=SEC-OSEC
C
C ADD TO LINES COUNT FOR ELAPSED TIME REPORT
 LINES=LINES+2
 WRITE(3,3500) DIFF
C
C
 IF (PENET.AND.ONLY.NE.O..AND.IHOP.EQ.1) GO TO }4
 40 CONTINUE
44 IF(PLT.GT.O.AND.(NAZ.IE.I.OR.NBETA.GT.I)) CALL ENDPLT
 45 CONTINUE
 IF (PLT.GT. O.AND.NAZ.GT.I.AND.NBETA.LE.I)CALL ENDPLT
IF(PENET.AND.ONLY.NE.O..AND.IHOP.EQ.I.AND,NLINENDPLT RAYTR206
 l GO TO 55
 50 CONTINUE
 55 IF (RAYSET.NE.O.) WRITE (9,5000)
5000 FORMAT (78X,1H-)
 GO TO 10
6000 llol}\begin{array}{l}{\mathrm{ PRINT *,'DINP EMPTY OR NOT FOUND'}}\\{\mathrm{ STOP }}
6000 PRINT *,'DINP EMPTY OR NOT FOUND'
 END
 RAYTR177
 RAYTR178
 RAYTR179
 RAYTR182
RAYTR182
 RAYTR184
 RAYTR185
 RAYTR186
 RAYTR187
RAYTR188
RAYTR189
RAYTR190
 RAYTR191
 RIR192
 RAYTR193
RAYTR194
RAYTR195
RAYTR196
RAYTR197
RAYTR197
RAYTR199
RAYTR200
RAYTR201
RAYTR202
RAYTR203
RAYTR204
 RAYTR207
 RAYTR208
 55 IF (RAYSET.NE.O.) WRITE (9,5000) RAYTR209
 RAYTR210
RAYTR211
RAYTR212
RAYTR213
RAYTR214
RAYTR215
```



MOVE 'N' COMPONENTS OF ARRAY 'Y' TO ARRAY 'X'.	DFSYS 11
THIS LOGIC WILL HANDLE OVERLAP CASES ONLY FOR $\mathrm{X}(\mathrm{M})=\mathrm{X}(\mathrm{M}+\mathrm{N} 1)$	DFSYS 12
WITH Nl>0, M=1,N.	DFSYS 13
REAL X(N), Y (N)	DFSYS 14
	DFSYS 15
IF (N.LE.0) RETURN	DFSYS 16
USE CYBER BUILT-IN ROUTINE	DFSYS 17
CALL MOVLEV (Y,X,N)	DFSYS 18
	DFSYS 19
THE EQUIVALENT FORTRAN CODING FOR THIS ROUTINE ARE THE FOLLOWING	DFSYS 20
TWO LINES.	DFSYS 21
DO $10 \mathrm{I}=1, \mathrm{~N}$	DFSYS 22
$\mathrm{X}(\mathrm{I})=\mathrm{Y}(\mathrm{I})$	DFSYS 23
	DFSYS 24
RETURN	DFSYS 25
ENTRY SYSSEC(SECS)	DFSYS 26
	DFSYS 27
OBTAIN CURENT TIME OF DAY IN SECONDS FROM SYSTEM ROUTINE	DFSYS 28
SECS=0	DFSYS 29
SYSTEM CALL NEEDED FOR THE CYBER NOS OP SYS	DFSYS 30
CALL SECOND (SECS)	DFSYS 31
SYSTEM CALL NEEDED FOR CRAY COMPUTER UNDER CTSS	DFSYS 32
CALL TIMEUSED (ICPU,IO,ISYS,MEM)	DFSYS 33
SECS=ICPU/1.E6	DFSYS 34
RETURN	DFSYS 35
	DFSYS 36
ENTRY SYSTIM (TIM)	DFSYS 37
	DFSYS 38
OBTAIN CURENT TIME OF DAY AS A CHARACTER STRING FROM SYSTEM ROUTI	DFSYS 39
TIM $=$ 'TIME'	DFSYS 40
SYSTEM CALL NEEDED FOR THE CYBER NOS OP SYS	DFSYS 41
CALL TIME (TIM)	DFSYS 42
SYSTEM CALL NEEDED FOR THE CRAY CTSS OP SYS	DFSYS 43
CALI TIMEDATE (TIM, DATX,MACH)	DFSYS 44
RETURN	DFSYS 45
	DFSYS 46
ENTRY SYSDAT (DAT)	DFSYS 47
	DFSYS 48
OBTAIN CURENT DATE AS A CHARACTER STRING FROM SYSTEM ROUTINE	DFSYS 49
DAT= 'DATE'	DFSYS 50
SYSTEM CALL NEEDED FOR THE CYBER NOS OP SYS	DFSYS 51
CALL DATE (DAT)	DFSYS 52
SYSTEM CALL NEEDED FOR THE CRAY CTSS OP SYS	DFSYS 53
CALI TIMEDATE (TIMX, DAT, MACH)	DFSYS 54
RETURN	DFSYS 55
ENTRY MORTEM	DFSYS 56
STOP 'POST MORTEM'	DFSYS 57
END	DFSYS 58




## c

            SUBROUTINE READWI (AB, NWOK, MSET, MX, NTBL, ITBL, FRMTBL, GP)
    HANDLES INPUT OF TABULAR DATA REQUIRED BY SOME MODELS.

READWI 2
HANDLES INPUT OF TABULAR DATA REQUIRED BY SOME MODELS.
READW1 3
COMMON DECK "RAYDEV" INSERTED HERE
CRAYDEV2
DEVICE ASSIGNED TO RAYTRC INPUT FILE
COMMON/RAYDEV/NRYIND, NDEVTMP, NFRMAT, NDEVGRP, NDEVBIN
COMMON DECK "CUCON" INSERTED HERE
COMMON/UCONV/CNVV (4,4)
CRAYDEV4

CHARACTER PCV*3,CNVC*2
COMMON/UCONC/PCV (4) , CNVC $(4,4)$
COMMON DECK "CONST" INSERTED HERE
COMMON/PCONST/CREF, RGAS, GAMMA
COMMON/MCONST/PI,PIT2, PID2, DEGS,RAD, ALN10
COMMON DECK "WWR" INSERTED HERE
PARAMETER (NWARSZ=1000)
COMMON/WW/ID (10) MAXW W (NWARSZ) CWW1 3
REAL MAXSTP,MAXERR, INTYP,LLAT,LLON CWW2 2
EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)),(XMTRH,W(3)),(TLAT,W(4)), CWW2 3
1 (TLON,W(5)), (OW,W(6)), (FBEG,W(7)), (FEND,W(8)),(FSTEP,W(9)), CWW2 4
2 (AZ1,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)), CWW2 5

3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), CWW2 6
8 (RCVRH,W(20)),
(ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))
, ( $\operatorname{HMAX}, W(26)),($ RAYFNC,W(29)), (EXTINC,W(33)), 8
6 (HMIN,W(27)), (RGMAX,W(28)), CWW2 10

```
8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 ll
```

6 (STEPI,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 12
7 (SKIP,W(71)),(RAYSET,W(72)), (PRTSRP,W(74)),(HITLET,W(75)), CWW2 13

$\begin{array}{llll}9 \\ 1 & \text { (LLATM,W(83)), (LLON,W(84)),(RLAT,W(85))),(RLON,W(86)) } & \text { CWW2 } & 14 \\ 2\end{array}$
2, (TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))$\quad$ CWW2 16

LOGICAL NWOK,AB
CHARACTER LINE*80, ALPHA*3, FBUF*3
PARAMETER (NVAR=6, ALPHA=' A', NACDE=-1,NFIELD=13)
INTEGER IPV (NVAR),NTBL(10), ITBL(10), FRMTBL (10)
CHARACTER*8 PU (NVAR)
REAL GP(*), V(NVAR), CONV (NVAR)
THE DATA STRUCTURE EXPECTED BY THIS PROGRAM FOR A DATA BLOCK IS SPECIFIED FOR A GIVEN MODEL BY THE THREE ARRAYS NTBL, ITBL, FRMTBL. THE TYPE OF DATA EXPECTED FOR A GIVEN FORMAT GROUP IS TAKEN FROM ARRAY FRMTBL. IT MUST HAVE AN ENTRY FOR A GIVEN TYPE OF FORMAT WHICH IS EITHER ZERO, IF THAT FORMAT IS NOT ALLOWED OR AN ENTRY WHOSE VALUE IS EQUAL TO THAT FORMAT TYPE. CURRENTLY ONLY TWO FORMAT TYPES ARE ALLOWED, 1 FOR ALPHA AND 2 FOR NUMERIC. TO ALLOW MORE FLEXIBLITY IN THE INPUT FILE THE NUMERIC FORMAT TYPE IN TURN ALLOWS FOR 3 DIFFERENT DATA FORMATS, SEE BELOW.
OFFSETS INTO THE GENERAL ARRAY 'GP' FOR EACH FORMAT ARE GIVEN IN THE ARRAY 'NTBL'. THE SPACING BETWEEN DATA VALUES IN EACH READWl26 READ IS GIVEN IN ARRAY 'ITBL'. THIS SCHEME DOES NOT ALLOW FOR X, Y READWI28 , Z CYCLES BUT RATHER SEPARATE ARRAYS OF X VALUES, THEN Y VALUES, READW129

C	AND THEN Z VALUES (ETC. UP TO 'NVAR' VARIABLES).	READW130
C		READW131
C	NWOK=.TRUE.	READW132
C	INITIALIZE ANY	READW133
	IF (FRMTBL (1).EQ.1) CALL SET2 (GP (NTBL (1)),1H,	READW134
C		READW135
C	BEGIN MULTI-FORMAT LOOP	READW137
5	READ (NRYIND, '(A, A)', END=200) FBUF, LINE	READW138
	IF (NDEVTMP.GT. 0 ) WRITE (NDEVTMP, '(A,A) ') FBUF, LINE	READW139
	IF (FBUF.EQ.ALPHA) THEN	READW140
	NFRM=NACDE	READW141
	ELSE	READW142
	READ (FBUF,10) NFRM	READW143
	ENDIF	
10	FORMAT (BZ, I3, A)   IF (NFRM .EQ. O) RETURN	READW145
		READW146
C		READW147
$\stackrel{\square}{-}$	FORMAT \#1 IS ASSIGNED TO ALPHANUMERIC INPUT AND LARGER NUMBERS FOR NUMERIC INPUT.	READW148
C		READW149
C		READW150
C	CHECK NOW FOR NUMERICAL FORMATS.	
C	THESE ARE PROVIDED FOR EASE OF INPUT OF TABULATED DATA	READW15
C	AND ARE PARTLY 'TRANSPARENT' TO THE MODEL INVOLVED. I.E.	READW153
C	THE USER HAS THE OPTION OF SPECIFING THE NUMBER OF DATA COLUMNS.	READW154
C	INPUT FORMAT NUMBER SPECIFIES THE NUMBER OF COLUMNS OF INPUT DATA	READW155
C	I.E. FOR VALUE 1 A SINGLE DATA COLUMN IS EXPECTED, FOR A VALUE	READW156
C	2 TWO DATA COLUMNS ARE EXPECTED, ETC.	READW157
C		READW158
C	DETERMINE FORMAT NUMBER	READW159
	IF (NFRM.EQ.NACDE) THEN	READW160
	ALPHANUMERIC FORMATS MUST BE FIRST IN ITST	READW161
C	ALPHANUMERIC FORMATS MUST BE FIRST IN LIST	READW162
C	SINCE NO OFFSET SPECIFIER IS ALLOWED IN A FULL ALPHA LINE	READW163
	ELSE (FRMTBL(1).EQ.l) GO TO 100	READW164
	READ (LINE, (T2)') IT	READW165
	IT=MAXO (IT, 2) ${ }^{\text {R }}$ ) IT	READW166
	IT $=$ MAX0 (IT, 2 )	READW167
	ENDIF	READW168
C		READW169
15	AB=.TRUE.	READW170
	PRINT 20, MSET, NFRM, MX	READW171
20	FORMAT(' FOR SET',I5,' FORMAT NUMBER', I5,' EXCEEDS LIMIT OF', I5)	READW172
C	ERROR IN INPUT DATA, STOP HERE ,	READW173
	STOP	READW174
C		READW175
C	THE 'NTBL' TABLE PROVIDES A LIST OF OFFSETS TO VARIABLE GROUPS IN	READW176
C	MODEL ARRAYS, 'ITBL' GIVES ELEMENT SEPARATION TO ALIOW FOR 2- IN	READW177
C	DIMENSIONAL ARRAYS AND 'FRMTBL' SPECIFIES THE INPUT FORMAT.	READW179
C		READW180
100	N1=NTBL (IT)	READW181
	N3=ITBL (IT)	READW182
	$\mathrm{N} 2=\mathrm{NTBL}(I T+1)-\mathrm{N} 3$	READW183
C		READW184

```
 IF(NFRM.NE.NACDE) GO TO 110 READW185
C
 READ(LINE,1010)((GP(I+J-1),I=N1,N2,N3),J=1,N3)
1010 FORMAT(10A8)
 GO TO 5
C
110 IF(NFRM.LT.1 .OR. NFRM.GT.NVAR) GO TO 200
C HANDLE NUMERIC FORMATS
C NI IS STARTING ELEMENT WHICH WILL BE AFTER THE DATA COUNT
C VALUE(NEED NELS*N3+1 TOTAL ELEMENTS)
 Nl=Nl+l
 N=0
C
C # ELEMENTS IS EQUAL TO FORMAT NUMBER
 NELS=NFRM
C READ UNITS CONVERSION SPECIFICATION LINE
 READ(IINE, 1018) (PU(I),I=1,3)
 IF(PU(2).NE.' ') READ(LINE,2024) DELIM
 IF(PU(2).EQ.' ') READ(LINE,1020) DELIM,(PU(I),I=1,NELS)
C
C ALLOW FOR BLANK CONVERSION LINE PRODUCED BY EIGENRAY ROUTINE
 IF(DELIM.EQ.O) READ(LINE,2024) DELIM
C
C READ NEXT LINE AND EXTRACT UNIT CONVERSION SPECS IF PRESENT
C IN FLOATING FORMAT
 READ(NRYIND,'(A)') LINE
 CALL GTUNIT(LINE,PU,NFIELD,NELS, NCARY)
C CARRY COUNT IS ZERO IF LINE CONTAINED UNITS SPECIFIERS
 IF(NCARY.EQ.O.AND.NDEVTMP.GT.0) WRITE(NDEVTMP,'(A)') LINE
C
1018 FORMAT (10(A,5X))
1020 FORMAT(BZ,3X,G10.3,8X,10A)
2024 FORMAT(T43,G10.3)
1025 FORMAT(BZ,10G13.6)
C
C LOOK UP CONVERSION CONSTANTS
 DO 2030 I=1,NELS
2030 CALL UCON(IPV (I),PU(I),CONV (I))
C DELIMITOR TESTING REQUIRES THE INNER LOOP BE EXECUTED
C AT LEAST ONCE
 NX=MAXO (1,N3)
 N2=MAXO(N2,N1)
C BEGIN SINGLE DATA FORMAT LOOP
 DO 150 J=0,10000
 IF(NELS.GT.1) THEN
 IF(NCARY.EQ.O) READ(NRYIND,'(A)') LINE
 NCARY=0
 IF(NDEVTMP.GT.0) WRITE(NDEVTMP,'(A)') LINE
 READ(LINE, 1025) (V(I),I=1,NELS)
 ENDIF
 K=0
 DO }145\textrm{I}=\textrm{Nl}+\textrm{J},\textrm{N}2+J,N
 K=K+1
```

READW185
READW186
READW187
READW188
READW189
READW190
READW191
READW192
READW193
READW194
READW195
READW196
READW197
READW198
READW199
READW100
READWl01
READW102
READW103
READW104
READW105
READW 106
READW107
READW108
READW109
READW110
READWIl1
READW112
READW113
READW114
READW115
READW116
READW117
READW118
READW119
READW120
READW121
READW122
READW123
READW124
READW125
READW126
READW127
READW128
READW129
READW130
READW131
READW132
READW133
READW134
READW135
READW136
READW137
READW138
READW139

```
 IF(NELS.EQ.1) THEN
 IF(NCARY.EQ.0) READ(NRYIND,'(A)',END=10000) LINE
 NCARY=0
IF(NDEVTMP.GT.0) WRITE(NDEVTMP,'(A)') LINE READW143
 FOR SINGLE COLUMN CASE READ NOW READW144
 READ(LINE,1020) V(K) READW145
 ENDIF
 IF(V(K) .EQ. DELIM) GO TO }16
 APPLY ANY SCALING CONVERSIONS
 V(K)=V (K)*CONV (K)
 IF(J.LT.N3) GP(I)=V(K)
 N=N+1
 CONTINUE
 C
 10000 IF(V(1).NE.DELIM) CALL RERROR('READWI','NO DELIM',FLOAT(MSET))
C
C CONTINUE MULTI-FORMAT LOOP
 GO TO 5
C
200
C
145
 SAVE NUMBER OF VALUES AND ELEMENTS (AS FRACTIONAL PART)
 IF(N1.GT.1) GP(N1-1)=N+NELS/10.
END
READW140 READW141 READW142 READW143
READW144
READW145
READW146
READW147
READW148
READW149
READW150
READW151
READW152
READW153
READW154
READW155
READW156
READW157
READW158
READW159
READW160
READW161
READW162
READW163
READW164
READW165
\begin{tabular}{|c|c|}
\hline SUBROUTINE GTUNIT (LINE, PU, NFIELD, NVAR, LN) & READW166 \\
\hline GTUNIT IS USED TO EXTRACT UNIT CONVERSION SPECIFIERS FROM TABULAR & READW167 \\
\hline DATA INPUT. & READW168 \\
\hline CONVERSION SPECIFICATIONS ARE TAKEN FROM 'LINE' INPUT STRING. & READW169 \\
\hline A FLOATING FORMAT FALLING WITHIN SUCCESSIVE FIELDS OF & READW170 \\
\hline LENGTH 'NFIELD' IS PROVIDED FOR. & READW171 \\
\hline OUTPUT IS TO UNIT SPECIFIER ARRAY 'PU' FOR A MAXIMUM OF 'NVAR' & READW172 \\
\hline FIELDS. FOR A SUCCESS/FAIL RETURN VALUE, 'LN' GIVES THE NUMBER & READW173 \\
\hline OF NON-BLANK CHARACTERS USEFUL FOR UNIT DECODING, ZERO IMPLIES & READW174 \\
\hline NO USEFUL UNIT INFORMATION WAS FOUND. & READW175 \\
\hline & READW176 \\
\hline PARAMETER (MAXLN=130)
CHARACTER* (*) LINE, PU (NVAR) , TMP* (MAXLN) & READW177 \\
\hline CHARACTER*(*) LINE, PU (NVAR) , TMP* (MAXLN) ,TMPl* (MAXLN)
INTEGER STRIM & READW178 \\
\hline LNTEGER STRIM & READW179 \\
\hline LN=STRIM (LINE) & READW180 \\
\hline IF(LN.LT.1) THEN & READW182 \\
\hline DO \(5 \mathrm{I}=1\), NVAR & READW183 \\
\hline \(\mathrm{PU}(\mathrm{I})=1\) & READW184 \\
\hline RETURN & READW185 \\
\hline ENDIF & READW186 \\
\hline TMP=1 & READW187 \\
\hline CALL SFILTR(LINE, TMP,' \(0123456789+-\mathrm{E}^{\prime}\)) & READW188 \\
\hline
\end{tabular}
```

```
 IF(STRIM(TMP).IT.I) RETURN READWI90
C SIGNIFY WE CONSUMED THIS LINE
 LN=0
C
 TMPI=LINE
C PLACE INTER-SPECIFIER DELIMITORS
 DO }10\mathrm{ I=NFIELD,NFIELD*NVAR,NFIELD
 IF(TMPI(I:I).NE.' ') THEN
 IF(TMPl(I+l:I+l).NE.' ') THEN
 READW191
 READW192
 READW193
 READW194
 READW195
 READW196
 READW197
 READW198
 IF NO ROOM FOR A BLANK, ITS AN ERROR
 CALL RERROR('GTUNIT','FORMAT ERI',FLOAT(I))
 ELSE
 TMPI(I+1:I+1)='#'
 ENDIF
 ELSE
 TMP1(I:I)='#'
 ENDIF
 CONTINUE
C NOW SQUEEZE OUT THE BLANKS
 CALI SFILTR(TMPI,TMP,' ')
C HOPEFULLY SOMETHING LEFT
C
 NL=STRIM(TMP)
 ILIN=1
 DO 20 I=1,NVAR
 CHECK FOR EMPTY CONVERSIONS
 IF(TMP(ILIN:ILIN).EQ.'#') THEN
 ILIN=ILIN+1
 PU(I)=1 !
 GO TO 20
 ENDIF
C GET NEXT UNIT TYPE
 PU(I) (1:2)=TMP(ILIN:ILIN+1)
C GET NEXT PHYSICAL UNIT(BLANKS HAVE BEEN REMOVED)
C SHORT PHRASE IF A BLANK WAS REMOVED
 IF(TMP(ILIN+3:ILIN+3).NE.'#') THEN
 IF(TMP(ILIN+4:ILIN+4).NE.'#') THEN
C IF INCORRECT GROUPING OF LETTERS, ITS AN ERROR
 CALL RERROR('GTUNIT','FORMAT ER2',FLOAT(IIIN))
 ELSE
 ADD TWO LETTER UNIT
 PU(I) (3:5)=' 1//TMP(ILIN+2:ILIN+3)
 ILIN=ILIN+5
 ENDIF
 ELSE
 ADD ONE LETTER UNIT
 PU(I) (3:5)=' 1//TMP(ILIN+2:ILIN+2)
 ILIN=ILIN+4
 ENDIF
 CONTINUE
C
C SHOULD HAVE USED UP ALL THE TEXT BY NOW
IF(ILIN.LE.NL) CALL RERROR('GTUNIT','FORMAT ER3',FLOAT(ILIN))
READW199
READW200
READW201
READW2O2
READW203
READW204
READW205
READW206
READW207
READW208
READW209
READW210
READW211
READW212
READW213
READW214
READW215
READW216
READW217
READW218
READW219
READW220
READW221
READW222
READW223
READW223
READW225
READW226
READW227
READW228
READW229
READW230
READW231
READW232
READW233
READW234
READW235
READW236
READW237
READW238
READW239
READW240
READW241
READW242
END
READW243
READW244
```

```
 SUBROUTINE SREADI (AB,NWOK,NW)
 THIS IS THE FALLTHROUGH FEATURE FOR READW WHEN ENCOUNTERING
A NON STANDARD TABEIED COMMON BIOCK SREADI NIIN
 DATA TO THE DEFAULT GP ARRAY PGP AND INCLUDE INDEX OFFSET
 VALUES TO A LOOKUP ARRAY 'LIST'.
 COMMON DECK "CPROCFL" INSERTED HERE
 INTEGER PMX,PNTBL,PITBL,PFRMTBL,IDSP(10)
C PARAMETER DECK "PGROUPS"
 PARAMETER (NCHPGl=11,NWPV=250,NSPGP=NCHPGl+2*NWPV+1)
 PARAMETER (MNGRP=9,MXGRP=69,MXLIST=MXGRP-MNGRP+2)
 COMMON/PROCFL/LIST(MXLIST)
 COMMON/PROCFL/PMX, PNTBL(10),PITBL(10),PFRMTBL(10),PGP(NSPGP)
 EQUIVALENCE (PGP,IDSP)
 CHARACTER ITOC*7
 DATA LIST/MXLIST*0/
 DATA PMX/2/
 DATA PNTBL/1,NCHPG1,NSPGP,7*0/
 DATA PITBL/l,NWPV,8*0/
 DATA PFRMTBL/1,2,8*0/
 NWA=IABS (NW) - (MNGRP-2)
 IF(NWA.LT. 2 .OR. NWA.GT.MXLIST) CALL STOPIT
 1 ('SREAD1 NW='//ITOC(NW) //',LTST(I)=1//TTOC(ITST(1))
C
C
C
C
C
C
C
```

CALIL READWI (AB,NWOK,NW, PMX, PNTBL, PITBL, PFRMTBL, PGP)
UPDATE THE LIST, LIST (1)=MAXIMUM USED ELEMENT $\operatorname{LIST}(1)=\mathrm{MAXO}(\operatorname{LIST}(1)$, NWA)
LIST (NWA) $=$ PNTBL (1)
GET NEXT NUMERICAL INDEX FROM THE POINTER ARRAY NLN=PNTBL (2)

NUMBER OF VALUES IS INTEGRAL PART OF FIRST ELEMENT NPTS=PGP (NLN)
NUMBER OF ROWS IS KEPT AS FRACTIONAL PART
NELS $=($ PGP $(N L N)-N P T S) * 10 .+.5$
N2 $=$ NPTS/NELS
NMX=PITBL (2)
MAKE ADJUSTMENTS TO LENGTHS AND OFFSETS
PITBL (2) =NMX-N2-(NCHPG1-1)
NUP $=$ NPTS + NCHPGI
$\operatorname{PNTBL}(1)=\operatorname{PNTBL}(1)+$ NUP
PNTBL (2) $=$ PNTBL (2) + NUP
$\mathrm{NLN}=\mathrm{NLN}+1$
LOOP TO MOVE NELS-1 ROWS OF PGP (NMX,NELS) TO PGP (N2,NELS)
THUS MAKING PGP A CONTIGUOUS ARRAY

SREADIIO
SREADIII
SREADIl2
SREAD113
CPROCFL2
CPROCFL4
PGROUPS2
PGROUPS 3
PGROUPS 4
CPROCFL6
CPROCFL7
CPROCFL8
SREAD115
SREADIl6
SREAD117
SADIBL 2
SADIBL 3
SADIBL 4
SADIBL 5
SADIBL 6
SREAD120
SREAD121
SREAD122
SREAD123
SREAD124
SREAD125
SREAD126
SREAD127
SREAD128
SREAD129
SREAD130
SREAD131
SREAD132
SREAD133
SREAD134
SREAD135
SREAD136
SREAD137
SREAD138
SREAD139
SREAD140
SREAD141
SREAD142
SREAD143
SREAD144
SREAD145
SREAD146
SREAD147
SREAD148

```
 NTO=NLN+N2
 NFRM=NLN+NMX
 DO 100 I=2,NELS
 IF(NTO.GT.O .AND. NFRM+N2-1.LE.NSPGP)
 1 CALL RMOVE (PGP(NTO),PGP(NFRM),N2)
 NTO}=\textrm{NTO}+\textrm{N}
NFRM \(=\) NFRM + NMX
END
NFRM=NLN+NMX
1 CALL RMOVE (PGP (NTO), PGP (NFRM),N2)
END
```

SREAD149
SREADI50
SREAD151
SREADI52
SREAD153
SREAD154
SREAD155
SREAD156


```
C COMMON DECK "B5" INSERTED HERE CB5 2
 INTEGER TMX,TNTBL,TITBL,TFRMTBL,IDST(10) CB5 4
 COMMON/B5/TMX,TNTBL(10),TITBL(10),TFRMTBL(10),TGP(262) CB5 5
 EQUIVALENCE (TGP,IDST),(ANT,TGP(1l)) CB5 6
 COMMON DECK "B6" INSERTED HERE CB6
 INTEGER DTMX,DTNTBL,DTITBL,DTFRMTB,IDSDT(10) CB6
 COMMON/B6/DTMX,DTNTBL(10),DTITBL(10),DTFRMTB(10),DTGP(10) CB6
 EQUIVALENCE (DTGP,IDSDT)
 COMMON DECK "B7" INSERTED HERE
 INTEGER MMX,MNTBL,MITBL,MFRMTBL,IDSM(10)
 REAL MGP
 COMMON/B7/MMX,MNTBL (10) ,MITBL(10),MFRMTBL(10),MGP (10)
 EQUIVALENCE (MGP,IDSM)
 COMMON DECK "B9" INSERTED HERE
 INTEGER GMX,GNTBL,GITBL,GFRMTBL,IDSG(10)
 COMMON/B9/GMX,GNTBL(10),GITBL(10) ,GFRMTBL(10) ,GGP(113)
 EQUIVALENCE (GGP,IDSG),(ANG,GGP(11))
 COMMON DECK "BIO" INSERTED HERE
 INTEGER DGMX,DGNTBL,DGITBL,DGFRMTB,IDSDG(10)
 COMMON/B10/DGMX,DGNTBL(10),DGITBL(10),DGFRMTB(10),DGGP(10) CB9 5
 EQUIVALENCE (DGGP,IDSDG)
 COMMON DECK "B8" INSERTED HERE
 INTEGER RMX,RNTBL,RITBL,RFRMTBL,IDSR(10)
 COMMON/B8/RMX,RNTBL(10),RITBL(10) ,RFRMTBL(10),RGP(10)
 EQUIVALENCE (RGP,IDSR)
C
C COMMON DECK "CBI7" INSERTED HERE
 INTEGER VMX,VNTBL,VITBL,VFRMTBL,IDSV(10)
 COMMON/B17/VMX,VNTBL(10),VITBL(10),VFRMTBL(10),VGP(53)
 EQUIVALENCE (VGP,IDSV), (ANV,VGP(11))
 COMMON DECK "CBI8" INSERTED HERE
 INTEGER DVMX,DVNTBL,DVITBL,DVFRMTB,IDSDV (10)
 COMMON/B18/DVMX,DVNTBL (10),DVITBL (10),DVFRMTB (10),DVGP (11)
 EOUIVALENCE (DVGP,IDSDV) (ANDV DVGP(11)) , % %
 COMMON DECK "CBI9" INSERTED HERE
 INTEGER PRMX,PRNTBL, PRITBL,PRFRMTB,IDSPR(10)
 COMMON/B19/PRMX PRNTBI (10) PRTTBI (10) PRFPMTB (10), PRGP(11) CB19 4
 EQUIVALENCE (PRGP,IDSPR),(ANP,PRGP(11))
 COMMON DECK "CB2O" INSERTED HERE
 INTEGER DPMX,DPNTBL,DPITBL,DPFRMTB,IDSDP(10)
 COMMON/B20/DPMX,DPNTBL(10),DPITBL(10),DPFRMTB(10),DPGP(11) CB20 5
 EQUIVALENCE (DPGP,IDSDP),(ANDP,DPGP(11)) CB20 6
 PARAMETER (MXCMTS=83,BIGVAL=1.E30)
 CHARACTER*38 WFRMT,WNOTES(2)
 CHARACTER*80 LINEX,NUMSTG
 CHARACTER*100 STMP1,STMP2
 INTEGER STRIM, WCOMTS (MXCMTS)
 CHARACTER*1 DEG, KM,NM, FEET, CYCLE , PER,MSKMS
C COMMON DECK "RAYDEV" INSERTED HERE
 COMMON/RAYDEV/NRYIND,NDEVTMP,NFRMAT,NDEVGRP,NDEVBIN
 LOGICAL NWOK,AB,UCON2
```

INAEGER MK,

```5
```

EQUIVALENCE (TGP,IDST),(ANT,TGP(11)) ..... 6
C COMMON DECK "B6" INSERTED HERE ..... 2
4

```COMMON/B6/DTMX, DTNTBL (10) , DTITBL(10), DTFRMTB(10), DTGP(10)
```

EQUIVALENCE (DTGP,IDSDT)
CB6
CB6 ..... 6

```5C COMMON DECK "B7" INSERTED HERE
```

CB7
(10) CB7 ..... 2

```REAL MGP
```

```COMMON/B7/MMX,MNTBL (10) ,MITBL(10),MFRMTBL(10),MGP (10)CB74
```

CB7 ..... 6
CB7 ..... 7
C COMMON DECK "B9" INSERTED HERE CB8 ..... 2 ..... B8

```COMMON/B9/GMX GNTBL (10) GTTBL (10) GFRMTBL4
```

CB8 ..... 5

```EQUIVALENCE (GGP,IDSG), (ANG,GGP(11))
```

CB8 ..... 6
READW ..... 17
c

```COMMON DECK "BIO" INSERTED HEREINTEGER DGMX,DGNTBL, DGITBL,DGFRMTB,IDSDG(10)CB9 2
```

CB9

```COMMON/B10/DGMX, DGNTBL (10), DGITBL(10), DGFRMTB (10), DGGP(10)4
```

EQUIVALENCE (DGGP,IDSDG) CB9 ..... 6

```cC COMMON DECK "B8" INSERTED HERE
```

(10)

```COMON/B8/RMX,RNIBL(10),RITBL(10),RFRMTBL(10), RGP(10)READW 19
``` ..... 5
CB10
CB10
```EQUIVALENCE (RGP,IDSR)
```

```INTEGER VMX,VNTBL,VITBL,VFRMTBL,IDSV(10)COMMON/B17/VMX,VNTBL(10),VITBL(10),VFRMTBL(10), VGP(53)CBlO 2
```

CBIO ..... 4
CB10 ..... 6
READW ..... 21
CB17 ..... 2
CB17 4
CB17 5
CB17 6
C COMMON DECK "CBI8" INSERTED HERE CB18 2
INTEGER DVMX, DVNTBL, DVITBL, DVFRMTB,IDSDV (10) ..... CB18 4
CB18 5
CB18 6

```CEQUIVALENCE (PRGP,IDSPR), (ANP,PRGP(11))
```

CB19 2
CB19 4

```CB19 6
```

CB2 0
CB2 04

```CB20 6
```

READW 26
READW 27
READW 28
READW 29
READW 30
READW 31
READW 32
CRAYDEV2
CRAYDEV4
CRAYDEV5
READW 34

```
 C OMMON DECK "PIAG" RNSERTED HERE READW
```

LOGICAL NEWWR, NEWWP, NEWTRC, PENET COMMON /FLG/ NTYP, NEWWR, NEWWP, NEWTRC, PENET, LINES, IHOP, HPUNCH COMMON/FLGP/NSET
C
CHARACTER PC*I
C
INTEGER XMX,XNTBL(10),XITBL(10),XFRMTBL(10)
REAL XGP(11)
C
DATA XMX/2/
DATA XNTBL/1,11,12,7*0/
DATA XITBL/1,9*0/
DATA XFRMTBL/1,2,8*0/
C
DATA WCOMTS,WNOTES/MXCMTS*1, ' ',' INPUT OVERRIDDEN'/
C
$A B=. F A L S E$.
READW=0.0
C
IF (NDEVTMP.GT.O) REWIND NDEVTMP
C
READ (NRYIND, 1000, END=3) ID
1000 FORMAT (BZ,10A8)
IF (NDEVTMP.GT.0) WRITE (NDEVTMP, 1000) ID
GO TO 4
C
3 READW=1.0
IF (NFRMAT.LT. 0) RETURN
C
PRINT 1040
WRITE $(3,1040)$
1040 FORMAT(' END OF INPUT DATA')
CALL ENDPLT
33 IF(PLT.NE.0.0) CALL DDEND
STOP
C
4 READ (NRYIND, '(A)', END=10001) STMP1
1100 READ (STMP1, 1100) NW, WWW, LINEX
1100 FORMAT (BZ,I3,E14.7,A)
IF (NDEVTMP.GT.O.AND. (NFRMAT.NE. -2. OR.NW.LT.O))
1 WRITE (NDEVTMP,'(A)') STMP1
10001 IF (NW.EQ.O) GO TO IO
IF (NW.GT.MAXW) GO TO 3400
C
C IF (NW.LE.MAXW .AND. NW.GT.0) GO TO 5
C TABULAR INPUT DATA
NWOK=. FALSE.
C 'OPEN' THE TEMP FILE
1150 FORMAT (I3,T18,A)
NWP $=-\mathrm{NW}$
IF (NFRMAT.EQ.-2) THEN
C USE DUMMY ARRAYS TO ABSORB TABULAR DATA

READW
CFLAG

READW 81
READW 82
READW 83
READW 84
READW 85
READW 86

```
 CALL READWI (AB,NWOK,NW,XMX,XNTBL,XITBL,XFRMTBL,XGP) READW 87
 ELSEIF(NWP.EQ.I) THEN READW 88
 CALL READWI (AB,NWOK,NW,UMX,UNTBL,UITBL,UFRMTBL,UGP)
 ELSEIF(NWP.EQ.2) THEN
 CALI RFADWl (AB NWOK NW DUMX DUNBI NUITBI DURMTB, RUGP) READW 90
 CALL READW1 (AB,NWOK,NW,DUMX, DUNTBL, DUITBL, DUFRMTB, DUGP)
 CALL READWI (AB,NWOK,NW, CMX, CNTBL, CITBL, CFRMTBL, CGP)
 ELSEIF(NWP.EQ.4) THEN
 CALL READWI (AB, NWOK,NW, DCMX,DCNTBL,DCITBL, DCFRMTB, DCGP)
 ELSEIF(NWP.EQ.5) THEN
 CALL READWI (AB,NWOK,NW, TMX ,TNTBL,TITBL, TFRMTBL ,TGP)
 ELSEIF(NWP.EQ.6) THEN
 CALL READW1 (AB,NWOK,NW, DTMX,DTNTBL,DTITBL,DTFRMTB,DTGP)
 ELSEIF(NWP.EQ.7) THEN
 CALL READWI (AB,NWOK ,NW ,MMX , MNTBL, MITBL , MFRMTBL , MGP)
 ELSEIF(NWP.EQ.8) THEN
 CALL READWI (AB,NWOK,NW ,RMX,RNTBL,RITBL, RFRMTBL, RGP)
 ELSEIF(NWP.EQ.9) THEN
 CALL READWI (AB,NWOK,NW,GMX,GNTBL,GITBL,GFRMTBL,GGP)
 ELSEIF(NWP.EQ.10) THEN
 CALL READW1 (AB,NWOK,NW, DGMX,DGNTBL,DGITBL,DGFRMTB, DGGP)
 ELSEIF(NWP.EQ.17) THEN
 CALI READW1 (AB,NWOK,NW,VMX,VNTBL,VITBL,VFRMTBL ,VGP)
 ELSEIF (NWP.EQ.18) THEN
 CALL READWI (AB, NWOK,NW, DVMX, DVNTBL, DVITBL, DVFRMTB, DVGP)
 ELSEIF(NWP.EQ.19) THEN
 CALL READWI (AB,NWOK,NW, PRMX, PRNTBL, PRITBL,PRFRMTB, PRGP)
 ELSEIF(NWP.EQ.20) THEN
 CALL READWI (AB,NWOK,NW, DPMX,DPNTBL,DPITBL,DPFRMTB, DPGP)
 ELSE
 CALL SREADI (AB,NWOK,NW)
 ENDIF
 IF(NWOK) GO TO 4
 C
 3400 WRITE (3,4000) NW,MAXW
 READW121
4000 FORMAT(15HITHE SUBSCRIPT,I3, ' ON THE W-ARRAY INPUT IS OUT OF BOREADWI22
 IUNDS. ALLOWABLE VALUES ARE -8 THROUGH,',I4,'.') READWl23
 CALL EXIT
 READW123
 READ(ITNEX 70) DEG MM RM, READW125
 READ(LINEX, 70) DEG,KM,NM, FEET,CYCLE, PER,MSKMS
 FORMAT (7A)
 W(NW)=WWW
 CHECK FOR A 'TERRAIN RELATIVE' HEIGHT SPECIFICATION.
 IF SO ADD FLAG VALUE 10**40 TO BE TESTED FOR IATER IN 'RAYTRC'
 IF(MSKMS.EQ.'T' .AND. WWW.EQ.O.0) W(NW)=1.E-40
 IF(WWW.EQ.O.O) GO TO 4
 IF(MSKMS.EQ.'T') WWW=WWW*I.E40
 CHECK FOR KEYWORD UNITS SPECIFICATION, IF SO PERFORM CONVERSION
IF(.NOT.UCON(KU,IINEX(:10),CONV)) GO TO 60
W (NW) =WWW * CONV
GO TO 4
READW 87
 READW }8
 READW 91
 ELSEIF(NWP.EQ.3) THEN
 READW }9
 READW }9
 READW }9
 READW }9
 READW 96
 READW }9
 READW 98
 READW }9
 READW100
 READW101
 READW102
 READW103
 READW104
 READW105
 READW106
 READW107
 READW108
 READW109
 READW110
 READWlll
 READWll2
 READW113
 READWIl4
 READW115
 READWll6
 READW117
 READWll8
 READW119
 READW120
 READW120
 READW125
 READW126
 READW127
 READW128
 READW129
 READW130
 READW130
 READW132
 READW133
 READW134
 READW135
 READW136
 READW137
 READW138
 READW138
READW140
READW141
```

```
C
 CO (DEG.EQ.'I') WWW=WWW*RAD READW142
 IF (KM.EQ.'I') WWW=WWW/EARTHR
 IF (NM.EQ.'I') WWW=WWW*1.852
 IF (FEET.EQ.'I') WWW=WWW*3.048006096E-4
 IF(CYCLE.EQ.'I') WWW=WWW*PIT2
 IF(PER.EQ.'1') WWW=PIT2/WWW
 IF(MSKMS.EQ.'1') WWW=WWW*I.E-3
 W (NW) =WWW
 GO TO 4
 C
 10 IF(.NOT.AB) RETURN
 PRINT 1200
 1200 FORMAT(' A DATA FORMATTING ERROR PREVENTS CONTINUED EXECUTION')
 C
 ENTRY SETW(XX)
 C THIS ENTRY IS CALLED ONCE BEFORE THE FIRST RUN SET IS READ
 C
 C INITIALIZE SOME MATHEMATICAL CONSTANTS
 PI=4.0*ATAN (1.0)
 PIT2=2.*PI
 PID2=PI/2.
 DEGS=180./PI
 RAD=PI/180.
 ALN10=ALOG(10.)
CC********* INITIALIZE SOME VARIABLES IN THE W ARRAY
 MAXW=NWARSZ
 CALL CLEAR (W,MAXW)
 PLON=0.
 PLAT=PID2
 EARTHR=6370.
 INTYP=3.
 MAXERR=1.E-4
 ERATIO=50.
 STEP1=1.
 STPMAX=100.
 STPMIN=1.E-8
 FACTR=0.5
 HITLET=.15
 MAXSTP=1000.0
 HOP=1.
 HMAX=500.0
 EXTINC=999.999
 PAGLN=66.0
C
C CALL SETUCON
C
 RETURN
C
 ENTRY SETOVR(XX)
C THIS ENTRY IS CALLED AFTER EACH RUN SET IS READ
C
C PERFORM OVERRIDE ASSIGNMENTS TO W-ELEMENTS
 CALL OVE:KRD(MAXSTP,0.0,1000.0,WCOMTS (23),2,1)
 READW143
 READW144
 READW145
 READW146
 READW147
 READW148
 READW149
 READW150
 READW151
 READW152
 READW153
 READW154
 READW155
 READW156
 READW157
 READW158
 READW159
 READW160
 READW161
 READW162
 READW163
 READW164
 READW165
 READW166
 READW167
 READW168
 READW169
 READW170
 READW171
 READW172
 READW173
 READW174
 READW175
 READW176
 READW176
 READW177
 READW178
 READW179
READW180
READW181
READW182
READW183
READW184
READW185
READW186
READW187
READW188
READW189
READW190
READW191
READW192
READW193
READW194
READW195
READW196
```

```
 CALI OVERRD(ERATIO,0.0,50.0,WCOMTS (43),2,1) READW197
 CALL OVERRD(FACTR,0.0,0.5,WCOMTS (47),2,1)
 CALL OVERRD(SKIP,0.0,BIGVAL,WCOMTS (71),2,1)
 CALL OVERRD(HITLET,0.0,.15,WCOMTS (75),2,1)
 IF(PAGLN.LT.30.0) PAGLN=0.0
 CALL OVERRD(PAGLN,0.0,66.0,WCOMTS (77),2,1)
 CALL OVERRD(PFACTR,0.0,1.0,WCOMTS (82),2,1)
 RETURN
 ENTRY PRINTW(XX)
C THIS ENTRY IS CALLED AFTER EACH RUN SET IS READ
C TO PRINT VALUES OF THE W-ARRAY IN A FORMAT WHICH SHOWS
 FULL ACCURACY AND THE EFFECTS OF ANY CONVERSIONS OR OVERRIDES.
 GO TO NEXT PAGE, PUT OUT COPY OF INPUT DATA FOR THIS RUN SET
 ASSUMING WE HAD A TEMPORARY FILE TO USE
 IF(NDEVTMP.LE.O) GO TO 1065
 CALL NEWPAG(NPAG,INT (PAGLN),PC)
 LNSXPG=LINES+INT(PAGLN)
 CALL PUTHDR(3,PC,NPAG)
 CALL PUTDVR(3)
 CAIL PUTKBK(3,1)
 CALL PUTKCT(3,'INPUT DATA FILE FOR RUN SET NUMBER'
 l//NUMSTG(NSET,l,'(I5)'))
 CALL PUTKBK (3,1)
 CALL PUTDVR (3)
 CALL PUTDVR (3)
 REWIND NDEVTMP
C
1060 READ(NDEVTMP,'(A)',END=1065) LINEX
 IF(IINES.GE.INSXPG) THEN
 CALL NEWPAG(NPAG,INT (PAGLN), PC)
 LNSXPG=LINES+INT (PAGLN)
 CALL PUTHDR(3,PC,NPAG)
 CALL PUTKBK(3,1)
 ENDIF
 CALL PUTKST(3,' '//LINEX)
 GO TO 1060
1065 CONTINUE
C
C
C
C
 CALL NEWPAG(NPAG,INT (PAGLN),PC)
 CALL PUTHDR (3,PC,NPAG)
 CALL PUTDVR(3)
 CALL PUTKBK (3,1)
 CALL PUTKCT(3,'INITIAL VALUES FOR THE W ARRAY')
 CALL PUTKCT(3,'ONLY NONZERO VALUES PRINTED'
 1 //' --ALL ANGLES IN RADIANS')
 CALL PUTKBK(3,1)
 CALL PUTDVR(3)
 IIINSPP=INT (PAGLN) -7
C
C TO PRINT VALUES OF THE W-ARRAY IN A FORMAT WHICH SHOWS
C
READW198
READW199
READW200
READW201
READW202
READW203
READW204
READW205
READW206
READW207
C
C
C
C
READW208
READW209
READW210
 READW211
 READW212
READW213
READW214
READW215
READW216
READW217
 READW218
READW219
READW220
READW221
READW222
READW223
READW224
READW225
READW226
READW226
READW228
READW229
READW229
READW231
READW232
READW233
READW234
 GO TO NEXT PAGE, PUT OUT W-ELEMENTS SHOWING FULL PRECISION
 USE A TWO COLUMN FORMAT
READW235
READW236
READW237
READW238
READW239
READW240
READW240
READW242
READW243
READW244
READW245
 IN RADIANS') READW246
READW246
READW248
READW249
READW250
READW251
```

C

```
```

    WFRMT='(BZ,I3,E14.7,A)'' R READW252
    ```
```

    WFRMT='(BZ,I3,E14.7,A)'' R READW252
    IF(NFRMAT.EQ.0) WFRMT='(I4,E24.15,A)'
    IF(NFRMAT.EQ.0) WFRMT='(I4,E24.15,A)'
    NWE=0
    NWE=0
    C ALLOW MAXIMUM OF 10 PAGES OF OUTPUT(1 IS ENOUGH)
C ALLOW MAXIMUM OF 10 PAGES OF OUTPUT(1 IS ENOUGH)
DO 18 NPGS=1,10
DO 18 NPGS=1,10
ALLOW 3 LINES FOR INSIDE HEADER(SEE BELOW)
ALLOW 3 LINES FOR INSIDE HEADER(SEE BELOW)
LINSPP=LINSPP-3
LINSPP=LINSPP-3
NEXT ELEMENT TO SCAN IS ONE MORE THAN LAST ONE
NEXT ELEMENT TO SCAN IS ONE MORE THAN LAST ONE
LWE=NWE+1
LWE=NWE+1
INITIALIZE SECOND COLUMN START INDEX
INITIALIZE SECOND COLUMN START INDEX
NXCL=0
NXCL=0
INITIAIIZE TOTAL ELEMENT COUNTER
INITIAIIZE TOTAL ELEMENT COUNTER
NELS=0
NELS=0
LOOP TO FIND BREAK POINTS FOR FIRST/SECOND COLUMNS
LOOP TO FIND BREAK POINTS FOR FIRST/SECOND COLUMNS
DO 14 I=LWE,MAXW
DO 14 I=LWE,MAXW
IF(W(I).EQ.O.O) GO TO }1
IF(W(I).EQ.O.O) GO TO }1
NWE=I
NWE=I
NELS=NELS+I
NELS=NELS+I
IF(NELS.EQ.LINSPP) NXCL=I
IF(NELS.EQ.LINSPP) NXCL=I
IF(NELS.EQ.2*LINSPP) GO TO }1
IF(NELS.EQ.2*LINSPP) GO TO }1
CONTINUE
CONTINUE
IF(NELS.EQ.O) GO TO 22
IF(NELS.EQ.O) GO TO 22
IF(NPGS.GT.1) THEN
IF(NPGS.GT.1) THEN
CALL NEWPAG(NPAG,INT (PAGLN), PC)
CALL NEWPAG(NPAG,INT (PAGLN), PC)
CALL PUTHDR(3,PC,NPAG)
CALL PUTHDR(3,PC,NPAG)
LINSPP=INT (PAGLN) -I
LINSPP=INT (PAGLN) -I
ENDIF
ENDIF
C INSERT 'INNER' HEADER
C INSERT 'INNER' HEADER
CALL PUTKBK(3,2)
CALL PUTKBK(3,2)
STMPl=' N W(N)'
STMPl=' N W(N)'
CALL PUTKST(3,STMP1(:65)//' '//STMP1)
CALL PUTKST(3,STMP1(:65)//' '//STMP1)
NX=NXCL-1
NX=NXCL-1
IF(NX.LT.LWE) NX=NWE
IF(NX.LT.LWE) NX=NWE
DO }17\mathrm{ NW=LWE,NX
DO }17\mathrm{ NW=LWE,NX
NCOMT=MINO (NW, MXCMTS)
NCOMT=MINO (NW, MXCMTS)
IF(W(NW).NE.0) THEN
IF(W(NW).NE.0) THEN
WRITE (STMP1,WFRMT) NW,W(NW),WNOTES (WCOMTS (NCOMT))
WRITE (STMP1,WFRMT) NW,W(NW),WNOTES (WCOMTS (NCOMT))
WRITE (STMP1,WFRMT) NW,W(NW), WNOTES (WCOMTS (NCOMT))
WRITE (STMP1,WFRMT) NW,W(NW), WNOTES (WCOMTS (NCOMT))
IF(NXCL.EQ.O) GO TO }2
IF(NXCL.EQ.O) GO TO }2
DO }19\mathrm{ I=NXCL,MAXW
DO }19\mathrm{ I=NXCL,MAXW
IF(W(I).NE.O) THEN
IF(W(I).NE.O) THEN
NCOMT=MINO (I,MXCMTS)
NCOMT=MINO (I,MXCMTS)
WRITE (STMP2,WFRMT) I,W(I),WNOTES (WCOMTS (NCOMT))
WRITE (STMP2,WFRMT) I,W(I),WNOTES (WCOMTS (NCOMT))
NXCL=I+1
NXCL=I+1
GO TO 23
GO TO 23
ENDIF
ENDIF
CONTINUE
CONTINUE
CALL PUTKST(3,STMP1(:65)//' '//STMP2)
CALL PUTKST(3,STMP1(:65)//' '//STMP2)
ENDIF
ENDIF
ENDIF
ENDIF
READW253

```
READW253
```

```
READW254
```

READW254
READW255
READW255
READW256
READW256
READW257
READW257
READW258
READW258
READW259
READW259
READW260
READW260
READW261
READW261
READW262
READW262
READW263
READW263
READW264
READW264
READW265
READW265
READW266
READW266
READW267
READW267
READW268
READW268
READW269
READW269
READW270
READW270
READW271
READW271
READW272
READW272
READW273
READW273
READW274
READW274
READW275
READW275
READW276
READW276
READW277
READW277
READW278
READW278
READW279
READW279
READW280
READW280
READW281
READW281
READW282
READW282
READW283
READW283
READW284
READW284
READW285
READW285
READW286
READW286
READW287
READW287
READW288
READW288
READW289
READW289
READW290
READW290
READW291
READW291
READW292
READW292
READW293
READW293
READW294
READW294
READW295
READW295
READW296
READW296
READW297
READW297
READW298
READW298
READW299
READW299
READW300
READW300
READW301
READW301
READW302
READW302
READW303
READW303
READW304
READW304
READW305
READW305
READW306

```
READW306
```

IF (NELS.EQ.O) GO TO 22 READW307CONTINUE

|  | SUBROUTINE CLEAR ( $\mathrm{A}, \mathrm{N}$ ) | CLEAR | 2 |
| :---: | :---: | :---: | :---: |
| C | SET N ELEMENTS OF ARRAY A TO ZERO | CLEAR | 3 |
|  | REAL A (N) | CLEAR | 4 |
|  | IF (N.LE.0) RETURN | CLEAR | 5 |
|  | DO $10 \mathrm{I}=1, \mathrm{~N}$ | CLEAR | 6 |
| 10 | $A(I)=0.0$ | CLEAR | 7 |
|  | RETURN | CLEAR | 8 |
|  | END | CLEAR | 9 |

C ..... 3FUNCTION ND2B (INDEC)ND2B 2
C CONVERT A NUMERIC DECIMAL DIGIT STRING TO A BIT STRING ..... ND2B 4
C WITH EACH BIT SET BY A CORRESPONDING DECIMAL DIGIT. ..... ND2B 5
CND2 $B=0$ND2B 7
IF (INDEC.LE.0) RETURN ..... ND2B 8
M=INDEC ..... ND2B ..... 9
$M B=1$ ..... ND2B 10
C ..... ND2B 11
$10 \operatorname{IF}(\operatorname{MOD}(\mathrm{M}, 10) \cdot \mathrm{NE} .0) \mathrm{ND} 2 \mathrm{~B}=\mathrm{ND} 2 \mathrm{~B}+\mathrm{MB}$ ..... ND2B 12
$M B=M B * 2$ ..... ND2B 13
$\mathrm{M}=\mathrm{M} / 10$ ND2B ..... 14
IF (M.GT.0) GO TO 10 ..... ND2B 15
END ..... ND2B 16
LOGICAL FUNCTION UCON (JCl, U,CONV) UCON ..... 2
LOGICAL SETUCON UCON ..... 3
C PROVIDES KEYWORD UNITS CONVERSION FOR W-ARRAY INPUT. UCON
C UNITS SPECIFICATION MUST BE IN THE FORM 'DV UN' WHERE DV IS THE UCON ..... 54
TYPE OF VARIABLE (SUCH AS AN FOR ANGLE) AND UN IS THE UNITS CHOICE UCON ..... 6
C SUCH AS RD FOR RADIANS). RETURN VALUE IS THE CONVERSION FACTOR. UCON ..... 7
COMMON DECK "CUCON" INSERTED HERE ..... CUCON 2
COMMON/UCONV/CNVV $(4,4)$ ..... CUCON 4
CHARACTER PCV*3, CNVC*2 ..... CUCON 5
COMMON/UCONC/PCV (4), CNVC (4, 4)
CUCON 6
COMMON DECK "CONST" INSERTED HERE CCOMMON/PCONST/CREF, RGAS , GAMMACCONST 4

```
 COMMON/MCONST/PI,PIT2,PID2,DEGS,RAD,ALN10 CCONST 5
C COMMON DECK "WWR" INSERTED HERE NS,ALN10
 PARAMETER (NWARSZ=1000)
 CWWR
 CWWI
 COMMON/WW/ID (10),MAXW,W (NWARSZ)
 CWW1 4
 REAL MAXSTP,MAXERR,INTYP,LLAT,LLON CWW2 2
 EQUIVALENCE (EARTHR,W(1)),(RAY,W(2)),(XMTRH,W(3)),(TLAT,W(4)), CWW2
 I (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9))
 2 ~ (A Z 1 , W (1 0)) , (A Z B E G , W (1 1)) , (A Z E N D , W (1 2)) , (A Z S T E P , W (1 3)) , ~ C W W 2 ~
 3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), CWW2
 8 (RCVRH,W(20)),
 4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))
 5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)),
 6 (HMIN,W(27)), RGMAX,W(28)),
 CWW2
 8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 ll
 6 (STEPl,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 12
 7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLLET,W(75))
 9,(BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 14
 l (LIAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86))
 2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
 CHARACTER U*(*),PU*3,PV*2
 DATA NPV,NPU/3,4/
 UCON=.FALSE.
 CONV=1.0
C
 READ(U,100) PU,PV
 FORMAT(A,A)
 DO 2010 J=1,NPV
2010
 IF(PU.EQ.PCV(J)) GO TO 2015
 JCl=4
 RETURN
 JCl=J
 DO 2020 K=1,NPU
 IF(PV.EQ.CNVC(J,K)) GO TO 2025
 JCl=4
 RETURN
2025 UCON=.TRUE.
 CONV=CNVV (JCl,K)
 RETURN
C INITIAL CONVERSION CONSTANTS
 ENTRY SETUCON(JCl,U, CONV)
 SETUCON=.TRUE.
C
 CNVV(1,2) = RAD
 CNVV (1,3) = 1.0/EARTHR
 CNVV (2,2) = 1.OE-3
 CNVV (2,3) = 3.048006096E-4
```



```
 CNVV (3,2) = PIT2
 CNVV (3,3) = PIT2*1.OE3
 CNVV (3,4) = PIT2*RAD
 END
 UCON 11
C
100
C
 TCl=J UCON
2015
C-RLTNN UCON 3N
 ENTRY SETUCON(JCl,U,CONV) UCON
 UCON 35
 CNVV (1,3) = 1,0/EARTHR UCON
 UCON 37
 CNVV(2, UCON 38
 UCON 39
 UCON 41
 CNVV (3,3) = PTT2*1,OF3 UCON 42
 UCON }4
 UCON 44
UCON 45
```



```
 7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75))
 9 ,(BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), TRACE 52
 I (LIAAT,W(83)),(LLON,W(84)),(RIAT,W(85)),(RLON,W(86))
 2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
C THE FOLLOWING IS A LOCAL COMMON ONLY
TRACE }5
TRACE }5
 COMMON/TRLOCAL/RSIGN , HOME , FDOT, GDOT , GOLD , GDOLD
 LOGICAL PCROSS,HOME,WASNT
 LOGICAL LAAUNCH,APOGEE,PLTENB,EXTON
 EQUIVALENCE (R(2),TH),(R(3),PHI)
C
 CHARACTER*IO XCOND,DEFCND
 PARAMETER (DEFCND=' MAX HOPS')
C
 REAL PRGHST(3,MXPRGS)
 EQUIVALENCE (RKTIME,IRKTIME), (APOG,PRIGEE,W(80))
 DATA GROUND/.FALSE./
C
C INCREMENT EVENT COUNT
 IRKTIME=IRKTIME+1
 PLTENB=APOG.EQ.0.0
C ENABLE EXTINCTION TEST IF LIMIT IS SET AND VARIABLE IS BEING INTE
 EXTON=(EXTINC.GT.O.0).AND. (W(58).NE.0.0)
 POINT INDEX TO ABSORTION VARIABLE
 NR=7
 IF(W(57).NE.0.0) NR=8
 RMAX=HMAX+EARTHR
 RMIN=HMIN+EARTHR
 NHOP=HOP
 MAX=MAXSTP
 NSKIP=SKIP
C********** INITIALIZE PARAMETERS FOR INTEGRATION SUBROUTINE RKAM
 MODE=INTYP
 STEP=STEP1
 ElMAX=MAXERR
 EIMIN=MAXERR/ERATIO
 E2MAX=STPMAX
 E2MIN=STPMIN
 FACT=FACTR
 RSTART=1.
 CALL HAMLTN
 FDOT=DOT(F)
C
C CHECK FOR EQUALITY WITH RECEIVER HEIGHT WITHIN MACHINE PRECISION
 THERE=F.EQ.0.0
C
 HOME=FDOT*F.GE.O.
C********** IHOP=0 TELLS PRINTR TO PRINT HEADING AND PUNCH A TRANSMITTER
C********* RAYSET AND NEWTRC=TRUE TELLS RAYPIT TO START A NEW RAY
 NEWTRC=.TRUE.
 IHOP=0
C********* RESET PERIGEE PLOT COUNTER
 NPRGS=0
C USE CURRENT RELATIVE POSITION OF RAY TO PREDICT TRACE103
C SIGN OF NEXT INTERSECTION OF RAY WITH RECEIVER HEIGHT TRMCE104
```

```
C (WILL SOON BE REVERSED).
 RSIGN=SIGN(1.0,F)
C IF RAY IS LAUNCHED FROM RECEIVER HEIGHT, USE DIRECTION INSTEAD
 IF(THERE) RSIGN=SIGN(1.0,FDOT)
 GDOT=DOT(G)
 TEST CASE FOR RECEIVER ON THE GROUND
 IF(F.EQ.G) RSIGN=1.0
C IF RECEIVER IS ON TERRAIN THEN DIRECTION OF FIRST
C RECEIVER CROSSING IS DOWNWARD
 CALL PRINTR('TXMTR',RAYSET)
 IF (PLTENB) CALL RAYPLT
 NEWRAY=.TRUE.
 STHO=SIN (TH)
 CTHO=COS (TH)
 PHIO=PHI
 SET DEFAULT RAY EVENTS FOR 'PRINTR'
 XCOND=DEFCND
 XSET=NORYST
C
C********* LOOP ON NUMBER OF HOPS
10 IHOP=IHOP+1
C REVERSE SIGN AT EACH CROSSING OF RECEIVER HEIGHT
 RSIGN=-RSIGN
 IF (IHOP.GT.NHOP) GO TO }10
 PENET=. FALSE.
C********* LOOP ON MAXIMUM NUMBER OF STEPS PER HOP
 DO }79\textrm{J}=1,MA
C LAUNCH=TRUE ONLY WHEN TRANSMITTER ON GROUND WITH DOWNWARD
C TRANSMISSION (POSSIBLE ONLY ON IST STEP).
 LAUNCH=G.EQ.0.0 .AND. GDOT.LT.0.0
C SAVE CURRENT STATE VALUES FOR LATER COMPARISONS
 12 DO 13 L=1,6
 ROLD (L)=R(L)
 13 DROLD (L)=DRDT (L)
 FDOLD=FDOT
 GDOLD=GDOT
 FOLD=F
 GOLD=G
 TOLD=T
C
C PROCESS NEXT RAY POINT
 CALI RKAM
 FDOT=DOT (F)
 WASNT=.NOT.HOME
 HOME=FDOT*F.GE.0.
C
C
C LOOK FOR DOWNGOING CROSSING OF RECEIVER SURFACE
 IF(.NOT.LAUNCH.AND.F.LT.O.O.AND.RSIGN.IT.O.O) GO TO 50
C CHECK FOR CASE OF CLOSEST APPROACH
 IF (HOME.AND.WASNT) GO TO 30
 DETERMINE IF A GROUND CROSSING HAS OCCURED
 IF(PCROSS (G,GDOT)) GO TO 20
```

TRACE106
TRACE107
TRACE108
TRACE109
TRACE110
TRACEIII
TRACE112
TRACEII3
TRACE114
TRACE115
TRACE116
TRACE117
TRACE118
TRACE119
TRACE120
TRACE121
TRACE122
TRACE123
TRACE124
TRACE125
TRACE126
TRACE127
TRACE128
TRACE129
TRACE130
TRACE131
TRACE132
TRACE 133
TRACE134
TRACE135
TRACE136
TRACE137
TRACE138
TRACE139
TRACE140
TRACE141
TRACE142
TRACE143
TRACE144
TRACE145
TRACE146
TRACE147
TRACE148
TRACE149
TRACE150
TRACE151
TRACE152
TRACE153
TRACE154
TRACE155
TRACE156
TRACE157
TRACE158
TRACE159
TRACE160

```
C LOOK FOR UPGOING CROSSING OF RECEIVER SURFACE TRACE161
 IF(.NOT.LAUNCH.AND.F.GT.O.O.AND.RSIGN.GT.0.0) GO TO 50 TRACE162
 GO TO 18
C
C CHECK FOR PERIGEE CONDITION
18 IF (DROLD(1).GE.O..OR.DRDT(1).LE.O.) GO TO 25
 CALL PRINTR(' PERIGEE ',NORYST)
 IF(PRIGEE.EQ.O.0) GO TO 25
C
 IF(NPRGS.GE.MXPRGS) CALL STOPIT('PRG LIMIT')
 NPRGS=NPRGS+1
 CALL RMOVE (PRGHST(1,NPRGS),R,3)
C
25 APOGEE=DROLD (1).GT.O..AND.DRDT (1).LT.0.
 PLTENB=APOG.EQ.0.0.OR.APOGEE
C
 IF(APOGEE) CALL PRINTR(' APOGEE ',NORYST)
 IF (DROLD (2)*DRDT (2).LT.0.) CALL PRINTR(' MAX IAT ',NORYST)
 IF (DROLD(3)*DRDT(3).LT.O.) CALL PRINTR(' MAX LONG',NORYST)
 DO 14 I=4,6
 IF (ROLD(I)*R(I).LT.0.) CALL PRINTR(' WAVE REV',NORYST)
 14 CONTINUE
 GO TO }7
C********* RAY WENT UNDERGROUND
C USE 'FULL' REGULAR PARABOLIC FIT(ENTRY 'FIT')
20 CALL RCROSS(-I.,G,GDOT,'GGRND REF',GROUND)
 GO TO 75
C********* RAY MAY HAVE MADE A CLOSEST APPROACH
C USE 'FULL' REGULAR PARABOLIC FIT
30 CALL FIT(F,FOLD,FDOLD)
 IF(RAD.GE.0.0) GO TO 501
C ESTIMATE TIME OF CLOSEST APPROACH
 TP=T-ZDOT/D2Z
 CALL GRAZE(F,RSIGN,TP)
 FDOT=ZDOT
 IF (THERE) GO TO 51
C
C SET DRDT(I)=0 TO AVOID INCORRECT APOGEE OR PERIGEE PRINTOUT, A NEWTRACEI98
C VALUE WILL BE COMPUTED BEFORE FURTHER ANALYSIS IS DONE NROM
40 DRDT (1)=0.
 HPUNCH=R (1) -EARTHR
 CALL PRINTR('MMIN DIST',RAYSET)
 IF(PLTENB) CALL RAYPLT
 IF (IHOP.GE.NHOP) GO TO }10
 IHOP=IHOP+1
 RSIGN=-RSIGN
 CALL PRINTR ('MMIN DIST',RAYSET)
 GO TO }8
C********** RAY CROSSED RECEIVER HEIGHT
50 CALL FIT(F,FOLD,FDOLD)
C ESTIMATE GROUP TIME WHEN RAY CROSSES RECEIVER HEIGHT
C (IN THE CORRECT DIRECTION).
501 TC=T-2.0*F/(ZDOT+SIGN(RADI,RSIGN))
501 TC=T-2.0*F/(ZDOT+SIGN(RADl,RSIGN))
 FDOT=ZDOT
TRACE200
TRACE201
TRACE202
TRACE203
TRACE204
TRACE205
TRACE206
TRACE207
TRACE208
TRACE209
TRACE210
TRACE211
TRACE212
TRACE213
TRACE214
TRACE215
```

```
```

            IF(.NOT.THERE) GO TO 40
    ```
```

            IF(.NOT.THERE) GO TO 40
    51 HPUNCH=R(I)-EARTHR
51 HPUNCH=R(I)-EARTHR
CALL PRINTR('RRCVR ',RAYSET)
CALL PRINTR('RRCVR ',RAYSET)
IF (PLTENB) CALL RAYPLT
IF (PLTENB) CALL RAYPLT
IF (GET (F).NE.GET (G)) GO TO }8
IF (GET (F).NE.GET (G)) GO TO }8
C RECEIVER IS ON TERRAINE
C RECEIVER IS ON TERRAINE
IF (IHOP.GE.NHOP) GO TO }10
IF (IHOP.GE.NHOP) GO TO }10
IHOP=IHOP+1
IHOP=IHOP+1
RSIGN=-RSIGN
RSIGN=-RSIGN
C********* GROUND REFLECT
C********* GROUND REFLECT
CALL REFLECT(G)
CALL REFLECT(G)
CALL HAMLTN
CALL HAMLTN
FDOT=DOT (F)
FDOT=DOT (F)
RSTART=1.
RSTART=1.
HPUNCH=R(1)-EARTHR
HPUNCH=R(1)-EARTHR
CALL PRINTR('GGRND REF',RAYSET)
CALL PRINTR('GGRND REF',RAYSET)
THERE=.TRUE.
THERE=.TRUE.
HPUNCH=R(1)-EARTHR
HPUNCH=R(1)-EARTHR
CALL PRINTR ('RRCVR ',RAYSET)
CALL PRINTR ('RRCVR ',RAYSET)
GO TO }8
GO TO }8
C*********
C*********
75 IF (PLTENB) CALL RAYPLT
75 IF (PLTENB) CALL RAYPLT
PLTENB=APOG.EQ.0.0
PLTENB=APOG.EQ.0.0
IF(EXTON) THEN
IF(EXTON) THEN
IF (R(NR).GE.EXTINC) XCOND='EEXTINC'
IF (R(NR).GE.EXTINC) XCOND='EEXTINC'
ENDIF
ENDIF
IF (R(1).GT.RMAX.AND.F.GT.0.0.AND.FDOT.GT.O.) XCOND='UMAX HT'
IF (R(1).GT.RMAX.AND.F.GT.0.0.AND.FDOT.GT.O.) XCOND='UMAX HT'
IF (R(1).LT.RMIN.AND.F.IT.O.O.AND.FDOT.IT.O.) XCOND='DMIN HT'
IF (R(1).LT.RMIN.AND.F.IT.O.O.AND.FDOT.IT.O.) XCOND='DMIN HT'
RANGE=EARTHR*ACOS (COS (TH)*CTHO+SIN (TH)*STHO*COS (PHI-PHIO))
RANGE=EARTHR*ACOS (COS (TH)*CTHO+SIN (TH)*STHO*COS (PHI-PHIO))
IF(RGMAX.GT.0.0.AND.RGMAX.LT.RANGE) XCOND='FMAX RANGE'
IF(RGMAX.GT.0.0.AND.RGMAX.LT.RANGE) XCOND='FMAX RANGE'
IF(XCOND.NE.DEFCND) GO TO }9
IF(XCOND.NE.DEFCND) GO TO }9
C
C
IF (MOD(J,NSKIP).EQ.O) CALL PRINTR(' 'NORYST)
IF (MOD(J,NSKIP).EQ.O) CALL PRINTR(' 'NORYST)
79 CONTINUE
79 CONTINUE
C********* EXCEEDED MAXIMUM NUMBER OF STEPS
C********* EXCEEDED MAXIMUM NUMBER OF STEPS
HPUNCH=R(1)-EARTHR
HPUNCH=R(1)-EARTHR
CALL PRINTR('SSTEP MAX',RAYSET)
CALL PRINTR('SSTEP MAX',RAYSET)
GO TO 100
GO TO 100
C*********
C*********
89 HOME=.TRUE.
89 HOME=.TRUE.
GDOT=DOT (G)
GDOT=DOT (G)
GDOT=DOT
GDOT=DOT
*RACE255
*RACE255
TRACE256
TRACE256
TRACE257
TRACE257
C********* RAY PENETRATED COMPUTATIONAL AREA BOUNDARY AND WAS HEADING OUTRACE258
C********* RAY PENETRATED COMPUTATIONAL AREA BOUNDARY AND WAS HEADING OUTRACE258
90 PENET=.TRUE.

```
```

90 PENET=.TRUE.

```
```




```
```

C NORMAL EXIT

```
```

C NORMAL EXIT
TRACE261
TRACE261
TMOCE263
TMOCE263
IF(NPRGS.LE.0) RETURN
IF(NPRGS.LE.0) RETURN
C
C
100 CALL PRINTR (XCOND,XSET)
100 CALL PRINTR (XCOND,XSET)
CALL DASH
CALL DASH
NEWTRC=.TRUE.
NEWTRC=.TRUE.
DO 110 I=1,NPRGS
DO 110 I=1,NPRGS
CALL RMOVE(R,PRGHST(1,I),3)
CALL RMOVE(R,PRGHST(1,I),3)
TRACE262
TRACE262
TRACE264

```
```

    TRACE264
    ```
```

TRACE271
TRACE2 72
TRACE2 73
TRACE2 74

TRACE275
LOGICAL FUNCTION PCROSS (Z,ZDT)
TRACE276
TRACE277
TRACE278
CTRAC 2
CTRAC 4
CTRAC 5
CTRAC 6
TRACE280
TRACE281
TRACE282
TRACE283
TRACE284
TRACE285
TRACE286
TRACE287
TRACE288
TRACE289
TRACE290
TRACE291

SUBROUTINE RCROSS ( $\mathrm{S}, \mathrm{Z}, \mathrm{ZDT}, E V E N T, Q M O D E$ )
FIND ESTIMATED CROSSING POINT OF SURFACE ' $Z$ ' THEN USE
WITH ROUTINE 'REFLECT'.
EXTENDS RAY PROPAGATION TO INTERSECTION WITH REFLECTING SURFACE
c Z AND CALLS 'REFLECT' TO OBTAIN VECTOR COMPONENTS.

CHARACTER EVENT*8
REAL ZDT (3)
LOGICAL QMODE
C COMMON DECK "TRAC" INSERTED HERE
LOGICAL GROUND, SURF, PERIGE, THERE, MINDIS, NEWRAY COMMON /TRAC/ GROUND, SURF, PERIGE, THERE, MINDIS, NEWRAY, SMT, OSMT COMMON/TRAC/ROLD (20), DROLD (20) ,TOLD, ZDOT, D2Z, RAD, RAD1
COMMON DECK "RR" INSERTED HERE REAL MODREC COMMON/RR/ MODREC(4) COMMON/RR/F, PFR, PFRR, PFRTH, PFRPH COMMON/RR/PFTH, PFPH, PFTHTH, PFPHPH, PFTHPH, FSELECT, FTIME
C COMMON DECK "WWR" Inserted here
PARAMETER (NWARSZ=1000)

TRACE292
TRACE293
TRACE294
TRACE 295
TRACE296
TRACE297
TRACE298
TRACE299
TRACE 300
TRACE301
CTRAC 2
CTRAC 4
CTRAC 5
CTRAC 6
TRACE303
TRACE 304
TRACE305
TRACE306
TRACE307
TRACE308
TRACE309

```
 COMMON/WW/ID(10),MAXW,W(NWARSZ)}\mathrm{ TRACE310
 REAL MAXSTP,MAXERR,INTYP,LLAT,ILON TRACE311
 EQUIVALENCE (EARTHR,W(1)),(RAY,W(2)),(XMTRH,W(3)),(TLAT,W(4)), TRACE312
 l (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)), TRACE313
 (AZI,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)), TRACE314
 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), TRACE315
 (RCVRH,W(20))
 TRACE316
 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)), (PLON,W(25))TRACE317
 5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)), TRACE318
 6 (HMIN,W(27)),(RGMAX,W(28)),
 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)),
 (STEPlW(44)),(STPMAX,W(45)),(STPMTN,W(46)),
 TRACE321
 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75))
 ,(BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), TRACE323
 (LLLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86))
 2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
 COMMON DECK "FLAG" INSERTED HERE
 LOGICAL NEWWR,NEWWP,NEWTRC, PENET
 COMMON /FLG/ NTYP,NEWWR,NEWWP,NEWTRC, PENET, LINES,IHOP,HPUNCH
 COMMON R(20),T,STP,DRDT(20)
 COMMON /RK/ N,STEP,MODE,EIMAX,EIMIN,E2MAX,E2MIN,FACT,RSTART
 LOGICAL HOME
C COMMON DECK "TRLOCAL" INSERTED HERE
 COMMON/TRLOCAL/RSIGN, HOME , FDOT, GDOT,GOLD,GDOLD
 IF(QMODE) GO TO 60
 CALL FIT(Z,ZDT(2),ZDT (3))
 TC=T-2.0*Z/(ZDOT-RAD1)
 CALL BACKUP(Z,-1.,TC)
C********* GROUND REFLECT
60 CALL REFLECT(Z)
 CALL HAMLTN
 ZDT(I)=DOT (Z)
 FDOT=DOT (F)
 HOME=FDOT*F.GE.0.0
 RSTART=1.
 HPUNCH=R(1)-EARTHR
 CALL PRINTR(EVENT,RAYSET)
 IF(F.NE.Z) RETURN TRACE348
 TRACE347
C AVOID RECEIVER CROSSING AT THE TRANSMITTER IF RECEIVER ON TERRAIN TRACE349
 RSIGN=S
 HOME=.TRUE.
 END TRACE352
 TRACE350
 TRACE351
 SUBROUTINE HAMLTN
 C********* CALCULATES HAMILTONS EQUATIONS FOR RAY TRACING
 AND OTHER QUANTITIES TO BE INTEGRATED
 COMMON DECK "GG" INSERTED HERE CGG 2
 REAL MODG CGG 4
 CGG 2
 COMMON/GG/MODG (4) CGG 5
 COMMON/GG/G,PGR,PGRR,PGRTH , PGRPH CGG 6
```

```
 COMMON/GG/PGTH, PGPH, PGTHTH, PGPHPH, PGTHPH,GSELECT,GTIME CGG 7
C COMMON DECK "CONST" INSERTED HERE
 COMMON/PCONST/CREF, RGAS ,GAMMA
 COMMON/MCONST/PI , PIT2 , PID2 , DEGS,RAD, ALN10
C COMMON DECK "RINREAI" INSERTED HERE
 LOGICAL SPACE
 REAL LPOLAR,IPOLRI ,KPHK, KPHKI ,KAY2 ,KAY2I
 CHARACTER DISPM*6
 COMMON/RINPL/DISPM
 COMMON /RIN/ MODRIN (8),RAYNAME (2,3),TYPE (3),SPACE
 COMMON/RIN/OMEGMIN,OMEGMAX,KAY2,KAY2I,
 H, HI , PHT , PHTI , PHR, PHRI , PHTH , PHTHI , PHPH, PHPHI
 2, PHOW, PHOWI, PHKR, PHKRI, PHKTH, PHKTI, PHKPH, PHKPI
 3 , KPHK, KPHKI , POLAR, POLARI , LPOLAR , IPOLRI , SGN
 COMMON R(20),T,STP,DRDT(20)
 PARAMETER (NWARSZ=1000)
 COMMON/WW/ID(10),MAXW,W(NWARSZ)
 EQUIVALENCE (TH,R(2)),(PH,R(3)),(KR,R(4)),(KTH,R(5)),(KPH,R(6)),
 l (DTHDT,DRDT (2)),(DPHDT,DRDT (3)),(DKRDT,DRDT (4)),(DKTHDT,DRDT(5)),
 2 (DKPHDT,DRDT(6)),(HMAX,W(26)),(OW,W(6))
 REAL KR,KTH,KPH
 STH=SIN (TH)
 CTH=SIN (PID2-TH)
 RSTH=R(I)*STH
 RCTH=R(1)*CTH
 CALL DISPER
 DENPHC=1.0/(PHOW*CREF)
 DRDT (1) =-PHKR*DENPHC
 DTHDT=-PHKTH*DENPHC/R(I)
 DPHDT=-PHKPH*DENPHC/RSTH
 DKRDT=PHR*DENPHC+KTH*DTHDT+KPH*STH*DPHDT
 DKTHDT=(PHTH*DENPHC-KTH*DRDT (1) +KPH*RCTH*DPHDT)/R(1)
 DKPHDT=(PHPH*DENPHC-KPH*STH*DRDT (1)-KPH*RCTH*DTHDT)/RSTH
 NR=6
C********* PHASE PATH
 IF (W(57).EQ.O.) GO TO 10
 NR=NR+1
 DRDT (NR)=- KPHK/PHOW/OW
C********* ABSORPTION
 10 IF (W(58).EQ.O.) GO TO 15
 NR=NR+1
 DRDT(NR)= 10./ALN10*KPHK*KAY2I/(KR*KR+KTH*KTH+KPH*KPH) *DENPHC
C********* DOPPLER SHIFT
 15 IF (W(59).EQ.O.) GO TO 20
 NR=NR+1
 DRDT (NR) =-PHT*DENPHC/PIT2
C********* GEOMETRICAL PATH LENGTH
 20 IF (W(60).EQ.O.) GO TO 25
 NR=NR+1
 DRDT (NR) =SQRT (PHKR**2+PHKTH**2+PHKPH**2) *ABS (DENPHC)
C********* TERRAIN FUNCTION AS COMPLETE INTEGRAL
25 IF(ABS (W(6I))+ABS (W(62))+ABS(W(63))+ABS(W(64)).EQ.0.0) GO TO 45
 CALL TOPOG
C
 IF(W(61).EQ.O.) GO TO 30
 CCONST 2
 CCONST }
 CCONST 5
 CRINREA2
 CRINREA4
 CRINREA5
 CRINREA6
 CRINREA7
 CRINREA8
 CRINREA9
 CRINREIO
 CRINREII
 CRINRE12
 HAMLTN }
 CWWI 3
 CWW1 4
 HAMLTN10
 HAMLTN11
 HAMLTN12
 HAMLTN13
 HAMLTN14
 HAMLTN15
 HAMLTN16
 HAMLTN17
 HAMLTN18
 HAMLTN19
 HAMLTN20
 HAMLTN21
 HAMLTN22
 HAMLTN23
 HAMLTN24
 HAMLTN25
 HAMLTN26
 HAMLTN27
 HAMLTN28
 HAMLTN29
 HAMLTN30
HAMLTN31
HAMLTN32
HAMLTN33
HAMLTN34
HAMLTN35
HAMLTN36
HAMLTN37
HAMLTN38
HAMLTN39
HAMLTN40
HAMLTN41
HAMLTN42
HAMLTN43
HAMLTN44
HAMLTN45
HAMLTN46
HAMITN47
```

$N R=N R+1$ HAMLTN48
DRDT (NR) $=$ PGR*DRDT ( 1 ) +PGTH*DTHDT+PGPH*DPHDT HAMLTN49
C********* TERRAIN TIME DERIVATIVES AS COMPLETE INTEGRALS HAMLTN50
$30 \mathrm{IF}(\mathrm{W}(62) . \mathrm{EQ} .0$.$) GO TO 35$
NR=NR+1HAMITN52$\operatorname{DRDT}(\mathrm{NR})=\mathrm{PGRR} * \mathrm{DRDT}(1)+\mathrm{PGRTH} * \mathrm{DTHDT}+\mathrm{PGRPH} * \mathrm{DPHDT}$
35 IF (W(63).EQ.O.) GO TO 40
HAMLTN53
HAMLTN54
NR=NR+1
C DERIVATIVE WITH RESPECT TO THETA
HAMLTN57
HAMLTN57HAMLTN55
HAMLTN56
DRDT (NR) $=$ PGRTH *DRDT (1) +PGTHTH*DTHDT+PGTHPH*DPHDT ..... HAMLTN58
40 IF (W(64).EQ.O.) GO TO 45 HAMLTN59
NR=NR+1HAMLTN60
HAMLTN61
DRDT (NR) $=$ PGRPH * DRDT (1) + PGTHPH *DTHDT+PGPHPH*DPHDT ..... HAMLTN62
C********* OTHER CALCUIATIONS HAMLTN63
45 CONTINUE ..... HAMLTN64
RETURN
HAMLTN65
ENDHAMLTN66
SUBROUTINE RKAM RKAM
RKAM
ROUTINE AND MAKES THEM AVAILABLE TO CALLING ROUTINES. RKAM ..... 3
COMMON/RKAMS/XV (5), FV $(4,20)$, $\operatorname{YU}(5,20)$, EPM, ALPHA, MM ..... RKAM
CRK ..... 5
COMMON DECK "RK" INSERTED HERE ..... CRK ..... 2
4
PARAMETER (LRKAMS=87+2*100,NXRKMS=12+LRKAMS, MXEQPT=21) ..... CRK ..... 4
5
PARAMETER (NRKSAV=NXRKMS+MXEQPT-1) CRK ..... 6
COMMON /RK/ NEQS,STEP,MODE, ELMAX, EIMIN, E2MAX, E2MIN, FACT, RSTART CRK ..... 7
COMMON/CRKTIME/RKTIME
CRKTIME2
COMMON Y(20),T,SPACE, DYDT (20) ..... CRKTIME4
REAL RV(1) ..... RKAM 9
DOUBLE PRECISION YU ..... RKAM 10
EQUIVALENCE (RKTIME , IRKTIME) , (RV,R) ..... RKAM 11
REAL SVBUF (NRKSAV) ..... RKAM ..... 12
LOGICAL SAVED ..... RKAM 14
DATA SAVED/.FALSE./ ..... RKAM 16
PERFORM CLOCK ADVANCE (SEE 'GET' ROUTINE) RKAM ..... 17
IRKTIME=IRKTIME+1 ..... RKAM 18
IF (RSTART.NE.O.0 .OR. MODE.LE.2) GO TO 250 ..... RKAM 20
$\mathrm{NV}=\mathrm{NV}+1$ RKAM ..... 22
IF (NV.LE.4) GO TO 300 ..... RKAM ..... 23
250 TOLD=T ..... RKAM 25
PERFORM NUMERICAL INTEGRATION TO TIME 'T' ..... RKAM 26 ..... 26
27

```
 IF(MODE.LE.2) GO TO 400 RKMM 28
 IF(RSTART.NE.O.0) GO TO 260 RKAM
 RKAM }2
 C SEARCH FOR REQUESTED VALUE IN PIPELINE SKAM 30
C TAKING SIGN OF 'STEP' INTO ACCOUNT. RKAM
 TUP=TOLD+.25*STEP RKAM
 RKAM 32
 DO 150 NV=1,3 RKAM
 33
 IF(SPACE.GT.0.0.AND.TUP.IT.XV(NV)) GO TO 300 RKAM 34
 IF(SPACE.IT.O.O.AND.TUP.GT.XV(NV)) GO TO 300 RKAM 35
 CONTINUE RKAM
 RKAM - 36
 GOT IT ALREADY, RETURN
 RKAM }3
 GO TO 400 RKAM
 RKAM 38
 260 NV=1
 RKAM 39
 RKAM 40
 C RETRIEVE REQUESTED VALUES FROM PIPELINE
 40
 300 T=XV (NV)
 DO 350 I=1,NEQS
 Y(I) =YU (NV,I)
 41
 RKAM 42
 DYDT (I) =FV(NV,I)
 C
 C STANDARD EXIT SEQUENCE
 400 RETURN
 C
 ENTRY RKSAVE (SVBUF)
 SVBUF (1) =NV
 SVBUF (2)=NEQS
 SVBUF (3)=MM
 SVBUF (4)=SPACE
 SVBUF (5)=MODE
 CALI RMOVE(SVBUF(6),EIMAX,6)
 CALL RMOVE(SVBUF(12),XV,IRKAMS)
 CALI RMOVE (SVBUF (NXRKMS),Y,MXEQPT) F
C
 SAVED=.TRUE .
 RETURN
 ENTRY RKRSTR(SVBUF)
 IF(.NOT.SAVED) RETURN
 NV=SVBUF (1)
 NEQS=SVBUF(2)
 MM=SVBUF (3)
 SPACE=SVBUF (4)
 MODE=SVBUF (5)
 CALL RMOVE (EIMAX,SVBUF (6),6)
 CALL RMOVE (XV,SVBUF (12),IRKAMS)
 CALL RMOVE(Y,SVBUF(NXRKMS),MXEQPT)
C
 WRITE(3,*) 'RESTORING NV,NEQS,MM,ALPHA,T='
 l ,NV,NEQS,MM, ALPHA,T
 RETURN RKMM
 RKAM }7
 RKAM 78
 END RKAM
RKAM 79
```

SUBROUTINE RKAMI RKAM1 ..... 2
NUMERICAL INTEGRATION OF DIFFERENTIAL EQUATIONS RKAM1 ..... 3
THIS ROUTINE IS A MODIFICATION OF RKAMSUB, WHICH WAS WRITTEN ..... RKAMI 4
BY G.J. LASTMAN AND IS AVAILABLE THROUGH THE CDC CO-OP LIBRARY ..... RKAMI ..... 5
AS 'D2 UTEX RKAMSUB' ..... RKAMI 6
COMMON /RK/ NN, SPACE,MODE,ElMAX,EIMIN,E2MAX,E2MIN,FACT,RSTART RKAMI ..... 7
COMMON Y(20),T,STEP,DYDT (20) RKAM ..... 8
COMMON/RKAMS/XV (5) , FV $(4,20)$, YU $(5,20), E P M, A L P H A, M M$ RKAMI 9
DIMENSION DELY $(4,20), \operatorname{BET}(4)$
RKAM1 10
DOUBLE PRECISION YU

```
 IF (RSTART.EQ.O.) GO TO 1000
 LL=1
 MM=1
 IF (MODE.EQ.1) MM=4
 ALPHA=T
 EPM=0.0
 BET (1) =0.5
 BET (2)=0.5
 BET (3)=1.0
 BET (4)=0.0
 STEP=SPACE
 R=19.0/270.0
 XV (MM) =T
 IF (EIMIN.LE.O.) ElMIN=ElMAX/50.
 IF (FACT.LE.O.) FACT=0.5
 CALL HAMLTN
 DO 320 I=l,NN
 FV (MM,I)=DYDT(I)
 320 YU (MM,I)=Y(I)
 RSTART=0.
 GO TO 1001
 1000 IF (MODE.NE.1) GO TO 2000
C
 RUNGE-KUTTA
 1001 DO 1034 K=1,4
 DO 1350 I=1,NN
 DELY(K,I)=STEP*FV (MM,I)
 Z=YU(MM,I)
 1350 Y(I)=Z+BET (K)*DELY(K,I)
 T=BET (K) *STEP+XV (MM)
 CALL HAMLTN
 DO 1034 I=1,NN
1034 FV(MM,I)=DYDT(I)
 DO 1039 I=1,NN
 DEL=(\operatorname{DELY}(1,I) +2.0*\operatorname{DELY}(2,I)+2.0*DELY (3,I) +DELY (4,I))/6.0
 YU (MM+1,I) =YU(MM,I) +DEL
 MM=MM+1
 XV (MM) =XV (MM-1) +STEP
 DO 1400 I=l,NN
1400 Y(I)=YU(MM,I)
 T=XV (MM)
 CALL HAMLTN
RKAM1 11
RKAMI }1
RKAM1 }1
RKAM1 14
RKAM1 15
RKAMI }1
RKAM1 }1
RKAM1 18
RKAMI }1
RKAMI }2
RKAMl 21
RKAMl }2
RKAMI }2
RKAMI }2
RKAM1 }2
RKAMI }2
RKAMI }2
RKAMI }2
RKAMl }2
RKAMI 30
RKAM1 31
RKAMI 32
RKAM1 33
RKAM1 34
RKAM1 }3
RKAM1 36
RKAM1 37
RKAM1 38
RKAM1 }3
RKAMI 40
RKAMI 41
RKAMI }4
RKAMI }4
RKAM1 44
RKAM1 }4
RKAMI }4
RKAM1 }4
RKAM1 48
RKAM1 }4
RKAMI 50
RKAM1 51
RKAMI }5
RKAM1 53
RKAM1 54
```

```
 IF (MODE.EQ.1) GO TO 42
 DO 150 I=1,NN
 150 FV(MM,I)=DYDT (I) ERNM1 57
 IF (MM.LE.3) GO TO l001
C
C ADAMS-MOULTON
 2000 DO 2048 I=1,NN
 DEL=STEP* (55.*FV (4,I)-59.*FV (3,I) +37.*FV (2,I)-9.*FV(1,I))/24.
 Y(I)=YU (4,I)+DEL
2048 DELY(1,I)=Y(I)
 T=XV (4)+STEP
 CALL HAMLTN
 XV (5)=T
 DO 2051 I=1,NN
 DEL=STEP* (9.*DYDT (I) +19.*FV (4,I) -5.*FV (3,I) +FV (2,I))/24.
 YU (5,I) =YU (4,I) +DEL
 2051 Y(I)=YU(5,I)
 CALL HAMLTN
 IF (MODE.LE.2) GO TO 42
C
C ERROR ANALYSIS
 SSE=0.0
 DO 3033 I=1,NN
 EPSIL=R*ABS(Y(I) -DELY(1,I))
 IF (MODE.EQ.3.AND.Y(I).NE.O.) EPSIL=EPSIL/ABS(Y(I))
 IF (SSE.LT.EPSIL) SSE=EPSIL
 3033 CONTINUE
 IF (ElMAX.GT.SSE) GO TO 3035
 IF (ABS (STEP).LE.E2MIN) GO TO }4
 LL=1
 MM=1
 STEP=STEP * FACT
 GO TO lOO1
 3035 IF (LL.LE.I.OR.SSE.GE.EIMIN.OR.E2MAX.LE.ABS(STEP)) GO TO 42
 LL=2
 MM=3
 XV (2) =XV (3)
 XV (3) =XV (5)
 DO 5363 I=1,NN
 FV (2,I)=FV (3,I)
 FV (3,I)=DYDT (I)
 YU (2,I)=YU(3,I)
5363YU(3,I)=YU(5,I)
 STEP=2.0*STEP
 GO TO 1001
C
C EXIT ROUTINE
 42 LL=2
 MM=4
 DO 12 K=1,3
 XV (K) =XV (K+1)
 XV(K)=XV(K+1)
 FV (K,I) =FV (K+1,I)
 12 YU (K,I)=YU(K+1,I)
 XV(4)=XV(5)
```

RKAMI 55
RKAM1 56
RKAMI 58
RKAM1 59
RKAMI 60
RKAM1 61
RKAMI 62
RKAMI 63
RKAM1 64
RKAM1 65
RKAMI 66
RKAMI 67
RKAM1 68
RKAM1 69
RKAMI 69
RKAMI 70
RKAMI 71
RKAM1 72
RKAMI 73
RKAM1 74
RKAMI 75
RKAMI 76
RKAMI 77
RKAM1 78
RKAMI 79
RKAMI 80
RKAMI 81
RKAMI 82
RKAMI 83
RKAMI 84
RKAMI 84
RKAMI 85
RKAMI 86
RKAM1 87
RKAM1 88
RKAMI 89
RKAMI 90
RKAM1 91
RKAMI 92
RKAMI 93
RKAM1 94
RKAM1 95
RKAM1 95
RKAM1 96
RKAMI 97
RKAM1 98
RKAM1 99
RKAM1100
RKAM1101
RKAM1101
RKAM1I03
RKAM1104
RKAM1105
RKAM1105
RKAM1107
RKAM1108
RKAM1109

```
 DO 52 I=1,NN RKAMlllO
 FV (4,I)=DYDT (I)
RKAMl111
52 YU (4,I)=YU (5,I)
RKAM1112
IF (MODE.LE.2) RETURN
RKAMll13
E=ABS (XV (4) -ALPHA)
RKAMlll4
IF (E.LE.EPM+.25*STEP) GO TO 2000
RKAM1114
EPM=E
RETURN
RKAM1ll6
END
RKAM1117
RKAMIll8
```

|  | SUBROUTINE BACKUP(Z,RSIGN,TC) | BACKUP |
| :---: | :---: | :---: |
| C | MOVES THE RAY TO THE CLOSEST INTERSECTION WITH THE RECEIVER | BACKUP |
| C | OR TERRAIN SURFACE (VARIABLES 'FSELECT' OR 'GSELECT' IN LABELED | BACKUP |
| C | COMMONS /RR/ OR /GG/, RESPECTIVELY, TELL WHICH KIND OF SURFACE). | BACKUP |
| C | CHARACTER*9 NBAK,NGRAZ,NTRY | BACKUP 6 |
| C |  | BACKUP |
| C | PARAMETER (PRNZTL=0.5E-4, PRNDZTL=1.E-6) | BACKUP 9 |
| c | COMMON /RK/ N,STEP, MODE, ElMAX, ElMIN, E2MAX, E2MIN, FACT, RSTART | BACKUP10 |
| C | COMMON DECK "TRAC" INSERTED HERE | CTRAC 2 |
|  | LOGICAL GROUND, SURF, PERIGE, THERE, MINDIS , NEWRAY | CTRAC 4 |
|  | COMMON /TRAC/ GROUND, SURF, PERIGE, THERE, MINDIS , NEWRAY , SMT , OSMT | CTRAC |
|  | COMMON/TRAC/ROLD (20), DROLD (20), TOLD, ZDOT, D2Z,RAD, RADI | CTRAC 6 |
|  | COMMON R(20), T, STP, DRDT (20) | BACKUP13 |
|  | PARAMETER (NWARSZ=1000) | CWW1 3 |
|  | COMMON/WW/ID (10), MAXW, W (NWARSZ) | CWW1 4 |
|  | EQUIVALENCE (EARTHR,W(1)), (INTYP,W(41)), (STEPl,W(44)) | BACKUP15 |
|  | REAL KR | BACKUP16 |
|  | EQUIVALENCE (KR,R(4)), (DKRDT, DRDT (4)) | BACKUP17 |
|  | REAL INTYP | BACKUP18 |
|  | LOGICAL PCNTRL | BACKUP19 |
| C | DATA NBAK,NGRAZ/' BACK UPO', ' GRAZE 1'/ | BACKUP20 |
| $c$ |  | BACKUP21 |
|  | NTRY=NBAK | BACKUP22 |
|  | GO TO 100 | BACKUP2 3 |
| c |  | BACKUP24 |
|  | ENTRY GRAZE(Z,RSIGN,TC) | BACKUP25 |
|  | NTRY=NGRAZ | BACKUP26 |
| C | DEFINE BASE STEP SIZE | BACKUP2 7 |
| 100 | SEFPB $=$ STP | BACKUP28 |
| 100 | STPB=STP | BACKUP29 |
| C |  | BACKUP30 |
| C | DEFINE BACKUP LOCATION TOLERANCES BASED ON INTEGRATION MODE | BACKUP31 |
| C |  | BACKUP32 |
|  | IF (MODE.LT.3) THEN | BACKUP33 |
|  | TOL=STEP1 | BACKUP34 |
|  | ELSEIF (MODE.EQ.3) THEN | BACKUP35 |
|  | TOL=ABS (ElMAX*STPB) | BACKUP36 |
|  | ELSE | BACKUP37 |
|  | TOL=EIMAX | BACKUP38 |

```
 ENDIF
C USE THIS OR MINIMUM STEP SIZE WHICHEVER IS LESS B BACKUP4O
 TOL=AMINI(TOL,FACT*E2MIN)
C
 PCNTRL=W(73).NE.0.0
 THERE=.TRUE.
C STEP TO ESTIMATED CROSSING AT TC.
C********* DIAGNOSTIC PRINTOUT
 IF(PCNTRL) CALI PRINTR (NTRY,0.)
 STEP=TC-T
 STEP=SIGN(AMINI (ABS (STPB) ,ABS (STEP)),STEP)
 MODE=1
 RSTART=1
 TOLD=T
 CALL RMOVE(DROLD,DRDT,3)
 ZDOLD=DOT(Z)
 CALL RKAM
 RSTART=1.0
 ZDOT=DOT (Z)
 IF(NTRY.EQ.NGRAZ .OR. RSIGN*ZDOT.LE.O.0) GO TO 12
C
C********* FIND NEAREST INTERSECTION OF RAY WITH THE HEIGHT HS
 DO 10 I=1,10
 STEP=-Z/ZDOT
 STEP=SIGN (AMINI (ABS (STPB),ABS (STEP)),STEP)
 IF (ABS(Z).LT.PRNZTL .AND. ABS (STEP).LT.TOL) GO TO 60
C********* DIAGNOSTIC PRINTOUT
 IF(PCNTRL) CALI PRINTR(' BACK UPI',0.)
 MODE=1
 RSTART=1.
 TOLD=T
 CALL RMOVE (DROLD,DRDT, 3)
 ZDOLD=ZDOT
 CALL RKAM
 ZDOT=DOT (Z)
 10 RSTART=1.
C
C********* FIND NEAREST CLOSEST APPROACH OF RAY TO THE HEIGHT HS
12 THERE=.FALSE.
 DO 20 I=1,10
C DO 'LOCAL' PARABOLIC FIT
 CALL FIT3(Z,ZOLD, ZDOLD)
 STEP=-ZDOT/D2Z
 STEP=SIGN (AMIN1 (ABS (STPB),ABS (STEP)),STEP)
 IF (ABS (ZDOT).LE.PRNDZTL .AND. ABS (STEP).LT.TOL) GO TO }6
C********* DIAGNOSTIC PRINTOUT
 IF(PCNTRL) CALL PRINTR (' GRAZE l 1,0.)
 MODE=1
 RSTART=1.
 TOLD=T
 CALI RMOVE (DROLD,DRDT,3)
 ZOLD=Z
 ZDOLD=ZDOT
 CALL RKAM
 RSTART=1.
 BACKUP39
 BACKUP41
BACKUP42
BACKUP43
 BACKUP44
 BACKUP45
 BACKUP46
 BACKUP47
 BACKUP48
 BACKUP48
 BACKUP50
 BACKUP51
 BACKUP52
 BACKUP53
 BACKUP54
 BACKUP55
 BACKUP56
 BACKUP57
 BACKUP58
 BACKUP59
 BACKUP60
 BACKUP61
 BACKUP62
 BACKUP63
 BACKUP64
 BACKUP65
 BACKUP66
 BACKUP67
 BACKUP68
 BACKUP69
 BACKUP70
 BACKUP71
 BACKUP72
 BACKUP73
 BACKUP74
 BACKUP75
 BACKUP76
 BACKUP77
 BACKUP78
 BACKUP79
 BACKUP80
 BACKUP81
 BACKUP82
 BACKUP83
 BACKUP84
 BACKUP85
 BACKUP86
 BACKUP87
 BACKUP88
 BACKUP89
 BACKUP90
 BACKUP91
 BACKUP92
 BACKUP93
```

```
 IF (D2Z*Z.IT.O.) GO TO 30
 IF(KPARLEL(Z).EQ.0.0) GO TO 60
 20 CONTINUE
 WRITE (3,350)
350 FORMAT(' ****** COULDN''T FIND CLOSEST APPROACH IN 10 STEPS')
C
 30 CONTINUE
C********* DIAGNOSTIC PRINTOUT
 IF(PCNTRL) CALL PRINTR (' BACK UP2',0.)
 MODE=1
C********* ESTIMATE DISTANCE TO NEAREST INTERSECTION GOING THE RIGHT
C********* DIRECTION OF RAY WITH HEIGHT HS
 CALL FIT3(Z,ZOLD,ZDOLD)
 STEP=(-ZDOT+RSIGN*RAD1)/D2Z
 RSTART=1.
 CALL RKAM
 RSTART=1.
C********* FIND NEAREST INTERSECTION OF RAY WITH HEIGHT HS
 DO 40 I=1,10
 ZDOT=DOT (Z)
 STEP=-Z/ZDOT
 STEP=SIGN (AMIN1 (ABS (STPB),ABS (STEP)),STEP)
 IF (ABS(Z).LT.PRNZTL .AND. ABS (STEP).LT.TOL) GO TO 50
C********* DIAGNOSTIC PRINTOUT
 IF(PCNTRL) CALL PRINTR (' BACK UP3',0.)
 MODE=1
 RSTART=1.
 CALL RKAM
 40 RSTART=1.
 50 THERE=.TRUE.
C********* RESET STANDARD MODE AND INTEGRATION TYPE
 60 MODE=INTYP
 STEP=STPB
 RETURN
 END
```

BACKUP9 4
BACKUP95
BACKUP96
BACKUP97
BACKUP98
BACKUP99
BACKU100
BACKU101
BACKU102
BACKUl03
BACKU104
BACKU105
BACKU106
BACKU107
BACKU108
BACKU109
BACKU110
BACKU111
BACKUl12
BACKUll3
BACKUll4
BACKUll5
BACKU116
BACKUl17
BACKU118
BACKU119
BACKU120
BACKU121
BACKU122
BACKUl23
BACKU124
BACKU125
BACKU126
BACKU127
BACKU128
BACKU129
REAL MODC

```REFLECT62
``` ..... CCC 4
COMMON/CC/MODC (4) , CS , PCST, PCSR, PCSTH , PCSPH
COMMON/CC/MODC (4) , CS , PCST, PCSR, PCSTH , PCSPH
C COMMON DECK "WWR" INSERTED HERE ..... CWWR 2
PARAMETER (NWARSZ=1000) ..... CWWI 3
COMMON/WW/ID (10) ,MAXW,W (NWARSZ) ..... CWWI 4
REAL MAXSTP,MAXERR,INTYP, LLAT, LLON ..... CWW2 2
EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)),(TLAT,W(4)), ..... CWW2 3
1 (TLON,\(W(5)),(O W, W(6)),(F B E G, W(7)),(F E N D, W(8)),(F S T E P, W(9))\), ..... CWW2 4
```

 2 (AZl,W(l0)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)), CWW2 5
 3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), CWW2
 8 (RCVRH,W(20)), CWW2
 4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))CWW2
 5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)), CWW2
 6 (HMIN,W(27)),(RGMAX,W(28)),}\mathrm{ CWW2
 8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2
 6 (STEPl,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 l
 7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75))
 9,(BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 14
 l (LLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86))
 2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
 COMMON DECK "RKAM" INSERTED HERE
 REAL KR,KTH,KPH
 COMMON//R,TH, PH, KR , KTH, KPH , RKVARS (14),TPULSE, CSTEP , DRDT (20)
 C COMMON DECK "UU" INSERTED HERE
 REAL MODU
 COMMON/UU/MODU (4)
 l ,V ,PVT ,PVR ,PVTH ,PVPH
 2 VR PVRT PVRR PVRTH PVRPH
 3 ,VTH,PVTHT, PVTHR,PVTHTH,PVTHPH CUU 8
 4 ,VPH, PVPHT , PVPHR, PVPHTH, PVPHPH CUU 9
 COMMON DECK "FNDER" INSERTED HERE
 COMMON/FNDER/NZ ,NPZR,NPZRR,NPZRTH,NPZRPH,NPZTH,NPZPH , NPZTHTH
 COMMON/FNDER/NPZPHPH,NPZTHPH,NSELECT,NTIME
 C
C
IENTRY=1
REFLECT=0.0
GO TO 5
C
ENTRY KPARLEL(Z)
KPARLEL=0.0
IENTRY=2
GO TO 5
C
ENTRY KNORM(Z)
KNORM=0.0
IENTRY=3
Z(I)=GET (Z)
NR=Z (NPZR)
NTH=Z (NPZTH)/R
NPH=Z(NPZPH)/(R*SIN (TH))
CALL RENORM(NR,1.0,3)
COMPUTE THE NORMAL COMPONENT OF K-VECTOR TO SURFACE
KRNR=KR*NR+KTH*NTH+KPH*NPH
IF(IENTRY.NE.3) GO TO }
C IF ENTRY 3 THEN WE ARE DONE
REFLECT=KRNR
RETURN
COMPUTE THE PARALLEL VECTOR COMPONENT

```

\section*{VNR=VR*NR+VTH*NTH+VPH*NPH}

FCTR=2.0* (KRNR+OWIPAR*VNR/(CS-VNR*VNR))
KR=KR-FCTR*NR
\(\mathrm{KTH}=\mathrm{KTH}-\mathrm{FCTR} * \mathrm{NTH}\) KPH=KPH-FCTR*NPH END
REFLECT=ABS (KPARR) +ABS (KPARTH) +ABS (KPARPH)
RETURN

KPARPH \(=\mathrm{KPH}-\mathrm{KRNR} * \mathrm{NPH}\)
IF(IENTRY. NE.2) GO TO 10 RETURN \(\begin{array}{ll}\text { KPARTH }=\mathrm{KTH}-\mathrm{KRNR} * N T H & \text { REFLEC42 } \\ \text { KPARPH }=K P H-K R N R * N P H & \text { REFLEC4 } 3\end{array}\)

REFLEC44
REFLEC45
REFLEC46
REFLEC47
REFLEC48
REFLEC49
REFLEC50
REFLEC51
REFLEC52
REFLEC53
REFLEC54
REFLEC55
REFLEC56
REFLEC57

SUBROUTINE FIT (Z,ZOLD, ZDOLD)
COMPUTES THREE TYPES OF PARABOLIC FITS TO RAY PATH RELATIVE
TO TERRAIN.
FIT
2

REAL Z (12)
FIT
FIT 4
FIT 5
COMMON DECK "RKAM" INSERTED HERE
FIT 6
REAL KR, KTH, KPH
COMMON//R,TH, PH, KR, KTH, KPH, RKVARS (14) , TPULSE, CSTEP, DRDT (20)
RKAMCOM2

COMMON DECK "TRAC" INSERTED HERE
RKAMCOM4
RKAMCOM5
LOGICAL GROUND, SURF, PERIGE, THERE, MINDIS, NEWRAY
COMMON /TRAC/ GROUND, SURF, PERIGE, THERE,MINDIS, NEWRAY, SMT , OSMT
COMMON/TRAC/ROLD (20), DROLD (20), TOLD, ZDOT,D2Z, RAD, RADI
CTRAC 2
CTRAC 4
CTRAC 5
COMMON DECK "FNDER" INSERTED HERE
COMMON/FNDER/NZ, NPZR,NPZRR, NPZRTH, NPZRPH, NPZTH, NPZPH, NPZTHTH
COMMON/FNDER/NPZPHPH,NPZTHPH,NSELECT,NTIME
REAL D2 (3)
CTRAC 6
CFNDER 2
CFNDER 4
CFNDER 5
FIT 10
FIT 11
\(\begin{array}{llll} \\ \text { USE FIT OF APPENDIX 'J' OF REPORT 'WPL-103' WHICH USES } & \text { FIT } & 12 \\ \text { WEIGHTED ESTIMATE OF IST DERTVATIVE } & \text { FIT } & 13\end{array}\)
WEIGHTED ESTIMATE OF IST DERIVATIVE. FIT FIT 13
IENTRY=1
FIT 15
GO TO 5
FIT 16
FIT 17
USE MODIFIED FIT REQUIRING HEIGHTS OF PARABOIA VERTICES FROM FIT 18
CURRENT AND PREVI
ENTRY FIT2 (Z, ZOLD, ZDOLD)
FIT 19
FIT 20
IENTRY=2
GO TO 5
FIT 21
FIT 22
FIT 23
\(C\)
\(C\)
USE FIT OF APPENDIX U(LOCAL VALUE OF IST DERIVATIVE)
ENTRY FIT3(Z,ZOLD,ZDOLD)
FIT 24
FIT 25
IENTRY=3
FIT 26
FIT 27
FIT
28
\begin{tabular}{|c|c|c|c|}
\hline 5 & ZDOT=DOT ( Z ) & FIT & 29 \\
\hline \multirow[t]{3}{*}{C} & & FIT & 30 \\
\hline & DTI=1.0/(TPULSE-TOLD) & FIT & 31 \\
\hline & DO \(10 \mathrm{I}=1,3\) & FIT & 32 \\
\hline 10 & \(\mathrm{D} 2(\mathrm{I})=(\mathrm{DRDT}(\mathrm{I})-\operatorname{DROLD}(\mathrm{I}))\) *DTI & FIT & 33 \\
\hline \multirow[t]{8}{*}{C} & & FIT & 34 \\
\hline & \(\mathrm{D} 2 \mathrm{Z}=\mathrm{Z}(\mathrm{NPZR}) * \mathrm{D} 2(1)+\mathrm{Z}(\mathrm{NP} 2 \mathrm{TH}) * \mathrm{D} 2(2)+\mathrm{Z}(\mathrm{NPZPH}) * \mathrm{D} 2\) (3) & FIT & 35 \\
\hline & \(1 \quad+\mathrm{Z}\) (NPZRR) *DRDT (1) *DRDT (1) & FIT & 36 \\
\hline & 1 +Z (NPZTHTH) *DRDT (2)*DRDT (2) & FIT & 37 \\
\hline & \(1 \quad+\mathrm{Z}\) (NPZPHPH) *DRDT (3) *DRDT (3) & FIT & 38 \\
\hline & \(1+2.0 *\) ( 1 (NPZRTH) *DRDT (1) *DRDT (2) & FIT & 39 \\
\hline & \(1 \quad+\mathrm{Z}(\mathrm{NPZRPH}) *\) DRDT (1)*DRDT (3) & FIT & 40 \\
\hline & 1 +Z (NPZTHPH) *DRDT ( 2 ) *DRDT (3) ) & FIT & 41 \\
\hline C & & FIT & 42 \\
\hline C & THE STATEMENTS FROM HERE TO 'END FIT' IMPLEMENT THE & FIT & 43 \\
\hline C & \multirow[t]{2}{*}{PARABOLIC FITS IN EQUATIONS J.l AND U. 3 OF THE TEXT.} & FIT & 44 \\
\hline \multirow[t]{4}{*}{C} & & FIT & 45 \\
\hline & IF (IENTRY.NE.2) GO TO 30 & FIT & 46 \\
\hline & SMT=0. & FIT & 47 \\
\hline & IF (D2Z.NE.0.) SMT=0.5*ZDOT*ZDOT/D2Z & FIT & 48 \\
\hline \multirow[t]{4}{*}{C} & USE FIT U. 3 AT THE PREVIOUS POINT OF RAY PATH & FIT & 49 \\
\hline & OSMT=0. & FIT & 50 \\
\hline & IF (D2Z.NE.0.) OSMT=0.5*ZDOLD*ZDOLD/D2Z & FIT & 51 \\
\hline & GO TO 2000 & FIT & 52 \\
\hline & \multirow[t]{3}{*}{IMPLEMENTATION OF FIT FOR EQUATION J.I} & FIT & 53 \\
\hline C & & FIT & 54 \\
\hline \multirow[t]{2}{*}{30} & & FIT & 55 \\
\hline & ZDOTM \(=.5 *\) (ZDOT+ZDOLD) 1000 & FIT & 56 \\
\hline \multirow[t]{5}{*}{C} & IMPLEMENT TESTS OF EQUATIONS J. 2 AND J. 3 & FIT & 58 \\
\hline & IF (ABS (ZDOTM).LE. \(05 *\) ABS (ZDOT)) GO TO 1000 & FIT & 59 \\
\hline & FCTR=(Z \((N Z)-\mathrm{ZOLD}) *\) DTI/ZDOTM & FIT & 60 \\
\hline & D2 \(2=F C T R * D 2 Z\) & FIT & 61 \\
\hline & ZDOT=FCTR*ZDOT & FIT & 62 \\
\hline C & \multirow[t]{2}{*}{END FIT} & FIT & 63 \\
\hline C & & FIT & 64 \\
\hline C & COMMON CODE FOR FIT AND FIT3 & FIT & 65 \\
\hline \multirow[t]{2}{*}{1000} & RAD \(=\mathrm{ZDOT} * \mathrm{ZDOT}-2.0 * \mathrm{Z}\) (NZ) *D2Z & FIT & 66 \\
\hline & RADl=SQRT (AMAXI (RAD, 0.0)) & FIT & 67 \\
\hline 2000 & CONTINUE & FIT & 68 \\
\hline \multirow[t]{4}{*}{C} & CONTINUE & FIT & 69 \\
\hline & \multirow[t]{2}{*}{END} & FIT & 70 \\
\hline & & FIT & 71 \\
\hline & FUNCTION GETI ( 2 ) & GET & 14 \\
\hline C & FUNCTIONALLY THE SAME AS 'GET' PROGRAM, SEE DOCUMENTATION THERE & GET & 15 \\
\hline C & NEEDED BECAUSE RECEIVER MODELS WILL CALL GET TO OBTAIN TERRAIN VA & GET & 16 \\
\hline C & BUT THEY THEMSELVES ARE CALLED VIA GET. HENCE HAVE RE-ENTRANCE & GET & 17 \\
\hline C & PROBLEM. & GET & 18 \\
\hline \multirow[t]{2}{*}{C} & & GET & 19 \\
\hline & REAL Z (*) & GET & 20 \\
\hline
\end{tabular}
```

 REAL PF(10),PG(10) GET 21
 COMMON DECK "RKAM" INSERTED HERE
 REAL KR,KTH,KPH
 COMMON//R,TH, PH , KR,KTH , KPH , RKVARS (14) ,TPULSE , CSTEP, DRDT (20)
 COMMON DECK "FNDER" INSERTED HERE
 COMMON/FNDER/NZ ,NPZR,NPZRR,NPZRTH,NPZRPH,NPZTH,NPZPH ,NPZTHTH
 COMMON/FNDER/NPZPHPH,NPZTHPH,NSELECT,NTIME
 COMMON DECK "RR" INSERTED HERE
 REAL MODREC
 COMMON/RR/ MODREC(4)
 COMMON/RR/F,PFR,PFRR, PFRTH, PFRPH
 COMMON/RR/PFTH, PFPH, PFTHTH, PFPHPH, PFTHPH, FSELECT, FTIME
 COMMON DECK "GG" INSERTED HERE
 REAL MODG
 COMMON/GG/MODG (4)
 COMMON/GG/G , PGR, PGRR, PGRTH , PGRPH
 COMMON/GG/PGTH, PGPH , PGTHTH, PGPHPH , PGTHPH, GSELECT, GTIME
 COMMON D, (
 DECK
 COMMON/CRKTIME/RKTIME
 COMMON DECK "RMACH" INSERTED HERE
 COMMON/CRMACH/RMACH (5)
 EQUIVALENCE (RKTIME,IRKTIME)
 COMMON DECK "WWR" INSERTED HERE
 PARAMETER (NWARSZ=1000)
 COMMON/WW/ID (10),MAXW,W (NWARSZ)
 REAL MAXSTP,MAXERR,INTYP,LLAT,LLON
 CWW2 2
 l (TLONW(5))
 l (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)),
 (AZ1,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13))
 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)),
 (RCVRH,W(20)),
 4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25)
 5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)),
 6 (HMIN,W(27)),(RGMAX,W(28)),
 9
 CWW2 10
 8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)),
 6 (STEPl,W(44)),(STPMAX,W(45)),((STPMIN,W(46)),(FACTR,W(47)),
 7(SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75))), CWW2 ll
 9 ,(BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 13
 I (LLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86))
 2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
 COMMON/CGET/ZERO GET 31
 GET 32
 IENTRY=1
 GET 33
 GO TO 5
 GET 34
 GET 35
 ENTRY DOTl(Z)
 GET 36
 GET 37
 IENTRY=2
 GET 38
 GET 39
 IF(ZERO.EQ.O.0) ZERO=EARTHR*RMACH(3)*2.0
 GET 40
 IF(ITEST(Z(NTIME)).EQ.IRKTIME) GO TO 10 GET 41
 C
GET 42
IF(Z (NSELECT).EQ.FSELECT) CALL RECEVER GET 43
GET 44

```
\begin{tabular}{|c|c|c|}
\hline & IF (Z (NSELECT).EQ.GSELECT) CALL TOPOG & GET 45 \\
\hline & Z (NTIME) =RKTIME & GET 46 \\
\hline C & REMOVE MACHINE ROUND OFF NOISE FROM EXACT RECEIVER LOCATIONS & GET 47 \\
\hline & IF (ABS ( \(\mathrm{Z}(\mathrm{NZ})\) ) . LE. ZERO ) \(\mathrm{Z}(\mathrm{NZ})=0.0\) & GET 48 \\
\hline C & & GET 49 \\
\hline 10 & IF (IENTRY.NE.1) GO TO 20 & GET 50 \\
\hline & GETl=Z (NZ) & GET 51 \\
\hline & RETURN & GET 52 \\
\hline C & & GET 53 \\
\hline 20 & GETl=Z (NPZR) * DRDT (1) + \(\mathrm{Z}(\mathrm{NPZTH}) * \operatorname{DRDT}(2)+\mathrm{Z}(\mathrm{NPZPH}) * \operatorname{DRDT}\) ( 3 ) & GET 54 \\
\hline & RETURN & GET 55 \\
\hline & ENTRY GETSTl(Z) & GET 56 \\
\hline C & & GET 57 \\
\hline C & FORCE LOAD THE GET ROUTINE & GET 58 \\
\hline & CALL GET & GET 59 \\
\hline & END & GET 60 \\
\hline & FUNCTION GET( Z ) & GET 61 \\
\hline C & 'GET' AND ENTRY 'DOT' PROVIDE A CONTROL METHOD FOR AVOIDING & GET 62 \\
\hline C & REDUNDANT CALLS TO THE TERRAIN AND RECEIVER MODELS. THE VALUES & GET 63 \\
\hline C & RETURNED ARE THE FUNCTION VALUES FOR 'F' OR 'G' OR THEIR DERIVATI & GET 64 \\
\hline C & (VIA 'DOT' ENTRY). UNNECESSARY CALLS ARE ELIMINATED THROUGH USE & GET 65 \\
\hline C & OF 'TIME OF CALL' VARIABLES WHICH ARE COMPARED WITH THE CURRENT & GET 66 \\
\hline C & LAST CALI TIME MAINTAINED BY THE 'RKAM' PROGRAM. WHEN VALUES ARE & GET 67 \\
\hline C & NOT CURRENT THEY ARE UPDATED BY CALLS TO THE APPROPRIATE ROUTINES & GET 68 \\
\hline C & & GET 69 \\
\hline & REAL Z (*), PF (10), PG (10) & GET 70 \\
\hline C & COMMON DECK "RKAM" INSERTED HERE & RKAMCOM2 \\
\hline & REAL KR, KTH, KPH & RKAMCOM4 \\
\hline & COMMON//R, TH, PH, KR, KTH, KPH, RKVARS (14) , TPULSE, CSTEP, DRDT (20) & RKAMCOM5 \\
\hline C & COMMON DECK "FNDER" INSERTED HERE & CFNDER 2 \\
\hline & COMMON/FNDER/NZ, NPZR, NPZRR, NPZRTH, NPZRPH, NPZTH , NPZ PH, NPZTHTH & CFNDER 4 \\
\hline & COMMON/FNDER/NPZPHPH,NPZTHPH,NSELECT,NTIME & CFNDER 5 \\
\hline C & COMMON DECK "RR" INSERTED HERE & CRR 2 \\
\hline & REAL MODREC & CRR 4 \\
\hline & COMMON/RR/ MODREC (4) & CRR 5 \\
\hline & COMMON/RR/F, PFR, PFRR, PFRTH, PFRPH & CRR 6 \\
\hline & COMMON/RR/PFTH, PFPH , PFTHTH, PFPHPH, PFTHPH, FSELECT, FTIME & CRR 7 \\
\hline C & COMMON DECK "GG" INSERTED HERE & CGG 2 \\
\hline & REAL MODG & CGG 4 \\
\hline & COMMON/GG/MODG ( 4) & CGG 5 \\
\hline & COMMON/GG/G, PGR, PGRR, PGRTH , PGRPH & CGG 6 \\
\hline & COMMON/GG/PGTH, PGPH, PGTHTH, PGPHPH, PGTHPH , GSELECT, GTIME & CGG 7 \\
\hline C & COMMON DECK "RKTIME" INSERTED HERE & CRKTIME2 \\
\hline & COMMON/CRKTIME/RKTIME & CRKTIME4 \\
\hline C & & GET 76 \\
\hline C & COMMON DECK "RMACH" INSERTED HERE & CRMACH 2 \\
\hline & COMMON/CRMACH/RMACH (5) & CRMACH 4 \\
\hline & EQUIVALENCE (RKTIME, IRKTIME) & GET 78 \\
\hline C & & GET 79 \\
\hline C & COMMON DECK "WWR" INSERTED HERE & CWWR 2 \\
\hline
\end{tabular}
```

 PARAMETER (NWARSZ=1000) CWWI
 COMMON/WW/ID(10),MAXW,W(NWARSZ)
 REAL MAXSTP,MAXERR,INTYP, LIAT,ILON CWW1
 EQUIVALENCE (EARTHR,W(1)),(RAY,W(2)),(XMTRH,W(3)),(TLAT,W(4)), CWW2
 l (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)), CWW2
 2 (AZl,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)),, CWW2
 3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)),, CWW2
 8 (RCVRH,W(20)),
 4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25)) CWW2
 5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)), CWW2
 6 (HMIN,W(27)),(RGMAX,W(28)),
 9
 8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 10
 6 (STEPl,W(44)),(STPMMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)),
 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),((FACTR,W(47)), CWW2 12
 7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75)),
 9 ((BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 l4
 1 (ILAT,W(83)),(ILON,W(84)),(RLAT,W(85)),(RLON,W(86))
 2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96)) CWW2
 COMMON/CGET/ZERO
 EQUIVALENCE (PF,PFR), (PG,PGR)
 GET 81
 DATA PF,PG/1.0,9*0.0,1.0,9*0.0/ GBL 2
 DATA NZ,NPZR,NPZRR,NPZRTH,NPZRPH,NPZTH,NPZPH,NPZTHTH GBL 3
 l ,NPZPHPH,NPZTHPH,NSELECT,NTIME NBTH,NPZPH,NPZTHTH GBL 4
 2/1,2,3,4,5,6,7,8,9,10,11,12/1)
 DATA FTIME,GTIME,FSELECT,GSELECT/2*-1.0,8HRECEIVER ,7HTERRAIN / GBL GBL
 DATA ZERO/O.O/
 GBL }
 IENTRY=1 GET 86
 GO TO 5
 ENTRY DOT(Z)
 IENTRY=2
 CONTINUE
 IF(ZERO.EQ.0.0) ZERO=EARTHR*RMACH (3)*2.0
 IF(ITEST(Z(NTIME)).EQ.IRKTIME) GO TO 10
 GET
 IF(Z(NSELECN)
 GET
 95
 IF(Z (NSELECT).EQ.FSELECT) CALL RECEVER
 GET
 IF(Z(NSELECT).EQ.GSELECT) CALL TOPOG
 GET
 Z (NTIME) =RKTIME
 REMOVE MACHINE ROUND OFF NOISE FROM EXACT RECEIVER IOCATTONS GET 99
 IF(ABS (Z (NZ)).LE. ZERO) GET 100
 IF(ABS (Z (NZ)).LE. ZERO) Z (NZ)=0.0
 IF(IENTRY.NE.I) GO TO 20
 GET=Z (NZ)
 RETURN
 GET=Z (NPZR) *DRDT (1) +Z (NPZTH) *DRDT (2) +Z (NPZPH) *DRDT (3)
 RETURN
 ENTRY DFCNCL(Z)
 FORCE LOAD THE MACHINE DEPENDENT CONSTANTS (SEE MODUTE GFONST () GET 110
 M, GET lll
 CALL DFCNST
 GET 112
 GET 113
 GET 82
 C
20
C

```RETURN102
GET
GETGET

GET 106
GET 107
GET 108
GET 109
GET 110
GET 111
\(\begin{array}{ll}\text { GET } & 112 \\ \text { GET } & 113\end{array}\)
FUNCTION ITEST(I) ITEST ..... 2
C USED TO PASS INTEGER VALUES THROUGH FOR VARIABLES TYPED REAL ITEST ..... 3
ITEST=I ..... ITESTITESTENDITEST4
56
SUBROUTINE CONBLK CONBLK
C DATA INITIALIZATION AND FILE OPENING SERVICE ROUTINE CONBLK
COMMON DECK "HDR" INSERTED HERE ..... CHDR 2
CHARACTER*10 INITID*80,DAT,TOD ..... CHDR COMMON/HDR/SEC ..... CHDR 5
COMMON/HDRC/INITID, DAT,TOD
CONBLK 9
INTEGER PMX, PNTBL, PITBL, PFRMTBL, IDSP (10) PARAMETER DECK "PGROUPS"
PARAMETER (NCHPGl=11,NWPV=250,NSPGP=NCHPGl+2*NWPV+1)
CPROCFI2
CPROCFI4
PGROUPS 3
PARAMETER (MNGRP=9,MXGRP=69,MXLIST=MXGRP-MNGRP+2) COMMON/PROCFL/LIST (MXLIST)
COMMON/PROCFL/PMX, PNTBL (10) , PITBL (10) , PFRMTBL (10), PGP (NSPGP) CPROCFL6
EQUIVALENCE (PGP,IDSP) ..... CPROCFL7
COMMON DECK "CC" INSERTED HERE ..... CCC ..... 2
REAL MODC ..... CCC
COMMON/CC/MODC (4) , CS , PCST, PCSR, PCSTH, PCSPH ..... CCC
C COMMON DE ..... CGG
COMMON/GG/MODG (4) ..... CGG
COMMON/GG/G, PGR , PGRR , PGRTH , PGRPH ..... CGG ..... 4
COMMON/GG/PGTH, PGPH , PGTHTH , PGPHPH , PGTHPH, GSELECT , GTIME ..... CGG ..... 2
REAL MODREC ..... CRR
COMMON/RR/ MODREC (4) ..... CRR
COMMON/RR/F, PFR, PFRR, PFRTH, PFRPH ..... CRR
COMMON/RR/PFTH, PFPH, PFTHTH, PFPHPH, PFTHPH, FSELECT, FTIME ..... CRR
COMMON DECK "TT" INSERTED HERE ..... CTT
COMMON/TT/MODT (4) , T, PTT, PTR, PTTH, PTPH ..... CTT
C COMMON DE ..... CUU
COMMON/UU/MODU (4) ..... CUU
\(1, \mathrm{~V}, \mathrm{PVT}, \mathrm{PVR}, \mathrm{PVTH}, \mathrm{PVPH}\) ..... CUU
2 , VR , PVRT , PVRR ,PVRTH ,PVRPH ..... CUU ..... 4 ..... 5
6
C COMMON DECK "RR" INSERTED HERE ..... 7 ..... 4 ..... 5 ..... 6 ..... 7
C COMMON DE ..... 4 ..... CUU
4 , VPH, PVPHT, PVPHR , PVPHTH, PVPHPH ..... CUU ..... 8

C

COMMON DECK "B2" INSERTED HERE
INTEGER DUMX,DUNTBL, DUITBL, DUFRMTB,IDSDU (10)
COMMON/B2/DUMX, DUNTBL (10), DUITBL (10), \(\operatorname{DUFRMTB~(10),~DUGP~(10)~}\) EQUIVALENCE (DUGP,IDSDU)
C COMMON DECK "B4" INSERTED HERE INTEGER DCMX, DCNTBL, DCITBL, DCFRMTB,IDSDC (10)
COMMON/B4/DCMX, DCNTBL (10) , DCITBL (10), DCFRMTB (10), DCGP (10)
EQUIVALENCE (DCGP,IDSDC)
C COMMON DECK "B6" INSERTED HERE
INTEGER DTMX, DTNTBL, DTITBL, DTFRMTB, IDSDT (10)
COMMON/B6/DTMX, DTNTBL (10) ,DTITBL (10), DTFRMTB (10), DTGP (10)
EQUIVALENCE (DTGP,IDSDT)
C COMMON DECK "Bl" INSERTED HERE
C COMMON DECK "BI" INSERTED HERE
COMMON/B1/UMX, UNTBL (10), UITBL (10), UFRMTBL (10), UGP (10)
EQUIVALENCE (UGP,IDSU)
COMMON DECK "RAYDEV" INSERTED HERE
DEVICE ASSIGNED TO RAYTRC INPUT FILE
COMMON/RAYDEV/NRYIND, NDEVTMP, NFRMAT, NDEVGRP, NDEVBIN
COMMON DECK "CUCON" INSERTED HERE
COMMON/UCONV/CNVV \((4,4)\)
CHARACTER PCV*3, CNVC*2
COMMON/UCONC/PCV (4), CNVC (4, 4)
COMMON DECK "SS" INSERTED HERE REAL MODSURF
COMMON/SS/ MODSURF (4)
COMMON/SS/U, PUR, PURR, PURTH, PURPH
COMMON/SS / PUTH , PUPH , PUTHTH, PUPHPH, PUTHPH, USELECT, UTIME
COMMON DECK "CONST" INSERTED HERE
COMMON/PCONST/CREF, RGAS, GAMMA
COMMON/MCONST/PI, PIT2, PID2, DEGS, RAD, ALN10
COMMON DECK "WWR" INSERTED HERE
PARAMETER (NWARSZ=1000)
COMMON/WW/ID (10), MAXW, W (NWARSZ)
REAL MAXSTP, MAXERR, INTYP, LLAT, LLON
EOUIVATENCE (1) CWW2 2
1 (TLON W (5)) CWW,W 3
2 (AZ1,W(10)),(AZBEG,W(11)),(AZEND,W(12)),W(8)),(FSTEP,W(9)), CWW24 4
3 (BETA 14
8 (RCVRH,W(20)),
4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))CWW2 8
5, (HMAX,W(26)), (RAYFNC,W(29)),(EXTINC,W(33)), CWW2 9
(HMIN,W(27)), (RGMAX,W(28)),
(INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 11
6 (STEPI,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 12
7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75)), CWW2 13
9 , (BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 14
1 (LIAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86)) CWW2 15
\(2,(T I C, W(87)),(H B, W(88)),(H T, W(89)),(T I C V, W(96)) \quad\) CWW2 16
COMMON DECK "B9" INSERTED HERE
INTEGER GMX, GNTBL, GITBL, GFRMTBL, IDSG (10)

CONBLKI 6

CB8 2
CB8 4
\(\begin{array}{ll}\text { CB8 } & 4 \\ \text { CB8 } & 5\end{array}\)
CB8 6
CB2 2
CB2 4
CB2 5
CB2 6
CB4 2
CB4 4
CB4 5
\(\begin{array}{ll}\text { CB4 } & 6 \\ \text { CB6 }\end{array}\)
CB6 2
CB6 4
CB6 5
CB6 6
CBI 2
\(\begin{array}{ll}\text { CB1 } & 4\end{array}\)
CBI 5
C COMMON DECK "B3" INSERTED HERE ..... 2
INTEGER CMX,CNTBL,CITBL,CFRMTBL,IDSC(10)
COMMON/B3/CMX, CNTBL (10), CITBL (10) , CFRMTBL (10) , CGP (512) ..... CB3 ..... 4
CB3EQUIVALENCE (CGP,IDSC), (ANC,CGP(11))
CB3
COMMON DECK "B5" INSERTED HERE ..... 2
EQUIVALENCE (MGP,IDSM)
CB5
CB5 ..... CB5
INTEGER TMX,TNTBL,TITBL,TFRMTBL,IDST(10) ..... 45
CB5
COMMON/B5/TMX,TNTBL(10),TITBL(10), TFRMTBL (10) , TGP (262) ..... 5
CB5
EQUIVALENCE (TGP,IDST), (ANT,TGP(11))
COMMON DECK "B7" INSERTED HERE ..... 6CB7
CB7
INTEGER MMX,MNTBL,MITBL,MFRMTBL,IDSM(10)CB74
REAL MGP
COMMON/B7/MMX, MNTBL (10) ,MITBL(10) ,MFRMTBL (10) , MGP (10)CB76
CB7 ..... 7
REAL KAY2, KAY2I
CRINPLE2
COMPLEX PNP, POLAR,LPOLAR
LOGICAL SPACE
CHARACTER DISPM*6
COMMON/RINPL/DISPM
COMMON /RIN/ MODRIN (8), RAYNAME ( 2,3 ), TYPE (3), SPACE
COMMON/RIN/OMEGMIN, OMEGMAX,KAY2,KAY2I
COMMON/RIN/PNP (10), POLAR, LPOLAR, SGNCOMMON/MM/MODM (4) , M, PMT, PMR, PMTH, PMPH
CRINPLE4
CRINPLE5
CRINPLE6
CRINPLE7
CRINPLE8
CRINPLE9
CRINPLIO
CRINPLII
COMMON DECK "MM" INSERTED HERE
REAL M, MODM
C ..... CMM ..... 2
C COMMON/MM/MODM (4) ,M, PMT, PMR , PMTH , PMPH C COMMON DECK "PP" INSERTED HERE ..... CMM ..... 54CPP
REAL MODP2
CPP
CPP
COMMON/PP/MODP (4) , P, PPT, PPR, PPTH, PPPH ..... CPP ..... 4
C COMMON DECK "AA" INSERTED HERE ..... 5
CAA
REAL MODA ..... 2
CAA
REAL MU,MUPT, MUPR,MUPTH,MUPPH ..... 4
CAA
REAL KAP, KAPPT, KAPPR, KAPPTH, KAPPPH ..... 5
CAA
COMMON/AA/MODA (4) ,MU, MUPT, MUPR, MUPTH, MUPPH ..... 6
CAA
COMMON/AA/KAP, KAPPT, KAPPR, KAPPTH, KAPPPH ..... 7
CAA
COMMON DECK "FLAG" INSERTED HERE ..... 8
CFLA
LOGICAL NEWWR, NEWWP, NEWTRC, PENET ..... CFLAG 4
COMMON/FLGP/NSET ..... CFLAG 5
CFLAG 6
COMMON DECK "RKTIME" INSERTED HERECOMMON/CRKTIME/RKTIME
COMMON/RAYCON/MCONP
EQUIVALENCE (RKTIME, IRKTIME)
CC COMMON DECK "Blo" INSERTED HERE
CRKTIME2
CRKTIME4
CONBLK37
CONBLK38
CONBLK39
CONBLK40CONBLK41
INTEGER DGMX, DGNTBL, DGITBL, DGFRMTB,IDSDG(10) ..... CB9 ..... 2
COMMON/B10/DGMX, DGNTBL (10), DGITBL(10), DGFRMTB(10), DGGP (10) ..... CB9 ..... 4
EQUIVALENCE (DGGP,IDSDG) ..... CB9
CB9 6
COMMON DECK "B8" INSERTED HERE ..... CBIO 2
INTEGER RMX,RNTBL,RITBL, RFRMTBL,IDSR(10) ..... CB10 ..... 4
COMMON/B8/RMX,RNTBL (10), RITBL(10), RFRMTBL(10), RGP(10) ..... CB10 EQUIVALENCE (RGP,IDSR)CBIO 6
COMMON DECK "CBl7" INSERTED HERE ..... CB17 2
INTEGER VMX,VNTBL,VITBL,VFRMTBL,IDSV(10) ..... CB17 4
```

 COMMON/Bl7/VMX,VNTBL(10),VITBL(10),VFRMTBL(10),VGP(53) CBl7 5
 EQUIVALENCE (VGP,IDSV),(ANV,VGP(11))
 CB17
 6
 C COMMON DECK "CBI8" INSERTED HERE
TNTEGER DYMX DVNTBL DVITBI DVFRMB,IDSDV(10)
INMOR DVA,
2
COMMON/BI8/DVMX, DVNTBL (10), DVITBI (10),DVFRMTB(10),DVGP(11) 4, 4
EQUIVALENCE (DVGP,IDSDV),(ANDV,DVGP(11)) CB18 6
COMMON DECK "CBI9" INSERTED HERE
INTEGER PRMX, PRNTBL,PRITBL, PRFRMTB,IDSPR(10)
CB19 2
COMMON/BIO/PRMX PRIN
COMMON/B19/PRMX,PRNTBL(10),PRITBL(10),PRFRMTB(10),PRGP(11) CB19 5
EQUIVALENCE (PRGP,IDSPR),(ANP,PRGP(11))
C COMMON DECK "CB2O" INSERTED HERE
INTEGER DPMX,DPNTBL,DPITBL,DPFRMTB,IDSDP(I0)
COMMON/B20/DPMX,DPNTBL(10),DPITBL(10),DPFRMTB(10),DPGP(11) CB20 5
EQUIVALENCE (DPGP,IDSDP),(ANDP,DPGP(11))
REAL KVECT(22)
REAL VSET(20)
EQUIVALENCE (KVECT,KAY2),(VSET,V)
DATA KVECT/22*0.0/
DATA RAYNAME/6*1H/
DATA VSET/20*0.0/
DATA OMEGMIN, OMEGMAX/0.0,0.0/
DATA POLAR,LPOLAR/(0.0,0.0),(1.0,0.0)/
DATA IRKTIME/O/
DATA MCONP/O/
DATA CREF,GAMMA,RGAS/1.0,1.4,8.31436E-3/
DATA NRYIND,NDEVTMP,NFRMAT,NDEVGRP,NDEVBIN/8,4,0,10,11/
DATA PCV/'AN','LN','FQ',''/
DATA CNVC/'RD','K'K','RD',',',
DATA CNVC/'RD','KM','RD',','
DATA CNVC/'RD','KM','RD','',',
DATA IDSDC,IDSDT,IDSDU,IDSC,IDSM,IDST,IDSU,IDSG/80*1H
DATA IDSDG,IDSV,IDSDV,IDSPR,IDSDP,IDSR/60*1H/
DATA MODG/7HNO MODL,0.0,7HNO MODL,0.0/
DATA MODREC/7HNO MODL,0.0,7HNO MODL,0.0/
DATA MODC/7HNO MODL,O.0,7HNO MODL,0.0/
DATA MODM/7HNO MODL,0.0,7HNO MODL,0.0/
DATA MODT/7HNO MODL,0.0,7HNO MODL,0.0/
DATA MODU/7HNO MODL, 0.0,7HNO MODL,0.0/
DATA MODC/7HNO MODL,0.0,7HNO MODL,0.0/
DATA MODT/7HNO MODL,O.0,7HNO MODL,O.0/
DATA MODM/7HNO MODL,0.0,7HNO MODL,0.0/
DATA MODP/7HNO MODL,0.0,7HNO MODL,0.0/
DATA MODA/7HNO MODL,0.0,7HNO MODL,0.0/
RETURN
ENTRY STDINI
CALI OPNREP(NDEVTMP,'TAPE4')
CALL OPNURP(NDEVBIN,'TAPE6')
CALL OPNREP(9,'PUNCH')
CB19 6
DATA CNVV /16*1.0/
DATA MODM/7HNO MODL,0.0,7HNO MODL,0.0/ CONBLK78

RETURN

```
ENTRY STDINI
CALI OPNREP (NDEVTMP,'TAPE4')
CALL OPNREP (9,'PUNCH')
CB19 6
CB20 2
CB2 04
CB2 0
CB20 6
CONBLK48
CONBLK49
CONBLK50
CONBIK51
CONBLK52
CONBLK53
CONBLK54
CONBLK55
CONBLK56
CONBLK57
CONBLK58
CONBLK59
CONBLK60
CONBLK61
CONBLK62
CONBLK63
CONBLK64
CONBLK65
CONBLK66
CONBLK67
CONBLK68
CONBLK69
CONBLK70
CONBLK71
CONBLK72
CONBLK73
CONBLK74
CONBLK75
CONBLK76
CONBLK77
CONBLK78
CONBLK79
CONBLK80
CONBLK81
CONBLK82
CONBLK91
CONBLK92
CONBLK9 3
CONBLK9 4
CONBLK95
CONBLK96
```

```
C
    ENTRY STDINT
        CONBLK97
        OPEN (UNIT=NRYIND,FILE='DINP',STATUS='OLD',ERR=1000)
        REWIND NRYIND
        CALL OPNREP(2,'OUTPUT')
        CALL OPNREP(3,'DOUTP')
        CALL OPNURP(NDEVGRP,'TAPE5')
C
C TEMPORARY WE HOPE, TO MAKE CRAY VERSION WORK
        FSELECT=8HRECEIVER
        GSELECT=7HTERRAIN
C INITIALIZE RAYSET FILE
        READ(NRYIND,'(A)',END=1000) INITID
        CALL SETW
        CALL SYSDAT (DAT)
        CALL SYSTIM(TOD)
        CALL SYSSEC(SEC)
C INITIALIZE POINT MODEL LIST
        LIST(1)=1
        IIST(2)=0
C FILL FORMAT CONTROL ARRAYS
    PNTBL(1)=1
C ALLOW FOR AN 80 CHARACTER IDENT STRING (A8)
    PNTBL (2)=NCHPG1
C ALLOW MAXIMUM 250 WORD PER VARIABLE
    PITBL(2)=NWPV
C FOR BOTH X AND Y PLUS I FOR NUMBER OF VARIABLES
        PNTBL (3) =NSPGP
        RETURN
1000 STOP 'DINP FORMAT ERROR'
CONBLK98
CONBLK99
CONBLIOO
CONBL101
CONBL102
CONBLIO3
CONBL104
CONBL105
CONBLIO6
CONBL107
CONBL108
CONBL109
CONBLIlO
CONBLll1
CONBLl12
CONBLI13
CONBL114
CONBLI15
CONBL116
CONBLIl7
CONBLI18
CONBL119
CONBL120
CONBL121
CONBL122
CONBL123
CONBLI24
CONBLI25
CONBL126
CONBL127
```



```
FUNCTION RENORM(VECTOR,NNORM,NCOMPS) RENORM 2
C NORMALIZES 'NCOMPS' COMPONENT VECTOR 'VECTOR' TO MAGNITUDE
C 'NNORM' AND RETURNS SQUARE ROOT OF FACTOR NEEDED.
    REAL NNORM,VECTOR(*)
C
    RENORM=0.0
    IF(NNORM.LE.O.0) RETURN
C
10 RENORM=RENORM+VECTOR(I) *VECTOR (I)
    IF(RENORM.EQ.O.O) RETURN
C
RENORM=SQRT (NNORM/RENORM)
    DO 20 I=l,NCOMPS
20 VECTOR(I)=VECTOR(I)*RENORM
C
RETURN
END
RENORM }
RENORM }
RENORM 5
RENORM }
RENORM }
RENORM 8
RENORM }
RENORM=0.0
DO 10 I=1,NCOMPS
RENORMIO
RENORMII
RENORM12
RENORM13
RENORM14
RENORM15
RENORM16
    SUBROUTINE SET2 (A,V,N) SET2 2
C SETS N COMPONENTS OF VECTER TO SINGLE VALUE V SET2 3
C SET2 4
REAL A(N) SET2
C
DO 100 I=1,N
SET
A(I)=V
SET2 }
8
END SET2
9
SUBROUTINE PRINTR(EVENT,CARD)
CHARACTER EVENT*9,NWHY*8,CC*1,PC*1,TMP*9
PRINTS OUTPUT AND OUTPUTS RAYSETS(MACHINE READABLE OUTPUT)
PRINTR 2
PRINTS OUTPUT AND OUTPUTS RAYSETS (MACHINE READABLE OUTPUT) PRINTR 4 PRINTR 5 WHEN 'CARD' ARGUMENT NONZERO. REAL KNORM DIMENSION GO \((3,3), \operatorname{Gl}(3,3)\) CHARACTER* 12 HEADRS (20), \(\operatorname{HEAD}(20)\), UNITS (20), UNIT(20) PRINTR 6 PRINTR 7 PRINTR 8 PRINTR 9
PRINTR10
```


DIMENSION RPRINT(20),NPR(20)

```
PRINTRII
```

C COMMON DECK "RK" INSERTED HERE

CRK 2

```
C DEFINE SIZE REQUIRED FOR RAY STATE SAVE ARRAY CRK 4
```

```
        PARAMETER (LRKAMS=87+2*100,NXRKMS=12+IRKAMS,MXEQPT=21) CRK 5
        PARAMETER (NRKSAV=NXRKMS+MXEQPT-l) CRK
        5
        COMMON /RK/ NEQS,STEP,MODE,ElMAX,E1MIN,E2MAX,E2MIN,FACT,RSTART CRK 7
    C COMMON DECK "CERR" INSERTED HERE
        COMMON/ERR/NERG,NERR,NERT,NERP
        CERR
        CERR
        CGG
        COMMON DECK "GG" INSERTED HERE
        REAL MODG
        COMMON/GG/MODG (4)
        COMMON/GG/G, PGR, PGRR, PGRTH, PGRPH
        COMMON/GG/PGTH , PGPH , PGTHTH, PGPHPH , PGTHPH, GSELECT , GTIME
        COMMON DECK "CONST" INSERTED HERE
        COMMON/PCONST/CREF,RGAS,GAMMA
        COMMON/MCONST/PI, PIT2,PID2 , DEGS, RAD,ALN10
        COMMON DECK "FLAG" INSERTED HERE
        LOGICAL NEWWR,NEWWP,NEWTRC, PENET
        COMMON /FLG/ NTYP,NEWWR,NEWWP,NEWTRC,PENET,LINES,IHOP,HPUNCH
        COMMON/FLGP/NSET
        COMMON DECK "RINPLEX" INSERTED HERE
        REAL KAY2,KAY2I
        COMPLEX PNP,POLAR,IPOLAR
        LOGICAL SPACE
        CHARACTER DISPM*6
        COMMON/RINPL/DISPM
        COMMON /RIN/ MODRIN (8),RAYNAME (2,3),TYPE(3),SPACE
        COMMON/RIN/OMEGMIN , OMEGMAX, KAY2 , KAY2I
        COMMON/RIN/PNP (10), POLAR, LPOLAR, SGN
        COMMON DECK "RKAM" INSERTED HERE
        REAL KR,KTH,KPH
        COMMON//R ,TH, PH, KR, KTH , KPH , RKVARS (14) ,TPULSE, CSTEP, DRDT (20)
        COMMON DECK "WW" INSERTED HERE
        PARAMETER (NWARSZ=1000)
        COMMON/WW/ID(10),MAXW,W(NWARSZ)
        REAL MAXSTP,MAXERR,INTYP,ILAT,LLON
        EQUIVALENCE (EARTHR,W(1)),(RAY,W(2)),(XMTRH,W(3)),(TLAT,W(4)), CWW2
        l (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)),, CWW2
        2 (AZl,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)),, CWW2
        3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17))
        8 (RCVRH,W(20)),
        4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))CWW2 8
        5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)),
        6 (HMIN,W(27)),(RGMAX,W(28))
        CWW2 9
        CWW2 10
        8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 11
        6 (STEP1,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 12
        (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75)))
        9,(BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 l4
        1 (LLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86))
        2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
    REAL MMODEL,MFORM,MID
        CWW3 2
        CWW3 3
    C
    WIND 100-124
    EQUIVALENCE (W(100),UMODEL),(W(101),UFORM),(W(102),UID)
        CWW3 4
            CWW3 5
            CWW3 6
    DELTA WIND 125-149 CWW3
    EQUIVALENCE (W(125),DUMODEL),(W(126),DUFORM),(W(127),DUID) CWW3 8
CWW3 9
```



```
C
    NWHY=EVENT(2:)
    GO TO 10
C
C INITIALIZATION ENTRY POINT FOR PRINTR. CALLED FOR EACH NEW
C W-ARRAY.
    ENTRY IPRINTR
C
C********* NEW W ARRAY -- REINITIALIZE
    NEWWP=.FALSE.
    SPL=SIN (PLON-TLON)
    CPL=SIN (PID2-(PLON-TLON))
    SP=SIN (PLAT)
    CP=SIN (PID2-PLAT)
    SL=SIN (TLAT)
    CL=SIN (PID2-TLAT)
C********* MATRIX TO ROTATE COORDINATES
    GO(1, 1)=CPL*SP*CL-CP*SL
    GO(1,2)=SPL*SP
    GO(1,3)=-SL*SP*CPL-CL*CP
    GO(2,1)=-SPL*CL
    GO (2,2)=CPL
    GO (2,3)=SL*SPL
    GO (3,1) =CL*CP*CPL+SP*SL
    GO(3,2)=CP*SPL
    GO (3,3)=-SL*CP*CPL+SP*CL
    DENM=GO(1, 1) *GO (2,2) *GO (3,3) +GO(1, 2) *GO(3,1) *GO (2, 3)
    l +GO(2,1)*GO(3,2)*GO(1,3)-GO(2,2)*GO(3,1)*GO(1,3)
    2-GO(1,2)*GO(2,1)*GO(3,3)-GO(1,1)*GO(3,2) *GO(2,3)
C********* THE MATRIX Gl IS THE INVERSE OF THE MATRIX G
    G1(1, 1)=(GO(2,2)*GO(3,3)-GO(3,2)*GO(2,3))/DENM
    G1(1,2)=(GO(3,2)*GO(1,3)-GO(1,2)*GO(3,3))/DENM
    G1 (1,3) =(GO (1,2)*GO (2,3)-GO (2,2)*GO (1,3))/DENM
    G1(2,1)=(GO(3,1)*GO(2,3)-GO(2,1) *GO (3,3))/DENM
    Gl (2,2)=(GO(1,1)*GO(3,3)-GO(3,1) *GO(1,3))/DENM
    G1(2,3)=(GO(2,1)*GO(1,3)-GO(1,1)*GO(2,3))/DENM
    Gl(3,1)=(GO(2,1)*GO(3,2)-GO(3,1)*GO(2,2))/DENM
    Gl (3,2)=(GO(3,1)*GO(1,2)-GO(1,1)*GO(3,2))/DENM
    G1 (3,3)=(GO(1,1)*GO(2,2)-GO(2,1) *GO(1,2))/DENM
    RO=EARTHR+XMTRH
C********* CARTESIAN COORDINATES OF TRANSMITTER
    XR=RO*GO (1, 1)
    YR=RO*GO (2,1)
    ZR=RO*GO (3,1)
    CTHR=G0(3,1)
    STHR=SIN (ACOS (CTHR))
    PHIR=ATAN2(YR,XR)
    ALPH=ATAN2(GO(3,2),GO(3,3))
C*********
    NR=0
    NP=0
    NERG=0
    NERR=0
    NERT=0
    NERP=0
```

PRINTR33
PRINTR34
PRINTR35
PRINTR36
PRINTR37
PRINTR38
PRINTR39
PRINTR40
PRINTR41
PRINTR42
PRINTR43
PRINTR44
PRINTR45
PRINTR46
PRINTR47
PRINTR48
PRINTR49
PRINTR50
PRINTR51
PRINTR52
PRINTR53
PRINTR54
PRINTR55
PRINTR56
PRINTR57
PRINTR58
PRINTR59
PRINTR60
PRINTR61
PRINTR62
PRINTR63
PRINTR64
PRINTR65
PRINTR66
PRINTR67
PRINTR68
PRINTR69
PRINTR70
PRINTR71
PRINTR72
PRINTR73
PRINTR74
PRINTR75
PRINTR76
PRINTR77
PRINTR78
PRINTR79
PRINTR80
PRINTR81
PRINTR82
PRINTR83
PRINTR84
PRINTR85
PRINTR86
PRINTR87

```
C INSURE NO GARBLE IN HEADERS PRINTR88
    HEAD(I)=' ' PRINTR89
    UNIT(I)=' '
C
    DO 7 NN=7,20
    IF (W(NN+50).EQ.0.) GO TO 7
C********* DEPENDENT VARIABLE NUMBER NN IS BEING INTEGRATED
C********* NR IS THE NUMBER OF DEPENDENT VARIABLES BEING INTEGRATED
    NR=NR+1
C ENABLE SELECTED RELATIVE ERROR PRINTOUTS FOR TERRAIN(G) OR
C ITS DERIVATIVES WITH RESPECT TO (R)ANGE, (T)HETA OR (P)HI.
    IF(NN.EQ.11) NERG=NR
    IF(NN.EQ.12) NERR=NR
    IF(NN.EQ.13) NERT=NR
    IF(NN.EQ.14) NERP=NR
    IF (W(NN+50).NE.2.) GO TO 7 PRINTl03
    PRINTR91
    PRINTR92
    PRINTR93
    PRINTR94
    PRINTR95
    PRINTR96
    PRINTR97
    PRINTR98
    PRINTR99
    PRINT100
    PRINT101
    PRINTl02
C********* DEPENDENT VARIABLE NUMBER NN IS BEING INTEGRATED AND PRINTED.PRINT104
C********* NP IS THE NUMBER OF DEPENDENT VARIABLES BEING INTEGRATED AND PRINT105
C********* PRINTED
    NP=NP+1 PRINT107
PRINT106
C********* SAVE THE INDEX OF THE DEPENDENT VARIABLE TO PRINT PRINT108
            NPR(NP)=NR
            HEAD (NP) =HEADRS (NN)
            HEAD (NP) =HEADRS (NN)
            UNIT (NP) =UNITS (NN)
        7 CONTINUE
            NPM=MINO(NP,3)
            NPl=NPM+1
            P=0.0
            ABSORB=0.0
            DOPP=0.0
            NEQS=NR+6
            RETURN
C
            ENTRY PRNHDI(CC)
C PRINT PRINTR HEADER l
C IF NO OUTPUT NEEDED EXIT NOW
            IF(PRTSRP.NE.O.0) RETURN
C
C ADD NUMBER OF LINES NEEDED FOR THIS HEADER
            PC=CC
            IF(CC.EQ.'I') CALL NEWPAG(NPAG,INT (PAGLN),PC)
            LINES=LINES+3
C********** PRINT COLUMN HEADINGS
C
            WRITE(3,1100) PC,(HEAD (NN) ,NN=1,NPM)
C
1100 FORMAT (A,T25,'ELEVATION',T54,'AZIMUTH',T71,'ELEVATION'/ P PRINT134
                            PRINT109
            DOPP=0.0
                    PRINT1l0
                    PRINTllI
                    PRINTIl2
                            PRINTll3
                    PRINTl14
                    PRINT115
                    PRINTIl6
                    PRINTI17
                            PRINTII8
                    PRINT119
                    PRINT120
                    PRINT120
                    PRINTI22
                    PRINT123
                    PRINT124
                    PRINT125
                    PRINT126
                            PRINT127
                            PRINT128
                            PRINT129
                            PRINT130
PRINT131
PRINT131
PRINT133
    3,T20,2('ABOVE',6X),T53,'DEVIATION',T72,'ANGLE'/' ERROR EVENT' PRINTI36
```



```
C
            WRITE (3,1150) (UNIT(NN),NN=1,NPM)
WRITE(3,1150) (UNIT(NN),NN=1,NPM)
    1 ,'SEC',3X,3(3X,A7,2X)')
PRINTl42
```

```
C
    RETURN
C
    ENTRY PRNHD2 (CC)
C PRINT PRINTR HEADER I N NO OUTPUT NEEDED EXIT NOW
    IF (PRTSRP.NE.0.0) RETURN
C PAGE BY HALF LENGTH
    LINSPP=PAGLN/2
    IF(LINSPP.LT.40) LINSPP=PAGLN
    PC=CC
    IF(CC.EQ.'1') CALL NEWPAG(NPAG,IINSPP,PC)
C ADD NUMBER OF LINES NEEDED FOR THIS SUBHEADER
    LINES=LINES+1
C
    IF(ELEND.GE.ELBEG+ELSTEP) THEN
        WRITE(3,'(A,''ELEVATION ANGLE OF TRANSMISSION =''
    1 ,F10.4,'' DEG'')') PC,BETA*DEGS
        ELSEIF(AZEND.GE.AZBEG+AZSTEP) THEN
        WRITE(3,'(A,''AZIMUTH ANGLE OF TRANSMISSION =''
    I ,Fl0.4,'' DEG'')') PC,AZ1*DEGS
        ENDIF
        RETURN
C
C IF PRINTING SUPPRESSED AND RAYSETS OFF NOTHING TO DO
10 IF(PRTSRP.NE.0.0 .AND. CARD.EQ.O.0) RETURN
    CALL DISPER
    IF (CARD.EQ.0.0 .OR. IHOP.NE.0) GO TO 12
C********** OUTPUT A TRANSMITTER RAYSET
C NOTE: THIS IS A SPECIAL CASE, ALL OTHER RAY EVENTS ARE
C OUTPUT AT CODE 'PUNCH A RAYSET' BELOW.
C
    TLOND=TLON*DEGS
    IF (TLOND.IT.O.) TLOND=TLOND+360.
    TLATD=TLAT*DEGS
    IF (TLATD.LT.0.) TLATD=TLATD+360.
    AZ=AZl*DEGS
    EL=BETA*DEGS
    NHOP=HOP
    NXMTRH=ROUND (XMTRRH*1.E4)
    NTLATD=ROUND(TLATD*1.E3)
        NTLOND=ROUND(TLOND*1.E3)
        NRCVRH=ROUND(RCVRH*1.E4)
            NF=ROUND(OW*I.E4)
            NAZ=ROUND(AZ*1.E5)
                NEL=ROUND(EL*1.E5)
            NPOLAR1=ROUND (REAL (POLAR) *1.E2)
            NPOLAR2=ROUND (AIMAG (POLAR) *1.E2)
            WRITE (9,1201) ID(1),TYPE(NTYP) ,NXMTRH,NTLATD,NTLOND,NRCVRH,NF,NAZ
        1 ,NEL,NPOLAR1,NPOLAR2,NHOP, 'T'
    1201 FORMAT(A3,A1,I9,2I6,2I9,2I10,5X,I5,I4,I2,A1)
C*********
12 V=1.E10
C OBTAIN THE WORST ERROR OF THOSE ENABLED.
    IF (KAY2.NE.0.) V=(KR**2+KTH**2+KPH**2)/KAY2-1.
```

```
    ERT=1HK PRINT198
    V=RERR(V,ERT, 'G',NERG,G) PRINT199
    V=RERR(V,ERT,''R',NERR,PGR)
    V=RERR(V,ERT,'T',NERT, PGTH)
    V=RERR(V,ERT,'P',NERP,PGPH)
    PRINT201
C
    H=R-EARTHR
    STH=SIN (THETA)
    CTH=SIN (PID2-THETA)
C********* CARTESIAN COORDINATES OF RAY POINT, ORIGIN AT TRANSMITTER
    XP=R*STH*SIN (PID2-PHI)-XR
    YP=R*STH*SIN (PHI)-YR
    ZP=R*CTH-ZR
    C********* CARTESIAN COORDINATES OF RAY POTNT ORTGIN AT TRANSMITmER PRINT210
    C********* ROTATED (
        EPS=XP*Gl(1, 1) +YP*Gl(1,2)+ZP*Gl(1,3)
        ETA=XP*G1 (2,1)+YP*G1 (2,2)+MP*G1(2,3)}\quad\mathrm{ PRINT213
        ZETA=XP*Gl (3,1)+YP*Gl(3,2)+2P*Gl
        *)
        RCE=SQRT (RCE2)
C********* GROUND RANGE
            RANGE=EARTHR*ATAN2(RCE, EARTHR+EPS+XMTRH)
C********* ANGLE OF WAVE NORMAL WITH LOCAL HORIZONTAL
    ELL=ATAN2(KR,SQRT (KTH**2+KPH**2))*DEGS
C********* STRAIGHT LINE DISTANCE FROM TRANSMITTER TO RAY POINT
    SR=SQRT (RCE2+EPS**2)
C********* TERRAIN RELATIVE HEIGHT
    GRH=GET (G)/PGR
C REPORT GROUP TIME AS FIRST 'OPTION'
    RPRINT (1) =T
    IF (NPl.LT.2) GO TO 16
C ADD MORE OPTIONS IF REQUESTED
    DO 15 I=2,NPI
    NN=NPR(I-1)
        15 RPRINT (I)=RKVARS (NN)
C
16 IF(V.GE.O.0) THEN
            WRITE(TMP,'(Al,E7.2)') ERT,V
        ELSE
            WRITE(TMP,'(A1,E7.1)') ERT,V
            ENDIF
C DETERMINE WHERE TO PUT A SPACE
C AT BEGINNING OR END OF IST 2 VALUES
    KT=1
    IF(TMP(1:1).EQ.'K') KT=2
C
    IF (SR.GE.1.E-6) GO TO 20
C********* TOO CLOSE TO TRANSMITTER TO CALCULATE DIRECTION FROM
C********* TRANSMITTER
            IF(PRTSRP.EQ.0.0)
            1 WRITE (3,1500)TMP(KT:9),NWHY,H,GRH,RANGE,ELL, (RPRINT (NN) NN=1,NRI)PRINT247
        1500 FORMAT (1X,A8,A8, 2F10.4,Fl1.4, 26X,F8, 3, 4F12.4) (NPRINT (NN) ,NN=1,NPl)PRINT248
C SET RAYSET VARIABLES TO UNDEFINDED VALUES FOR FLAGS PRINT249
    AZDEV=999,0 PRINT250
    AZDEV=999.0
PRINT251
    AZA=999.0
PRINT252
```

```
            GO TO 40
C********* ELEVATION ANGLE OF RAY POINT FROM TRANSMITTER PRINT254
    20 EL=ATAN2 (EPS,RCE)*DEGS
        IF (RCE.GE.l.E-6) GO TO 30
        PRINT253
    PRINT255
    PRINT256
C********* NEARLY DIRECTLY ABOVE OR BELOW TRANSMITTER. CAN NOT CALCULATEPRINT257
C********* AZIMUTH DIRECTION FROM TRANSMITTER ACCURATELY
    PRINT258
            IF(PRTSRP.EQ.O.0)
        l WRITE(3,2500)TMP(KT:9),NWHY,H,GRH,RANGE,EL,ELL
        2 ,(RPRINT(NN),NN=1,NP1)
    2500 FORMAT (1X,A8,A8,2F10.4,Fl1.4,17X,F9.3,F8.3,
        1 4F12.4)
            GO TO 40
C********** AZIMUTH ANGLE OF RAY POINT FROM TRANSMITTER
    30 ANGA=ATAN2 (ETA, ZETA)
        AZDEV=180.-AMOD(540.-(AZ1-ANGA)*DEGS, 360.)
        IF (KTH.NE.O..OR.KPH.NE.O.) GO TO 34
C********* WAVE NORMAL IS VERTICAL, SO AZIMUTH DIRECTION CANNOT BE
C********* CALCULATED
            IF(PRTSRP.EQ.0.0)
            1 WRTTE (3,3000) TMP(KT&9),NWHY,H,GRH, RANGE,AZDEV,EL,EL
            1 NN=1 NPI)
    3000 FORMAT (1X,A8,A8,2F10.4,F11.4,F9.3,8X,F9.3,F8.3,
            1 4Fl2.4)
            GO TO 40
        34 ANA=ANGA-ALPH
            SANA=SIN (ANA)
            SPHI=SANA*STHR/STH
            CPHI=-SIN (PID2-ANA)*SIN (PID2-(PHI-PHIR))+SANA*SIN (PHI-PHIR)
            l *CTHR
            AZA=180. -AMOD (540.-(ATAN2 (SPHI,CPHI) -ATAN2 (KPH,KTH)) *DEGS, 360.)
                IF(PRTSRP.EQ.0.0)
            l WRITE (3,3500)TMP (KT:9),NWHY ,H,GRH, RANGE, AZDEV , AZA , EL, ELL
            2 ,(RPRINT(NN),NN=1,NP1)
    3500 FORMAT (1X,A8,A8,2F10.4,Fl1.4,2(F9.3,F8.3),
            1 4Fl2.4)
C*********
    40 LINES=LINES+1
            IF (NP.LE.3) GO TO 45
C********* ADDITIONAL LINE TO PRINT REMAINING DEPENDENT INTEGRATION
C********* VARIABLES
            IF(PRTSRP.EQ.0.0)
            1 WRITE (3,4000) (RPRINT(NN),NN=4,NP)
    4000 FORMAT (99X,3F12.4)
LINES=LINES+1
C IF NO 'CARDS' WANTED OR AT TRANSMITTER, NO RAYSET OUTPUT
C llol
C llolm
C********* PUNCH A RAYSET
    IF (AZDEV.LT.-90.) AZDEV=AZDEV+360.
    IF (AZA.LT.-90.) AZA=AZA+360.
    NR=0
    IF (W(57).EQ.O.) GO TO 47
PRINT274
3000 FORMAT (1X,A8,A8,2F10.4,Fll.4,F9.3,8X,F9.3,F8.3,
PRINT275
PRINT276
PRINT277
PRINT278
PRINT279
PRINT280
PRINT281
PRINT282
PRINT283
PRINT284
PRINT285
PRINT286
PRINT287
PRINT288
```


PRINT289

PRINT290

PRINT291

```
PRINT292
```


PRINT293

```
PRINT294
PRINT295
PRINT296
PRINT297
PRINT298
PRINT299
PRINT300
PRINT301
PRINT302
PRINT303
PRINT304
PRINT305
PRINT306
C********* PHASE PATH
PRINT307
```

```
            NR=NR+1 PRINT308
            P=RKVARS (NR) PRINT309
    47 IF (W(58).EQ.O.) GO TO 48
C********* ABSORPTION
            NR=NR+1
            ABSORB=RKVARS (NR)
C********* DOPPLER SHIFT
    48 IF (W(59).NE.O.) DOPP=RKVARS (NR+1)
            NHPUNCH=ROUND (HPUNCH*1.E4)
            NRANGE=ROUND(RANGE*1.E4)
            NAZDEV=ROUND(AZDEV*1.E3)
            NAZA=ROUND(AZA*1.E3)
            NELL=ROUND(ELL*1.E3)
            IF(NWHY.EQ.'GRND REF') NELL =
            l ROUND ((PID2 - ACOS (KNORM (G)/SQRT (KR*KR+KTH*KTH+KPH*KPH)))
            2 *DEGS*1.E3)
            NABSORB=AMINI(999999.0,ROUND(ABSORB*1.E3))
            NDOPP=ROUND(DOPP*I.E3)
            NPOLAR1=ROUND(REAL(POLAR) *1.E2)
            NPOLAR2=ROUND(AIMAG (POLAR)*1,E2)
            JP=ROUND(P*1.E5)
            JT=ROUND(T*1.E5)
            WRITE (9,4501) NHPUNCH,NRANGE,NAZDEV, NAZA,NELL,JT, JP ,NABSORB
            l ,NDOPP,NPOLAR1,NPOLAR2, IHOP,EVENT (1:1)
    4501 FORMAT(2I9,3I6,2I10,2I6,I5,I4,I2,A1)
            RETURN
                    END
                                    PRINT310
                    PRINT311
                    PRINT312
                    PRINT313
PRINT314
                    PRINT315
                    PRINT316
                    PRINT317
                    PRINT318
                    PRINT319
                    PRINT320
                    PRINT321
                    PRINT322
                    PRINT323
                    PRINT324
                    PRINT325
                    PRINT326
                    PRINT327
                    PRINT328
                    PRINT329
                    PRINT330
                    PRINT331
                            PRINT332
                    PRINT333
                            PRINT334
SUBROUTINE ATMOSHD
ATMOSHD2
C PRINTS PAGE HEADINGS
ATMOSHD3
C IF W(72) IS NEGATIVE, ONLY ONE HEADER OUTPUT IS INCLUDED IN RAYSE ATMOSHD4
CHARACTER PCC*1,PC*1, BLANKS*100,DIVIDR*132,BANNER(8)*80 IN RAYS ATMOSHD4
CHARACTER NUMSTG*80,STMP*80
ATMOSHD6
LOGICAL NOPUNCH
ATMOSHD7
INTEGER STRIM
ATMOSHD8
C
TWO ENTRY POINTS ARE PROVIDED. ONE FOR THE FIRST PAGE HEADER
ATMOSHD9
TH
OF THE COMPUTATIONAL PRINTOUT AND FOR THE RAYSET FILE. THE ATMOSH11
SECOND ENTRY IS FOR ALL SUBSEQUENT PAGES OF THE COMPUTATIONAL ATMOSH12 PRINTOUT.
ATMOSH13
COMMON DECK "AA" INSERTED HERE
ATMOSH14
REAL MODA CAA 2
REAL MU, MUPT, MUPR, MUPTH,MUPPH CAA
CAA 4
REAL MU, MUPT, MUPR,MUPTH,MUPPH CAA
5
REAL KAP, KAPPT, KAPPR, KAPPTH, KAPPPH CAA 6
COMMON/AA/MODA (4),MU,MUPT,MUPR,MUPTH,MUPPH \(\quad\) CAA 7
\(\begin{array}{ll}\text { COMMON/AA/KAP, KAPPT, KAPPR, KAPPTH, KAPPPH } & \text { CAA } \\ \text { COMMON DECK "PP" INSERTED HERE } & \text { CPP }\end{array}\)
C COMMON DECK "PP" INSERTED HERE \(\quad\) CPP 2
REAL MODP CPP
4
COMMON/PP/MODP (4) , P,PPT,PPR, PPTH, PPPH CPP 5
C
ATMOSH17
```


EQUIVALENCE (UGP,IDSU) 6
CBI
CBI
C COMMON DECK "B3" INSERTED HERE CB3 2
INTEGER CMX, CNTBL, CITBL, CFRMTBL,IDSC (10) CB3 4
COMMON/B3/CMX, CNTBL (10), CITBL (10) , CFRMTBL (10) , CGP (512) CB3 5
EQUIVALENCE (CGP,IDSC),(ANC,CGP(ll)) CB3 6
COMMON DECK "B5" INSERTED HERE CB5 2
INTEGER TMX,TNTBL,TITBL,TFRMTBL,IDST(10) CB5 4
COMMON/B5/TMX,TNTBL (10),TITBL (10) ,TFRMTBL (10) ,TGP (262) 5
CB5
CB5
EQUIVALENCE (TGP,IDST), (ANT,TGP(11)) CB5 6
COMMON DECK "B7" INSERTED HERE CB7 2
INTEGER MMX,MNTBL,MITBL, MFRMTBL, IDSM (10) CB7 4
REAL MGP
REAL MGP CB7 5
COMMON/B7/MMX,MNTBL (10),MITBL(10),MFRMTBL(10), MGP(10) CB7 6
EQUIVALENCE (MGP,IDSM) CB7 7
COMMON DECK "HDR" INSERTED HERE CHDR 2
CHARACTER*10 INITID*80,DAT,TOD CHDR 4
COMMON/HDR/SEC

```CHDR 5
```

COMMON/HDRC/INITID, DAT, TOD
CHDR 6
COMMON DECK "RINPLEX" INSERTED HERE
REAL KAY2,KAY2I
COMPLEX PNP, POLAR,LPOLAR
LOGICAL SPACE
CHARACTER DISPM*6
COMMON/RINPL/DISPM
COMMON/RINPL/DISPM
COMMON /RIN/ MODRI
CRINPLE8

```COMMON/RTNCOMMON/RIN/OMEGMIN, OMEGMAX, KAY2, KAY2ICOMMON/RIN/PNP (10), POLAR, LPOLAR, SGNCOMMON DECK "CC" INSERTED HEREREAL MODC
```

COMMON/CC/MODC (4) , CS , PCST, PCSR, PCSTH, PCSPH

```CRINPLE2
```

CRINPLE4
CRINPLE5
CRINPLE6
CRINPLE7
CRINPLE9
CRINPLIO
CRINPLII
CCC 2
COMMON DECK "MM" INSERTED HERE CCC

```4
```

REAL M,MODM 2
COMMON/MM/MODM (4) , M, PMT , PMR , PMTH , PMPH

```4
```

COMMON DECK "FLAG" INSERTED HERE

```LOGICAL NEWWR, NEWWP, NEWTRC, PENETCOMMON /FLG/ NTYP, NEWWR, NEWWP, NEWTRC, PENET, LINES, IHOP, HPUNCHCOMMON/FLGP/NSETCOMMON DECK "TT" INSERTED HERE
```

REAL MODT

```COMMON/TT/MODT (4), T, PTT, PTR, PTTH, PTPH4
```

COMMON DECK "UU" INSERTED HERE

```REAL MODU2
```

COMMON/UU/MODU (4) CUU 4
$1, \mathrm{~V}, \mathrm{PVT}, \mathrm{PVR}, \mathrm{PVTH}, \mathrm{PVPH}$

```CUU
```

2 , VR , PVRT , PVRR , PVRTH , PVRPH 6
3 , VTH, PVTHT, PVTHR, PVTHTH, PVTHPH CUU 7
4 , VPH, PVPHT , PVPHR, PVPHTH, PVPHPH CUU 8
CUU 9COMMON DECK "Blo" INSERTED HEREATMOSH38

```
CB9
```INTEGER DGMX, DGNTBL, DGITBL, DGFRMTB, IDSDG (10)2
```

COMMON/B10/DGMX, DGNTBL (10), DGITBL (10), DGFRMI
CB9 ..... 4
EQUIVALENCE (DGGP,IDSDG) ..... 5
COMMON DECK "B8" INSERTED HERE
CB9 ..... 6
INTEGER RMX,RNTBL,RITBL, RFRMTBL, IDSR (10) ..... CBIO ..... 2
COMMON/B8/RMX,RNTBL (10) ,RITBL(10),RFRMTBL(10),RGP (10)
CB10 ..... 4
CB10 ..... 5

```
 EQUIVALENCE (RGP,IDSR) CBIO 6
C COMMON DECK "CBI7" INSERTED HERE
CB17 2
 INTEGER VMX,VNTBL,VITBL,VFRMTBL,IDSV(10) CB17 4
 COMMON/Bl7/VMX,VNTBL(10),VITBL(10),VFRMTBL(10),VGP(53) CBl7 5
 EQUIVALENCE (VGP,IDSV),(ANV,VGP(11))
 COMMON DECK "CB18" INSERTED HERE
 INTEGER DVMX,DVNTBL,DVITBL,DVFRMTB,IDSDV (10)
 COMMON/B18/DVMX,DVNTBL(10),DVITBL(10),DVFRMTB (10),DVGP (11)
 EQUIVALENCE (DVGP,IDSDV),(ANDV,DVGP(Il))
 COMMON DECK "CBI9" INSERTED HERE
 INTEGER PRMX,PRNTBL,PRITBL,PRFRMTB,IDSPR(10)
 COMMON/B19/PRMX, PRNTBL(10),PRITBL(10), PRFRMTB (10), PRGP (11)
 EQUIVALENCE (PRGP,IDSPR),(ANP,PRGP(ll))
 COMMON DECK "CB2O" INSERTED HERE
 INTEGER DPMX,DPNTBL,DPITBL,DPFRMTB,IDSDP(IO)
 COMMON/B20/DPMX,DPNTBL(10),DPITBL(10),DPFRMTB (10),DPGP (11)
 EQUIVALENCE (DPGP,IDSDP),(ANDP,DPGP(11))
C
C
 DATA BLLANKS/' '/
 DATA BANNER/
 1 '***** H A R P A *****'
 2 ,'HAMILTONIAN ACOUSTIC RAY-TRACING PROGRAM FOR THE ATMOSPHERE'
 3,' '
 ,'BY'
 5,'R. M. JONES, J. P. RILEY AND T. M. GEORGES'
 6 ,'WAVE PROPAGATION LABORATORY'
 7,'NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION'
 8,'BOULDER, COLORADO 80303'/
 DATA NOPUNCH/.FALSE./
 DATA IBLK/lH /
C
 ENTRY HEADERI
C
C COMPUTE EFFECTIVE LINES COUNT BASED ON FIXED PAGE SIZE
 CALL NEWPAG (NPAG,INT (PAGLN),PC)
 CALL SFILL(DIVIDR,LEN(DIVIDR),'-')
 DIVIDR(I:I)=1 1
 NTYP=2
 IF(RAY.NE.0.0) NTYP=2.0+SIGN(1.0,RAY)
C
1600 FORMAT(2(2(A8,F7.1,1X),2X))
 CALL PUTKST(3,'1'
 l //DAT//TOD//BLANKS (: 100)//'PAGE'//NUMSTG(NPAG,1,'(I5)'))
 CALL PUTKST(3,DIVIDR)
 CALL PUTKBK(3,1)
 DO 15 I=1,NBNRLS
15 CALL PUTKCT(3,BANNER(I))
 CALI PUTKBK(3,1)
 CALL PUTKST(3,DIVIDR)
 CALL PUTKBK(3,NBLNS)
C
 CALL PUTKST(3,BLANKS (:57)//'RUN SET NUMBER'
 l //NUMSTG(NSET,1,'(I5)'))
```

```
 CALL PUTKBK(3,1) ATMOSH83
 WRITE(STMP,'(10A8)') ID
 CALL PUTKST(3,BLANKS (:52)//'ATMOSPHERIC MODEL ID -- '//STMP(:3))
 CALL PUTKBK(3,1)
 CALL PUTKST(3,
 1 BLANKS(:25)//'ATMOSPHERIC MODEL DESCRIPTION -- '//STMP(7:))
 CALL PUTKBK(3,1)
 WRITE (STMP,'(2A8)') (RAYNAME(I,NTYP), I=1, 2)
 CALL PUTKST (3,STMP)
 CALL PUTKBK(3,1)
 CALL PUTKST(3,DIVIDR)
 CALL PUTKBK(3,1)
 CALL PUTKST(3,
 1 BLANKS (:8)//'MODEL SUBROUTINE DATA SET'
 1 //' DESCRIPTION')
 CALL PUTKST(3,
 l BLANKS (:8)//'TYPE NAME ID')
 CALL PUTKBK(3,1)
 CALL PUTKST(3,DIVIDR)
 CALL PUTKBK(3,1)
 CALL PUTKST(3,' DISPERSION RELATION '//DISPM
 1 //BLLANKS (:16)//NUMSTG (MODRIN,8,'(8A8)'))
 CALL PUTDES (3,'BACKGROUND WIND VELOCITY',MODU,IDSU)
 CALL PUTDES (3,'WIND VELOCITY PERTURBATION',MODU (3),IDSDU)
 CALL PUTDES (3,'BACKGROUND SOUND SPEED',MODC,IDSC)
 CALL PUTDES (3,'SOUND SPEED PERTURBATION',MODC (3),IDSDC)
 CALL PUTDES (3,'BACKGROUND TEMPERATURE',MODT,IDST)
 CALL PUTDES (3,'TEMPERATURE PERTURBATION',MODT (3),IDSDT)
 CALL PUTDES (3,'MOLECULAR WEIGHT',MODM,IDSM)
 CALL PUTDES (3,'BACKGROUND TERRAIN',MODG,IDSG)
 CALL PUTDES (3,'TERRAIN PERTURBATION',MODG(3),IDSDG)
 CALL PUTKST(3,' BACKGROUND VISCOSITY/')
 CALL PUTDES(3,' THERMAL CONDUCTIVITY',MODA,IDSV)
 CALL PUTKST(3,' VISCOSITY/THERMAL')
 CALL PUTDES(3,' CONDUCTIVITY PERTURBATION',MODA(3),IDSDV)
 CALL PUTDES (3,'BACKGROUND PRESSURE',MODP,IDSPR)
 CALL PUTDES (3,'PRESSURE PERTURBATTON' MODP(3)) ATMOS119
 CALL PUTDES (3, IPESEIVER NTMOSI20
 CALL PUTDES (3,'RECEIVER SURFACE',MODREC,IDSR) ATMOS121
 CALL PUTKST(3,DIVIDR)
 NOPUNCH=NOPUNCH. AND.RAYSET.LT.O.O
 IF(NOPUNCH) RETURN
 NOPUNCH=RAYSET.IT.0.0
 WRITE(9,1200) ID,DAT,TOD
 WRITE (9,1600) MODU,MODC,MODT ,MODM,MODP, MODA
1 ,MODG,MODREC
 IF(IDSU(1).NE. IBLK) WRITE (9,1200) IDSU
 IF(IDSDU(1) .NE. IBLK) WRITE(9,1200) IDSDU
 IF(IDSC(1) .NE. IBLK) WRITE (9,1200) IDSC
 IF(IDSDC(1) .NE. IBLK) WRITE(9,1200) IDSDC
 IF(IDST(1).NE. IBLK) WRITE (9,1200) IDST
 IF(IDSDT(1) .NE. IBLK) WRITE(9,1200) IDSDT
 IF(IDSM(1) .NE. IBLK) WRITE(9,1200) IDSM
ATMOSH83
ATMOSH84
ATMOSH85
ATMOSH86
ATMOSH87
ATMOSH88
ATMOSH89
ATMOSH90
ATMOSH91
ATMOSH92
ATMOSH9 3
ATMOSH9 4
ATMOSH95
ATMOSH96
ATMOSH97
ATMOSH98
ATMOSH99
ATMOS100
ATMOS101
ATMOS102
ATMOS103
ATMOS 104
ATMOSI05
ATMOS 106
ATMOS107
ATMOS 108
ATMOS109
ATMOS110
ATMOS111
ATMOS112
ATMOS113
ATMOS114
ATMOS115
ATMOSIl6
ATMOS117
ATMOS 118
ATMOS119
ATMOS 120
ATMOS121
ATMOS122
ATMOS123
ATMOS124
ATMOS 125
ATMOS 126
ATMOS127
ATMOS128
ATMOS129
ATMOS130
ATMOS131
ATMOS132
ATMOS 133
ATMOS 134
ATMOS135
ATMOS136
ATMOS137
```

```
 IF(IDSG(1) .NE. IBLK) WRITE(9,1200) IDSG ATMOS138
C ATMOS139
1000 FORMAT (Al,10A8,24X,2A,' PAGE',I4)
1200 FORMAT(10A8,2(A8,2X))
C
RETURN
C
ENTRY HEADER2
C COMPUTE EFFECTIVE LINES COUNT BASED ON FIXED PAGE SIZE
 CALL NEWPAG(NPAG, INT (PAGLN), PC)
 LINES=LINES+5
C
 WRITE(3,1000) PC,ID,DAT,TOD,NPAG
 WRITE(3,2400) AZl*DEGS,TLAT*DEGS,OW/PIT2,BETA*DEGS
 1 ,TLON*DEGS,MAXERR
2400 FORMAT (
 l /' AZIMUTH ANGLE OF TRANSMISSION =',F12.6,' DEG'
 2 ,' TRANSMITTER LATITUDE =',Fl2.6,' DEG'
 \prime, FREQUENCY =',F12.6,' HZ, 'Fl2.6, DEG ATMOS156
 4 '/' ELEVATION ANGLE OF TRANSMISSION =',Fl2.6,' DEG'
 5 ,' TRANSMITTER LONGITUDE =',F12.6,' DEG'
 6 ,' SINGLE STEP ERROR =',lPG13.6/)
C
RETURN
C
ENTRY PUTDVR(NUNIT)
 CALL PUTKST(NUNIT,DIVIDR)
 RETURN
C
 ENTRY PUTHDR(NUNIT,PCC,NP)
 CALL PUTKST (NUNIT,
 l PCC//DAT//TOD//BLANKS (:100)//'PAGE'//NUMSTG(NP,1,'(I5)'))
 RETURN
 END
ATMOS140
ATMOS141
ATMOS142
ATMOS143
ATMOS144
ATMOS145
ATMOS146
ATMOS147
ATMOS148
ATMOS149
ATMOS150
ATMOS151
ATMOS152
ATMOS153
ATMOS154
 \prime, FREQUENCY =',F12.6,' HZ, 'Fl2.6, DEG ATMOS156
ATMOS158
ATMOS159
ATMOS160
ATMOS161
ATMOS162
ATMOS163
ATMOS164
ATMOS165
ATMOS166
ATMOS167
ATMOS168
ATMOS169
ATMOS170
ATMOS171
ATMOS172
```

```
SUBROUTINE PUTDES (NUNIT,DES,MOD,ID)
CHARACTER DES*(*),TITLE*30,SMODL*20,NUMSTG*80
REAL MOD (2),ID(10)
TITLE=DES
WRITE(SMODL,'(A8,F10.2)') MOD
CALL PUTKST(NUNIT, ' '//TITLE//SMODL//NUMSTG(ID,10,'(10A8)'))
END
```

PUTDES 2
PUTDES 3
PUTDES 4
PUTDES 5
PUTDES 6
PUTDES 7
PUTDES 7
PUTDES 8

NUMSTG=1
WRITE (NUMSTG , FRM) $V$ NUMSTG 5
RETURN $\quad$ NUMSTG 6
END $\quad$ NUMSTG 7
NUMSTG 8

DO $10 \mathrm{I}=1, \mathrm{LN}$
STG (I:I) $=$ C
RETURN
END
SUBROUTINE SFILL(STG,LN,C)
CHARACTER STG* (*), C*1
CHARACTER STG*(*),C*1
SFILL 3
SFILI 4

REIURN
SFILL 5
SFILI 6
SFILL 7
SFILL 8

FUNCTION RERR(V,ERT, ELAB,NKV, PREF)
RETURNS RELATIVE ERROR OF VARIABLE RKVAR (NKV) IF PREF<>0 AND RERR
2
THE ERROR IS GREATER THAN PREVIOUS ERROR 'V'. IF PREF<>O AND RERR 3
COMMON DECK "RKAM" INSERTED HERE $\quad$ RERR 4
REAL KR, KTH, KPH
RKAMCOM2
COMMON//R,TH, PH, KR, KTH, KPH, RKVAPS (14) RPUI $\quad$ RKAMCOM4
RERR=V
RKAMCOM5

IF (NKV.LE. O) RETURN $\quad$ RERR 7
IF (PREF.EQ.O.) RETURN $\quad$ RERR 8
VI = RKVARS (NKV)/PREF-1.
RERR 9
IF (ABS (VI).IT.ABS (V)) RETURN
RERR 10
R RERR 11
$E R T=E L A B \quad$ RERR 12
RERR=V1 RERR 13
END RERR 14
RERR 15

```
 SUBROUTINE RERROR(ROUTIN,STR,VAL) RERROR 2
C REPORTS ERROR CONDITIONS AND STOPS PROGRAM.
C
 PRINT 10,ROUTIN,STR,VAL
 FORMAT(39H ERROR CONDITION IN RAYTRACE ROUTINE <
 l ,A8,10H> DUE TO " ,Al0,9H", VALUE= ,F8.2)
 STOP
 END
RERROR }
RERROR 4
RERROR 5
RERROR }
RERROR }
RERROR }
RERROR }
STOPIT 2
C PRINTS CONDITION AND STOPS PROGRAM STOPIT 3
C AFTER CALLING THE SYSTEM POST MORTEM DUMP.
C
 CHARACTER A*(*)
C
 PRINT 100, A
 CALL MORTEM
l00 FORMAT('*** STOPIT WITH CONDITION <',A,'>')
 STOP
 END
STOPIT 4
STOPIT 5
STOPIT 6
STOPIT }
STOPIT 8
STOPIT 9
STOPIT10
STOPIT1I
STOPIT12
\begin{tabular}{|c|c|c|}
\hline & SUBROUTINE PUTKST (NUNIT, STRG) & PUTKST 2 \\
\hline C & \multirow[t]{2}{*}{WRITE LINE OF OUTPUT TO PRINTER UNIT ADDING TO LINE COUNT} & PUTKST 3 \\
\hline \multirow[t]{5}{*}{C} & & PUTKST 4 \\
\hline & CHARACTER STRG* * & PUTKST 5 \\
\hline & CHARACTER BLANKS*100,STMP*80 & PUTKST 6 \\
\hline & INTEGER STRIM & PUTKST 7 \\
\hline & CHARACTER PC*1 & PUTKST 8 \\
\hline C & & PUTKST 9 \\
\hline \multirow[t]{4}{*}{C} & COMMON DECK "FLAG" INSERTED HERE & CFLAG 2 \\
\hline & LOGICAL NEWWR, NEWWP, NEWTRC, PENET & CFLAG 4 \\
\hline & COMMON /FLG/ NTYP, NEWWR, NEWWP,NEWTRC, PENET, LINES, IHOP, HPUNCH & CFIAG 5 \\
\hline & COMMON/FLGP/NSET & CFLAG 6 \\
\hline \multirow[t]{2}{*}{C} & & PUTKST11 \\
\hline & DATA BLANKS/' \(1 /\) & PUTKST12 \\
\hline C & & PUTKST13 \\
\hline \multirow[t]{5}{*}{C} & PUT OUT A STRING WITH LINE COUNT INCREMENT & PUTKST14 \\
\hline & LINES=LINES+1 & PUTKST15 \\
\hline & LN=MINO (LEN (STRG) , 132) & PUTKST16 \\
\hline & WRITE (NUNIT, '(A)') STRG(:LN) & PUTKST17 \\
\hline & RETURN & PUTKST18 \\
\hline \multirow[t]{2}{*}{C} & & PUTKST19 \\
\hline & ENTRY PUTKCT(NUNIT, STRG) & PUTKST20 \\
\hline \multirow[t]{3}{*}{C} & PUT OUT A CENTERED LINE AND COUNT & PUTKST21 \\
\hline & NTRM=MAXO (1, STRIM (STRG)) & PUTKST22 \\
\hline & NBLKS \(=66-(\) NTRM +1\() / 2\) & PUTKST23 \\
\hline
\end{tabular}
```

```
 LINES=LINES+1
 STMP=STRG
 WRITE (NUNIT,'(A)') BLANKS (:NBLKS)//STMP(:LN)
 RETURN
 ENTRY PUTKBK(NUNIT,NBKS)
 C PUT A BLANK IINE TO PRINTER
ENTRY NEWPAG(NP,IINSPP,PC)
 THE LOGIC HERE ASSUMES THAT A FORM FEED IS ALWAYS NEEDED
 PC=11'
 COMPUTE EFFECTIVE TTNES COUNT PUTKST39
 NPAG=(LINES+LINSPP-1)/LINSPP AFOR NEXI FORM FEED PUTKST40
 LINES=NPAG*LINSPP
 NP=NPAG+1
 RETURN 1 PUTKST43
 END
 PUTKST43
 PUTKST44
 PUTKST45
SUBROUTINE OPNREP（IUN，FNAME）
CYBER VERSION OF OPEN FOR REPLACE
SINCE THIS OPERATION SEEMS TO BE COMPILER DEPENDENT WE MAKE A SUBROUTINE OUT OF IT．
THIS OPEN OPERATION ALLOWS FOR AN EXISTING VERSION OF A FILE．IF THE FILE EXISTS IT IS OVERWRITTEN． CHARACTER＊（＊）FNAME OPEN（IUN，FILE＝FNAME） REWIND IUN
RETURN
OPNREP 2
LINES＝LINES +1
DO \(100 \mathrm{I}=1\) ，NBKS
WRITE（NUNIT，＇（1X）＇）
RETURN
ENTRY NEWPAG（NP，IINSPP，PC）
\(\mathrm{PC=} \mathrm{I}^{\prime \prime}\)
PUTKST25
PUTKST26
PUTKST27
PUTKST28
PUTKST29
PUTKST30
PUTKST31
PUTKST32
PUTKST33
PUTKST34
PUTKST35
PUTKST36
PUTKST37
PUTKST38
PUTKST39
PUTKST40
PUTKST41
PUTKST42
PUTKST43
PUTKST45
ENTRY OPNURP（IUN，FNAME）
OPEN（IUN，FILE＝FNAME ，FORM＝＇UNFORMATTED＇）
REWIND IUN
OPNREP 3
END
OPNREP 4
OPNREP 5
OPNREP 6
OPNREP 7
OPNREP 8
OPNREP 9
OPNREPIO
OPNREPII
OPNREP12
OPNREPI3
OPNREP14
OPNREP15
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{SUBROUTINE OVERRD（VAR，TST，DEFT，NFLG，NFVLEQ，NFVLNE）} & OVERRD 2 \\
\hline \multicolumn{5}{|l|}{OVERRIDE SUPPORT ROUTINE} & OVERRD 3 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{TEST＇VAR＇AGAINST＇TST＇，IF EQUAL SET TO DEFAULT＇DEFT＇}} & OVERRD 4 \\
\hline & ＇NFLG＇TO VALUE & ＇NFVLEQ＇ & ELSE & ＇NFVLNE＇ & OVERRD 5
OVERRD 6 \\
\hline \multicolumn{5}{|l|}{IF（VAR．EQ．TST）THEN} & OVERRD 7 \\
\hline \multicolumn{5}{|l|}{VAR＝DEFT} & OVERRD 8 \\
\hline \multicolumn{5}{|l|}{NFLG＝NFVLEQ} & OVERRD 9 \\
\hline
\end{tabular}
```

```
ELSE OVERRDIl
```

    NFLG=NFVLNE OVERRD12
    ENDIF
    RETURN
OVERRD13
END
OVERRD14

```
 SUBROUTINE SFILTR(C,S,KSET)
 CHARACTER*(*) C,S,KSET
C
 LN=LEN (C)
 J=0
 DO 10 I=1,LN
 IF(INDEX(KSET,C(I:I)).EQ.0) THEN
 J=J+1
 S(J:J)=C(I:I)
 ENDIF
 CONTINUE
 RETURN
 END
 SFILTR 2
 SFILTR 3
 FUNCTION ALCOSH(X)
 ALCOSH 2
C COMPUTE LOG(COSH(X)) AND USE LARGE ARGUMENT APPROXIMATION
C WHEN POSSIBLE.
 DATA ALOG2/.6931471806/
C
 IF(ABS(X).GT.50.0) GO TO 10
 EX=EXP(X)
 ALCOSH=ALOG ((EX+1.0/EX)*.5) ALCOSH 9
 RETURN
10 ALCOSH=ABS (X) -ALOG2
 END
 ALCOSH }
 ALCOSH }
 ALCOSH }
 ALCOSH }
 ALCOSH }
 ALCOSH }
ALCOSH10
ALCOSH11
ALCOSH12
```



C	INITIALIZE.	
	$N S F=0$	GAUSELI3
	NRM=NR-1	GAUSEL15
	$N R P=N R+1$	GAUSEI 16
	$\mathrm{D}=1$.	GAUSELI7
	LSD=1	GAUSELI8
	DO 1 KR=1,NR	GAUSELI9
	$\mathrm{L}(\mathrm{KR}, 1)=\mathrm{KR}$	GAUSEL20
1	$L(K R, 2)=0$	GAUSEL20
	IF (NR.EQ.1) GO TO 42	GAUSEL22
C	ELIMINATION PHASE.	GAUSEL23
	DO $41 \mathrm{KP}=1, \mathrm{NRM}$ ( ${ }^{\text {L }}$	GAUSEL24
	KPP=KP+1	GAUSEL25
	$\mathrm{PM}=0$.	GAUSEL26
	MPN $=0$	GAUSEL2 7
C		GAUSEL28
C	SEARCH COLUMN KP FROM DIAGONAL DOWN FOR MAX PIVOT	GAUSEL29
	DO $2 \mathrm{KR}=\mathrm{KP}$, NR	GAUSEL30
	LKR=L(KR, 1 )	GAUSEL31
	$\mathrm{PT}=\mathrm{ABS}$ (C (LKR, KP) )	GAUSEL32
	IF (PT.LE.PM) GO TO 2	GAUSEL33
	$\mathrm{PM}=\mathrm{PT}$	GAUSEL34
	MPN=KR	GAUSEL35
	$L M P=L K R$	GAUSEL36
2	CONTINUE	GAUSEL37
C		GAUSEL38
C	IF MAX PIVOT IS ZERO, MATRIX IS SINGUTAR.	GAUSEL39
	IF (MPN.EQ.O) GO TO 9 ( ${ }^{\text {a }}$	GAUSEL40
	NSF=NSF+1	GAUSEL41
	IF (MPN.EQ.KP) GO TO 3	GAUSEL42
C		GAUSEL43
C	NEW ROW NUMBER KP HAS MAX PIVOT.	GAUSEL44
	LSD $=-\mathrm{LSD}$ (	GAUSEL4 5
	$L(K P, 2)=L(K P, 1)$	GAUSEL46
	$L(M P N, 1)=L(K P, 1)$	GAUSEL47
	$L(K P, 1)=L M P$	GAUSEL48
C		GAUSEL49
C	ROW OPERATIONS TO ZERO COLUMN KP BELOW DIAGONAL.	GAUSEL50
3	MKP $=$ L (KP, 1)	GAUSEL51
	$\mathrm{P}=\mathrm{C}(\mathrm{MKP}, \mathrm{KP})$	GAUSEL52
	$\mathrm{D}=\mathrm{D} * \mathrm{P}$	GAUSET54
	DO $41 \mathrm{KR}=\mathrm{KPP}$, NR	GAUSEL55
	MKR $=1(K R, 1)$	GAUSEL56
	$Q=C(M K R, K P) / P$	GAUSEL57
C	IF (Q.EQ.O.) GO TO 41	GAUSEL58
C		GAUSEL59
	DO $4 \mathrm{LC}=\mathrm{KPP}, \mathrm{NC}$ ( ${ }^{\text {a }}$ * PIVOT ROW FROM ROW KR.	GAUSEL60
	$\mathrm{R}=\mathrm{Q} * \mathrm{C}(\mathrm{MKP}, \mathrm{LC})$	GAUSEL61
	$C(M K R, L C)=C(M K R, L C)-R$	GAUSEL62
4	$\operatorname{IF}(\operatorname{ABS}(\mathrm{C}(\mathrm{MKR}, \mathrm{LC})) . \operatorname{LT} . \mathrm{ABS}(\mathrm{R}) * \mathrm{BITS}) \quad \mathrm{C}(\mathrm{MKR}, \mathrm{LC})=0$.	GAUSEL63
41	CONTINUE	GAUSEL64
C		GAUSEL65
C	LOWER RIGHT HAND CORNER.	GAUSEL67

    LNR=L(NR,1)
    GAUSEL68
P=C(LNR,NR) GAUSEL69
IF(P.EQ.O.) GO TO 9
GAUSEL70
NSF=NSF+1
D=D*P*LSD
IF(NR.EQ.NC) GO TO }
GAUSEL71
GAUSEL72
GAUSEL73
GAUSEL74
BACK SOLUTION PHASE.
DO 61 MC=NRP,NC
C(LNR,MC) =C (LNR,MC)/P
IF(NR.EQ.I) GO TO 61
DO 6 LL=1,NRM
KR=NR-LL
MR=L(KR,1)
KRP=KR+1
DO 5 MS=KRP,NR
LMS=L(MS,1)
R=C (MR,MS) *C(IMS,MC)
C (MR,MC)=C (MR,MC) -R
IF(ABS (C(MR,MC)).LT.ABS (R)*BITS) C(MR,MC)=0.
C(MR,MC)=C(MR,MC)/C(MR,KR)
CONTINUE
SHUFFLE SOLUTION ROWS BACK TO NATURAL ORDER.
DO }71\mathrm{ LL=l,NRM
KR=NR-LL
MKR=L(KR,2)
IF(MKR.EQ.O) GO TO 71
MKP=L(KR,1)
DO }7\mathrm{ LC=NRP,NC
Q=C(MKR,LC)
C(MKR,LC) =C (MKP,IC)
C(MKP,LC)=Q
CONTINUE
NORMAL AND SINGUIAR RETURNS. GOOD SOLUTION COULD HAVE D=O.
C(1, l)=D
GO TO 91
C(1,1)=0.
91 RETURN
END -
SUBROUTINE RAYPLT RRYPIT 2
MAIN PLOTTING PROGRAM; INITIALIZES, READS INPUT, PLOTS
PROJECTIONS OF RAYS ON A VERTICAL OR HORIZONTAL PLANE.
ABS(PLT)=1. PLOTS PROJECTION OF RAYPATH ON VERTICAL PLANE
RECTANGULAR EXPANSION BY FACTOR 'PFACTR'
=2. PLOTS PROJECTION OF RAYPATH ON GROUND
=3. VERICAL PROJECTION USING RADIAL EXPANSION BY FACTO RAYPLT 8
' PFACTR'
RAYPLT 2
SHUFFLE SOLUTION ROWS BACK TO NATURAL ORDER.

## 91 RETURN

``` GAUSEI76
DO 61 MC=NRP,NC
\(C(L N R, M C)=C(L N R, M C) / P\)
GAUSEL77
IF (NR.EQ.I) GO TO 61
```

```
DO \(6 \mathrm{LL}=1\),NRM GAUSEL78
\(K R=N R-L L\)
GAUSEL79
\(M R=L(K R, 1)\)
GAUSEL80
\(K R P=K R+1\)
GAUSEL81
DO 5 MS=KRP,NR
GAUSEL82
LMS \(=\mathrm{L}(\mathrm{MS}, 1)\)
GAUSEL83
(TMS MC) GAUSEL84
\(C(M R, M C)=C(M R, M C)-R\)
GAUSEL85
IF (ABS (C (MR, MC)). LT.ABS (R) *BITS) \(C(M R, M C)=0\). GAUSEL86
GAUSEL87
CONTINUE
GAUSEL88
GAUSEL89
GAUSEL90
GAUSEL91
DO 71 LL=1,NRM
GAUSEL9 2
KR=NR-LL
GAUSEL93
\(\begin{array}{ll}\mathrm{MKR} & \mathrm{MKR} . E Q .0) \\ \mathrm{I}\end{array} \mathrm{GO}\) TO 71
GAUSEL94
```

```
GAUSEL95
```

```
\(\mathrm{MKP}=\mathrm{L}(\mathrm{KR}, \mathrm{I})\)
\(Q=C(M K R, L C)\)
GAUSEL97
(MKP,LC)
GAUSEL98
\(C(\) MKP, LC \()=Q\)
GAUSEL99
CONTINUE
GAUSE100
GAUSE101
GAUSEl02
GAUSE103
\(C(1,1)=D\)
GAUSE104
GAUSE105
END
GAUSE106
GAUSE108
```

SUBROUTNE RAYPLTRAYPLT 4
RAYPLT 5RAYPLT 6
COMMON DECK "FILEC" INSERTED HERE


C		CWW3	5
C	RECEIVER HEIGHT 275-299	CWW3	26
	EQUIVALENCE (W (275), RMODEL) , (W (276),RFORM), (W (277), RID)	CWW3	27
C		CWW3	28
C	TOPOGRAPHY 300-324	CWW3	29
	EQUIVALENCE (W (300), GMOD	CWW3	30
C		CWW3	31
C	DELTA TOPOGRAPHY 325-349	CWW3	32
	EQUIVALENCE (W (325), GUMODEL), (W (326), GUFORM), (W (327), GUID)	CWW3	33
C		CWW3	34
C	UPPER SURFACE TOPOGRAPHY 350-374   EQUIVALENCE (W(350),SMODEL), (W(351), SFOR	CWW3	35
		CWW3	36
C	PLOT ENHANCEMENTS CONTROL PARAMETERS	CWW3	37
C		CWW3	38
	EQUIVALENCE (W (490), XFQMDL), (W (491), YFQMDL)	CWW3	39
C	ABSORPTION 500-524	CWW3	40
	EQUIVALENCE (W (500), AMODEL), (W (501), AFORM), (W (502), AID)	CWW3	41
C		CWW3	42
C	DELTA ABSORPTION 525-549	CWW3	43
	EQUIVALENCE (W 525 ), DAMODEL), (W	CWW3	44
C		CWW3	45
C	PRESSURE 550-574	CWW3	46
	EQUIVALENCE ( $\mathrm{W}(550$ ) , PMODEL) , (W (551), PFORM), (W (552), PID)	CWW3	47
C		CWW3	48
C	DELTA PRESSURE 575-599	CWW3	49
	EQUIVALENCE (W (575), DPMODEL) , (W (576), DPFORM) , (W (577) , DPID)	CWW3	50
C		CWW3	51
	REAL LTIC	RAYPL	
	INTEGER IWDMP (411)	RAYPI	T19
	EQUIVALENCE (IWDMP, ID)	RAYPL	T20
c	EXTERNAL PLOT, PLTLB, PLTLBN, PLTHLB	RAYPI	T21
		RAYPI	T22
C		RAYPI	T23
	DATA NWDSRK/4/	RAYPL	
C		RAYPL	
	IF (.NOT.NEWWR) GO TO 8	RAYPI	
	APLT=ABS (PLT)	RAYPL	
		RAYPL	T28
C	NEW W ARRAY -- REINITIAIIZE	RAYPL	T29
	NEWWR=. FALSE.	RAYPL	T30
	PRESET=1.	RAYPL	
Cc	IF NO ACTIVE PLOTTING,WE ARE STILL DUMPING DATA	RAYPI	T32
	IF (PLT.EQ.O) GO TO 5	RAYPI	T33
	INITIALIZE ANNOTATION MODEL	RAYPL	T34
C	CONVERT COORDINATES OF VERTICAL PLANE FROM GEOGRAPHIC TO GEOMAGNETIC	RAYPI	T35
	SW=SIN (PLAT)	RAYPL	T36
	CW=SIN (PID2-PLAT)	RAYPL	T37
	SLM=SIN (LLAT)	RAYPI	T38
	CLM=SIN (PID2-LLAT)	RAYPL	T39
	SRM=SIN (RLAT)	RAYPI	T40
	CRM=SIN (PID2-RIAT)	RAYPI	T41
	CDPHI=SIN (PID2-(LION-PLON))	RAYPI	T42
	PHL=ATAN2 (SIN (LLON-PLON) *CLM, CDPHI*SW*CLM-CW*SLM)	RAYPI	T43
	CTHL=CDPHI*CW*CLM+SW*SLM	RAYPL	T44
	STHL=SIN (ACOS (CTHL))	RAYPI	T45

```
 CDPHI=SIN (PID2-(RLON-PLON)) RAYPLT46
 PHR=ATAN2 (SIN (RLON-PLON) *CRM, CDPHI*SW*CRM-CW*SRM)
 CTHR=CDPHI*CW*CRM+SW*SRM
 STHR=SIN (ACOS (CTHR))
 CLR=CTHL*CTHR+STHL*STHR*SIN (PID2-(PHL-PHR))
 ALPHA=.5*ACOS (CLR)
 SLR=SQRT (1.-CLR**2)
 IF (APLT.EQ.2.) GO TO 3
 C
 C VERTICAL PROJECTIONS ONLY
 T=HB
 HB=AMIN1 (T,HT)
 HT=AMAXI (T,HT)
 RMIN=EARTHR+HB
 YTl=YT
 RMAX=EARTHR+HT
 C
 IF(APLT.NE.4.) GO TO }10
 C SCALE FOR CARTESIAN PROJECTION(=4)
 C SCALE FOR CARTESIAN PROJECTION(=4)
 XRI=XR
 XL=-XR RAYPLT68
 XLI=XI
 YB=RMIN
 YT=RMAX RAYPLT71
 GO TO 5 R RAYPLT72
C
C PROJECTIONS 1 AND 3
 GO TO 5 R RAYPLT72
100 XRI=RMIN*SIN (ALPHA)
 XLl=-XR1
 YB=RMIN*SIN (PID2-ALPHA)
 IF (APLT.EQ.3.) RMAX=RMIN+(RMAX-RMIN) *PFACTR
 XR=AMAXI (RMAX*SIN(ALPHA),(RMAX-YB)/2.)
 XL=-XR
 YTI=RMAX*(YB/RMIN) RAYPLT81
 YT=2.0*XR RAYPLT82
 IF(APLT.EQ.1) YT=YT/PFACTR
 YT=YT+YB
 GO TO 5
C
C HORIZONTAL PROJECTION (=2)
3 ALPHI=ATAN2 (STHR*SIN (PHR-PHL), (CTHR-CTHL*CLR)/STHL)
 XLl=0.0
 XR=EARTHR*2.0*ALPHA
 XRI=XR
C USE 90% OF X-RANGE FOR Y-RANGE RAYPLT93
 RMAX=0.5*(0.90*XR)/PFACTR R RAYPLT94
 YT=RMAX
 RMIN=-RMAX RAYPLT96
 YB=RMIN RAMPLT97
C
5 IF(NPLTDP.LE.O) GO TO }
RAYPLT48
RAYPLT49
RAYPLT50
RAYPLT51
C
 RAYPLT52
 RAYPLT53
 RAYPLT54
 RAYPLT55
 RAYPLT56
 RAYPLT57
 RAYPLT58
 RAYPLT59
 RAYPLT60
 RAYPLT61
 C R
 RAYPLT62
 RAYPLT63
 RAYPLT64
 RAYPLT65
 RAYPLT66
 RAYPLT67
 RAYPLT68
 RAYPLT69
 RAYPLT70
 RAYPLT74
RAYPLT75
 RAYPLT76
 - RAYPIT78
 RAYPLT79
 RAYPLT80
 RAYPLT83
 RAYPLT84
 RAYPLT85
 RAYPLT85
 RAYPLT87
 ALPH1=ATAN2 (STHR*SIN (PHR-PHL), (CTHR-CTHL*CLR)/STHL) RAYPLT88
RAYPLT89
 RAYPLT90
 RAYPLT91
```



```
 RAYPLT94
 RAYPLT95
RAYPLT97
 IF(NPLTDP.LE.O) GO TO 8
RAYPLT98
RAYPLT99
RAYPL100
```

```
 WRITE (NPLTDP) 1,NWDSRK,1,411 RAYPLI01
 WRITE(NPLTDP) (IWDMP(I),I=1,411)
C
NEW=0
 IF (NEWTRC) NEW=1
 NEWTRC=.FALSE.
C IF(NPLTDP.LE.0) GO TO 88
C IF(NPLTDP.LE.0) GO TO 88
C IF(NPLTDP.IE.0) GO TO 88
 WRITE(NPLTDP) 1,NWDSRK,17,25
 WRITE(NPLTDP) (IWDMP(I),I=17,25)
C
84 WRITE(NPLTDP) 3-NEW,R,TH, PH
C
88 IF(PLT.EQ.O) RETURN
C
STH=SIN (TH)
CTH=SIN (PID2-TH)
CR=CTHR*CTH+STHR*STH*SIN (PID2-(PHR-PH))
CL=CTHL*CTH+STHL*STH*SIN (PID2-(PHL-PH))
 CEA=ATAN2 (CR-CL*CLR,CL*SLR)
C
IF(APLT.NE.4.) GO TO 150
CALL PLOT (CEA-ALPHA,R,NEW)
RETURN
C
150 IF(APLT.EQ.2.) GO TO 10
 RX=R
 IF(APLT.EQ.3.) RX=RMIN+(R-RMIN) *PFACTR
 CALL PLOT (CEA-ALPHA, RX,NEW)
 RETURN
C
10 SL=SQRT (AMAXI (0.,1.-CL**2))
 TMPl=STH*SIN (PH-PHL)
 TMP2=(CTH-CTHL*CL)/STHL
 ALPH2=0.
 IF (TMP1.NE.O..OR.TMP2.NE.O.) ALPH2=ATAN2(TMP1,TMP2)
 CALL PLOT (EARTHR*CEA,EARTHR*ASIN(SL*SIN (ALPHI-ALPH2)),NEW) RAM, RAYPL137
 RETURN
C
C DRAW AXES AND CALL FOR LABELING AND TERMINATION OF THIS PLOT
ENTRY ENDPLT
C
C IF NEWWR IS STILL TRUE, NO PLOTS WHERE PRODUCED
 IF (NEWWR) RETURN
 IF (NEWWR) RETURN
C
C SIGNAL END OF PLOT
 IF(NPLTDP.GT.0) WRITE (NPLTDP) 4,(NWDSRK,I=2,NWDSRK)
IF(PLT.EQ.0) RETURN
C
TICKX=0.01*(YT-YB)
 DTIC=TIC*EARTHR
CALL SETXY(APLT, -ALPHA, RMIN,ALPHA, RMAX)
RAYPLI02
 RAYPL103
 RAYPL104
RAYPL105
RAYPLIO6
RAYPL107
RAYPLI08
RAYPL109
RAYPLIIO
RAYPLIll
RAYPLIl2
RAYPLIl3
RAYPLI14
RAYPLIl5
RAYPLIl6
RAYPL117
RAYPLI18
18
RAYPLIl9
RAYPL120
c
RAYPL122
RAYPL123
RAYPL124
RAYPL125
RAYPL126
RAYPL127
RAYPL128
RAYPL129
 RETURN
 RAYPL130
RAYPLI31
RAYPLI32
```

```
 RAYPLI33
 RAYPLI33
RAYPLI35
 (TMP1.NE.O,OR,TMP2,NE,O,) ATPH2=ATAN2(TMP1,TMP2) (N)
L136
RAYPLI37
RAYPL138
RAYPL139
 RAYP140
 RAYPL141
RAYPLI42
RAYPLI43
RAYPLI44
RAYPLI45
RAYPL146
RAYPL147
RAYPL148
RAYPLI49
C
RAYPL150
RAYPLI51
RAYPL152
RAYPL153
RAYPL154

```

    1 IF (RESET.EQ.O.) GO TO 5 PLOT 14
    RESET=0. PLOT
    PLOT 15
    IF(APLT.EQ.2.) THEN
        MRNGE=723
        MINXO=165
        MINYO=140
    ELSE
        MRNGE=813
        MINXO=165
        MINYO=140
    ENDIF
    IF(APLT.EQ.4.) MINYO=0
    C
MAXXO=MINXO+MRNGE
MAXYO=MINYO+MRNGE
C
XSCALE=(MAXXO-MINXO)/(XMAXO-XMINO)
YSCALE=(MAXYO-MINYO)/(YMAXO-YMINO)
XMIN=XMINO
YMIN=YMINO
XMAX=XMAXO
YMAX=YMAXO
IF(APLT.EQ.2.) GO TO 5
C
XMIN=-ALPHA
XMAX=ALPHA
YMIN=RMIN
YMAX=RMAX
IF(APLT.NE.4) GO TO 5
YSCALE=.85*YSCALE
MINYO=MINYO+60
C
C START A NEW LINE
HORIZONTAL DISPLACEMENT
XS=X-XOLD
YS=Y-YOLD
S=1.0
IF(NEW.EQ.O) GO TO 10
IF(X.GE.XMIN.AND.X.LE.XMAX.AND.Y.GE.YMIN.AND.Y.LE.YMAX) GO TO 48
GO TO 50
C
10 IF (XS) 11,12,16
NEGATIVE
11 X1=XMAX
X2=XMIN
GO TO 20
ZERO
12 IF (YS) 13,50,14
13 S1=(YMAX-YOLD)/YS
S2=(YMIN-YOLD)/YS
GO TO 40
14 Sl=(YMIN-YOLD)/YS
S2=(YMAX-YOLD)/YS
GO TO 40
POSITIVE
67
C
PIOT 68

```
```

        16 Xl=XMIN 69C
    ```
21 Yl=YMAX
\(\mathrm{Y} 2=\mathrm{YMIN}\)
```S2=(X2-XOLD)/XSGO TO 40C POSITIVE\(26 \mathrm{YI=YMIN}\)\(Y 2=Y M A X\)C30 Sl=AMAXI ( (XI-XOLD)/XS, (YI-YOLD)/YS)S2=AMINI ((X2-XOLD)/XS, (Y2-YOLD)/YS)
```

- PLOT PLOT
PLOT LINE -- CHECKING FOR BORDER CROSSINGS 88
70

```PLOT
```

VERTICAL DISPLACEMENT C
PLOT 71

```72
```

20 IF (YS) 21,22,26
NEGATIVE C
PLOT 73
PLOT 74
PLOT 75
PLOT 76
GO TO 30
C ZERO
22 Sl=(XI-XOLD)/XS
PLOT 77
PLOT 78
PLOT 79
PLOT 80
PLOT 81
PLOT 82
PLOT 83
PLOT 84
PLOT 85
PLOT 86
IF (S2.LT.O.OR.S1.GT.1.) GO TO 50
PLOT

```89
90
```

IF (SI.LT.O.) GO TO 42
PREVIOUS POINT OFF GRAPH PLOT 91
$\mathrm{XP}=\mathrm{XOLD}+\mathrm{XS}$ *S 1 92
YP=YOLD+YS*S1 93
IF (APLT.EQ.2.0.OR.APLT.EQ.4.0) GO TO 41 PLOT 94
$T=X P$

```PLOT95
```

$X P=Y P * S I N(T)$ PLOT 96
$Y \mathrm{P}=\mathrm{YP} * \operatorname{COS}(\mathrm{~T})$ PLOT 97
PLOT 98
41 IX=MINXO + (XP-XMINO) *XSCALE +0.5 99
PLOT 100

```\(I Y=M I N Y O+(Y P-Y M I N O) * Y S C A L E+0.5\)
```

CALL DDBP
GO TO 48

```C
```

IF (S2.GT.1.) GO TO 48 42
PLOT
PLOT 104 104
PLOT 105
$\mathrm{S}=\mathrm{S} 2$
CURRENT POINT OFF GRAPH
PLOT 101
PLOT 102
PLOT 103
PLOT 106
CURRENT POINT ON GRAPH C CURRENT POINT ON GRAPH
PLOT 107
XP=XOLD+XS*S
PLOT 108
YP=YOLD+YS*S
PLOT 109
IF (APLT.EQ.2.0.OR.APLT.EQ.4.0) GO TO 49 PLOT 110
$T=X P$

```PLOT 111
```

$X P=Y P * S I N(T)$
PLOT 112
$Y P=Y P * C O S(T)$
PLOT 113
IX=MINXO+ (XP-XMINO) *XSCALE+0.5
IY=MINYO+(YP-YMINO) *YSCALE+0.5
IF (NEW.EQ.O) CALL DDVC
PLOT 114

```PLOT 115
```

IF (NEW.NE.O) CALL DDBP
PLOT 116
PLOT 117
C C
PLOT 118
EXIT ROUTINE
EXIT ROUTINE
50 XOLD=X
PLOT
PLOT 120 120

```PLOT119
```

YOLD=Y LOT LOT 121
RETURN PLOT 122
PLOT 123
C
TERMINATE THE CURRENT PLOT
PLOT 124
C PLOT 125
ENTRY PLTEND (X,Y,NEW) PLOT 126
CALL DDFR
PLOT 127
C
RETURN
PLOT 128 PLOT 129
END
130
SUBROUTINE LABPLT LABPLT
LABEL THE CURRENT PLOT
LABPLT 3
CHARACTER*80 LABEL,CHID
CHARACTER* 4 ANGRANG, ANOTE
CHARACIER*4 ANGRANG,ANOTE
LABPLT 4
LABPLT 5
C COMMON DECK "SS" INSERTED HERE CSS 2
REAL MODSURF CSS
COMMON/SS/ MODSURF (4) 4CSS
COMMON/SS/U, PUR, PURR, PURTH, PURPH CSS
COMMON/SS/PUTH , PUPH , PUTHTH, PUPHPH, PUTHPH, USELECT , UTIME CSS 76
C COMMON DECK "GG" INSERTED HERE CGG 2REAL MODGCGG
COMMON/GG/MODG (4) CGG 4
COMMON/GG/G, PGR, PGRR, PGRTH, PGRPH CGG
COMMON/GG/PGTH, PGPH , PGTHTH , PGPHPH, PGTHPH, GSEIECT , GTIME CGG
C COMMON DECK "RR" INSERTED HERE CRR
REAL MODREC CRR
ROM M 4
CRR
COMMON/RR/ MODREC(4) 56
CRR
COMMON/RR/F, PFR, PFRR, PFRTH, PFRPH
CRR
COMMON/RR/PFTH, PFPH, PFTHTH, PFPHPH, PFTHPH, FSELECT, FTIME 7
REAL MODU CUU
COMMON/UU/MODU (4) CUU
$1, V, P V T, P V R, P V T H, P V P H$ CUU
,VR , PVRT , PVRR , PVRTH , PVRPH CUU
, VTH , PVTHT , PVTHR , PVTHTH, PVTHPH CUU
4 , ,VPH, PVPHT, PVPHR, PVPHTH, PVPHPHCUU
C COMMON DECK "CC" INSERTED HERE CCC
REAL MODCCCCCOMMON/CC/MODC (4) , CS, PCST, PCSR, PCSTH, PCSPHCCC
C COMMON DECK "TT" INSERTED HERE CTT
REAL MODT CTT
COMMON/TT/MODT (4) , T,PTT, PTR, PTTH, PTPH CTT2
CUU
C COMMON DECK "UU" INSERTED HERE 2
C COMMON DECK "MM" INSERTED HERE CMMREAL M, MODMCMM $\quad 4$
COMMON/MM/MODM (4) ,M, PMT, PMR, PMTH, PMPH CMM 5
C COMMON DECK "HDR" INSERTED HERE CHDR
CHARACTER*10 INITID*80,DAT,TOD CHDRCOMMON/HDR/SECCHDR 5
COMMON/HDRC/INITID, DAT,TOD CHDR 6
C COMMON DECK "RINPLEX" INSERTED HERE CRINPLE2
REAL KAY2,KAY2I
CRINPLE4
COMPLEX PNP, POLAR,LPOLAR
CRINPLE5
LOGICAL SPACE
CHARACTER DISPM*6
COMMON/RINPL/DISPM
CRINPLE7
CRINPLE8

```COMMON /RIN/ MODRIN (8), RAYNAME (2, 3),TYPE (3), SPACECOMMON/RIN/OMEGMIN, OMEGMAX, KAY2, KAY2I
```

CRINPLE9
COMMON/RIN/PNP (10) , POLAR, LPOLAR, SGN
CRINPLIO
COMMON /DD/ INT,IOR,IT,IS,IC,ICC,IX,IY

```COMMON DECK "CONST" INSERTED HERECRINPLII
```

```LABPLTI5
```

CCONST 2
COMMON/MCONST/PI, PIT2, PID2, DEGS , RAD, ALN10
CCONST 4
COMMON DECK "FLAG" INSERTED HERE CFIAG 5
LOGICAL NEWWR, NEWWP, NEWTRC, PENET CFLAG 4
COMMON /FLG/ NTYP, NEWWR, NEWWP, NEWTRC, PENET, LINES, IHOP, HPUNCH COMMON/FLGP/NSET CFIAG 5
COMMON DECK "WW" INSERTED HERE
PARAMETER (NWARSZ=1000)

```CFLAG 6
```

COMMON/WW/ID (10) ,MAXW,W (NWARSZ) CWWI 3
REAL MAXSTP,MAXERR,INTYP,LLAT,LLON CWW1 4 2
EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)), (TLAT,W (4))
EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)), (TLAT,W (4)) CWW2
(TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)),
CWW2 4
(AZI,W(10)), (AZBEG,W(11)), (AZEND,W(12)), (AZSTEP,W(13)), CWW2 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)) CWW2

```CWW2
```

CWW2

```(ONLY,W(21)),(HOP,W(22)), (MAXSTP,W(23)), (PLAT,W(24)), (PLON ,W(25))
```

, (HMAX,W(26)), (RAYFNC,W(29)), (EXTINC,W(33))
CWW2
6 (HMIN,W(27)), (RGMAX,W(28)), CWW2 10
8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 11
(STEPl,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 12
(SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75)
CWW2 13
CWW2 13
9 , (BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)) CWW2 14
1 (LLAT,W(83)),(LLON ,W(84)), (RLAT,W(85)),(RLON,W(86)) CWW2 15
2, (TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
REAL MMODEL,MFORM,MID CWW2 16WIND 100-124CWW3 2

```
EQUIVALENCE (W(100), UMODEL), (W(101), UFORM), (W (102), UID) ..... CWW3 4
DELTA WIND 125-149
```EQUIVALENCE (W (125), DUMODEL), (W (126), DUFORM) , (W(127), DUID)CWW3 7
SOUND SPEED 150-174
```CWW3 8
```

CWW3
EQUIVALENCE (W (150)
EQUIVAIENCE (W), $15(151), C F O R M),(W(152), C I D)$ CWW3 11
EQUIVALENCE (W (153), REFC) CWW3 12

```EQUIVALENCE ( \(\mathrm{W}(175\) ) , DCMODEL),\((W(176)\), DCFORM) , (W (177), DCID)13
```

CWW3 14

```TEMPERATURE 200-224CWW3 16
```

EQTIVAIENCE (W(200) TM CWW3 17
CWW3 18
DELTA TEMPERATURE 225-249 19

```EQUIVALENCE (W(225), DTMODEL), (W(226), DTFORM), (W(227), DTID)
```

CWW3 20
CWW3 21

```MOLECULAR 250-274EQUIVALENCE (W(250),MMODEL), (W(251),MFORM), (W(252), MID) CWW3 23CWW3 24
```

CWW 3 25

C	RECEIVER HEIGHT 275-299	CWW3 26
	EQUIVALENCE (W(275), RMODEL), (W (276),RFORM), (W (277), RID)	CWW3 27
C		CWW3 28
C	TOPOGRAPHY 300-324	CWW3 29
	EQUIVALENCE (W (300), GMODEL), (W (301), GFORM), (W (302), GID)	CWW3 30
C		CWW3 31
C	DELTA TOPOGRAPHY 325-349	CWW3 32
	EQUIVALENCE (W (325), GUMODEL), (W (326), GUFORM), (W (327), GUID)	CWW3 33
C		CWW3 34
C	UPPER SURFACE TOPOGRAPHY 350-374	CWW3 35
	EQUIVALENCE (W (350), SMODEL), (W (351), SFORM), (W (352), SID)	CWW3 36
C	PLOT ENHANCEMENTS CONTROL PARAMETERS	CWW3 37
C		CWW3 38
	EQUIVALENCE (W (490), XFQMDL), (W (491), YFQMDL)	CWW3 39
C	ABSORPTION 500-524	CWW3 40
	EQUIVALENCE (W (500), AMODEL), (W (501), AFORM), (W (502), AID)	CWW3 41
C		CWW3 42
C	DELTA ABSORPTION 525-549	CWW3 43
	EQUIVALENCE (W (525), DAMODEL), (W (526), DAFORM), (W (527), DAID)	CWW3 44
C		CWW3 45
C	PRESSURE 550-574	CWW3 46
	EQUIVALENCE (W (550), PMODEL), (W (551), PFORM), (W (552), PID)	CWW3 47
C		CWW3 48
C	DELTA PRESSURE 575-599	CWW3 49
	EQUIVALENCE (W (575), DPMODEL), (W (576), DPFORM), (W (577), DPID)	CWW3 50
C		CWW3 51
C		LABPLT19
C	COMMON DECK "AA" INSERTED HERE	CAA 2
	REAL MODA	CAA 4
	REAL MU, MUPT, MUPR, MUPTH, MUPPH	CAA 5
	REAL KAP, KAPPT, KAPPR, KAPPTH, KAPPPH	CAA 6
	COMMON/AA/MODA (4) , MU , MUPT, MUPR, MUPTH , MUPPH	CAA 7
	COMMON/AA/KAP, KAPPT, KAPPR, KAPPTH , KAPPPH	CAA 8
C	COMMON DECK "PP" INSERTED HERE	CPP 2
	REAL MODP	CPP 4
	COMMON/PP/MODP (4) , P, PPT, PPR, PPTH, PPPH	CPP 5
C		LABPLT22
	WRITE (LABEL, 900) ID	LABPLT23
900	FORMAT (10A8)	LABPLT24
	CHID=IAABEL	LABPLT25
	IABEL=CHID (5:)	LABPLT26
	IOR=0	LABPLT2 7
	IT=0	LABPLT28
	IS $=2$	LABPLT29
	IX $=0$	LABPLT30
	IY=1023	LABPLT31
	CALL DDTEXT (8,LABEL)	LABPLT32
	IX=1090	LABPLT33
	$\underline{I}=0$	LABPLT34
	CALL DDTEXT (2,DAT)	LABPLT35
	IY=1023	LABPLT36
	F=OW/PIT2	LABPLT37
	NANGLE $=10$	LABPLT38
	ANGRANG='EL = '	LABPLT39
	ANOTE= ${ }^{\text {AZ }}$ ($=1$	LABPLT40

```
    ANEL=0.
    IF(ELSTEP.NE.O.0) ANEL=(ELEND-ELBEG)/ELSTEP+1.5
    IF(ANEL.GT.1.0.OR.PLT.LT.0.0) GO TO 100
        ANGRANG='AZ ='
        ANOTE='EL ='
        NANGLE=14
100 WRITE(IABEL,1300) CHID(1:3),F,ANOTE,W(NANGLE) *DEGS
1300 FORMAT ('MODEL = ',A,' ,FREQ =',F9.3,' HZ, ',A,F7.3,' DEG')
    IX=0
    IY=IY-32
    CALL DDTEXT (7,LABEL)
C
C INDEX OF OPPOSITE ANGLE
    NANGLE=(10+14-NANGLE) +1
    NANGLE2=NANGLE+2
    WRITE (LABEL, 1400) ANGRANG,(W(I)*DEGS,I=NANGLE,NANGLE2)
1400 FORMAT(A,F7.2,' DEG TO',F7.2,' DEG, STEP =1,F7.2,' DEG')
    IY=IY-32
    CALL DDTEXT (7,IABEL)
C
    WRITE(LABEL, 1500) XMTRH,TLAT*DEGS,TLON*DEGS
1500 FORMAT('XMTR HT = ',F6.2,' KM ,LAT =',F6.2,' DEG, LONG ='
    1 ,F6.2,' DEG')
        IY=IY-32
        CALL DD'TEXT (7,LABEL)
C
    IY=IY-32
    WRITE (LABEL,'(10A8)') MODRIN
    CALL DDTEXT(8,LABEL)
C
    IX=1050
    CALL DDTEXT(l, 'MODELS')
    IY=IY-15
C LOOP FOR }8\mathrm{ MODELS AND PERTURBATIONS
    DO 1700 K=1,16
    I=(K-1)/2+1
C GENERATE ALTERNATING 1,2;3,4 SERIES FOR MODEL AND PERTURBATION
    Jl=2*(K+1-I*2) +1
    J2=J1+1
    IF(I.EQ.1) WRITE(LABEL, 1600) (MODU(J),J=J1,J2)
    IF(I.EQ.2) WRITE(IABEL,1600) (MODC(J),J=J1,J2)
    IF(I.EQ.3) WRITE(IABEL, 1600) (MODT(J),J=J1,J2)
    IF(I.EQ.4 .AND. JI.EQ.I)
    1 WRITE(LABEL,1600) (MODM(J),J=J1,J2)
C
    IF(I.EQ.5) WRITE(LABEL, 1600) (MODG(J),J=J1,J2)
    IF(I.EQ.6) WRITE (IABEL, 1600) (MODA(J),J=J1,J2)
    IF(I.EQ.7) WRITE(IABEL, 1600) (MODP(J),J=J1,J2)
C NO FURTHER OUTPUT FOR MODELS WITHOUT PERTURBATIONS
    IF(Jl.GT.l) GO TO 1610
    IF(I.EQ.8) WRITE (LABEL, 1600) (MODREC(J),J=J1,J2)
1600 FORMAT(2(2(A8,2X,F5.1,1X),2X))
C
1610 IF(LABEL(1:1).EQ.' ') GO TO 1700
    IY=IY-32
```

LABPLT41
LABPLT42
LABPLT4 3
LABPLT44
LABPLT45
LABPLT4 6
LABPLT47
LABPLT48
LABPLT49
LABPLT50
LABPLT51
LABPLT52
LABPLT53
LABPLT54
LABPLT55
LABPLT56
LABPLT57
LABPLT58
LABPLT59
LABPLT60
LABPLT61
LABPLT62
LABPLT63
LABPLT64
LABPLT65
LABPLT66
LABPLT67
LABPLT68
LABPLT69
LABPLT70
LABPLT71
LABPLT72
LABPLT73
LABPLT74
LABPLT75
LABPLT76
LABPLT77
LABPLT78
LABPLT79
LABPLT80
LABPLT81
LABPLT82
LABPLT83
LABPLT84
LABPLT85
LABPLT86
LABPLT87
LABPLT88
LABPLT89
LABPLT90
LABPLT91
LABPLT92
LABPLT93
LABPLT94
LABPLT95

```
        CALL DDTEXT (2,IABEL) LABPLT96
        LABEL(1:1)=1 '
                    END
                LABPLT97
C
LABPLT98
LABPLT99
C SUBROUTINE PLTHLB(X,Y,NC)
EXTERNAL PLOT
        CALL PLTANH(X,Y,NC,PLOT)
        END
```

PLTHLB 2
HORIZONTAL TICK ANNOTATION ROUTINE FOR RAYPLOT. PLTHLB 3
PLTHLB 4
PLTHLB
PLTHLB 6
PLTHLB 7

```PLTHLB 8PLTHLB 9
```

DATA LNC/-100/

PLTANH 2
PLTANH 3
PLTANH 4
PLTANH 5
PLTANH 6
PLTANH 7
CWWR 2
CWWI 3
CWWI 4
CWW2 2
CWW2 3
CWW2 4
CWW2 5
CWW2 6
CWW2 7
) CWW2 8
CWW2 9
CWW2 10
CWW2 11
CWW2 12
CWW2 13
CWW2 14
CWW2 15
CWW2 16
CCONST 2
CCONST 4
CCONST 5
PLTANH10
PLTANHII
PLTANH12
PLTANH13
PLTANH14
PLTANH15
IF (NC.LE.O .OR. NC.GT.2) GO TO 100 PLTANH16

```NORMALIZE LETTER SIZE FACTOR TO . 15 INCHESHLETF=HITLET/. 15
IF (LNC.NE.NC) LICM=-100
LNC=NC
CALL PLOT (X,Y,I)
IX=IX-80*HLETF
\(I C M=I X\)
IF (NC.GT.1) THEN
ICM=IY
\(I X=I X-40\)
ENDIF
```CC INSURE THAT OVERLAPS OF ANNOTATIONS DO NOT OCCURIF (IABS (ICM-LICM).LT.INT ( 80 *HLETF)) GO TO 100
 IF(PROJCT.EQ.2.0) GO TO }2
 IF (HB.GE.O.0.AND.Y.GT. (RMIN+RMAX)/2) GO TO 100
 IF(HB.IT.O.O.AND.Y.IT.(RMIN+RMAX)/2) GO TO 100
 5 F=DEGS
 TMP=(THMAX-THMIN) *DEGS
 IF(TMP.IT.10.) F=EARTHR
 FT=F
 IF(PROJCT.EQ.2.0 .AND. MCONP.EQ.O) F=F/EARTHR
 V=X-THMIN
 IF(NC.GT.1) V=Y-(RMIN+RMAX)/2.
 IF(ABS (AMOD (TIC*FT+.0001,1.)).GT..001) GO TO 60
 WRITE (ANNOT,50) INT(V*F+SIGN(.5,V))
 FORMAT (I5)
 GO TO 90
C
60 WRITE (ANNOT, 80) V*F
80 FORMAT(F8.2)
C
90 LICM=ICM
C ALLOW 8 RASTERS FOR THE LETTER HEIGHT
 H=HB
 IF(PROJCT.EQ.2.0) H=0.
 IF(NC.EQ.1) IY=IY-8*HLETF-SIGN (52.,H)
 IOR=0
 FORMAT(3G13.6,2I5,1X,Al0)
95 FORMAT(3G13.6,2I5,1X,Al0)
 CALL DDTEXT(1,ANNOT)
C
100 CALL PLOT(X,Y,MINO (1,NC))
 END
 PLTANH17
 C NORMALIZE LETTER SIZE FACTOR TO . 15 INCHES
 HLETF=HITLET/.15
 LNC=NC
 IX=IX-40
 N
 IF (IABS (INT OCCUR
```

```
 SUBROUTINE SETXY(PROJ,XMIN, YMIN, XMAX, YMAX) SETXY
C PLOT INITIALIZATION; SETS PROJECTION PARAMETERS
C
 COMMON/LABCLT/PROJCT , THMIN , THMAX, RMIN , RMAX
 C
C
C INITIAL ANNOTATION MODEL
 CALL SETANN
 PROJCT=PROJ
 THMIN=XMIN
 RMIN=YMIN
 THMAX=XMAX
 RMAX=YMAX
 END
 SUBROUTINE TIKLINE(XLI,YB,XL,YTI,TICV,TIKSZ,PLOT)
C DRAWS STRAIGHT LINE WITH TICKS AT INTERVALS
C
C
 XDF=XL-XLI
 YDF=YTI-YB
 DST=SQRT(XDF*XDF+YDF*YDF)
 TICE=DST
 T=0.0
 IF(TICV.EQ.O.0) GO TO 50
 TICE=TICV
 T=TIKSZ/TICV
C
50 TICVX=TICE*XDF/DST
 TICVY=TICE*YDF/DST
 TX=TICVY*T
 TY=-TICVX*T
 NTIC=1+DST/TICE
 CALL PLOT(XLI,YB,-1)
 DO 100 I=0,NTIC-I
 X=XLI+I*TICVX
 Y=YB+I*TICVY
 CALL PLOT(X,Y,O)
 CALL PLOT (X+TX,Y+TY,O)
 CALL PLOT (X,Y,I)
 CALL PLOT(XL,YT1,0)
 CALL PLOT(XL,YTI,1)
 END
 TIKLINE2
SETXY
SETXY
SETXY
SETXY
SETXY
SETXY
SETXY
C
PROJCT=PROJ
SETXY 10
SETXY 11
SETXY 12
SETXY 13
SETXY 14
SETXY 15
SETXY 16
END SETXY
```

DRAWS STRAIGHT LINE WITH TICKS AT INTERVALS
C
-HKSZ/IICV
END

```
```

l ,DEGS,LLAT,LLON,RLAT,RLON,ALTLOW,ALTHI,PLT,DTICH,DTICV, PLOT) PLTANOT3
C PUTS STANDARD ANNOTATIONS ON PLOTS PLTANOT4
C PLTANOT5
COMMON/LABCLT/PROJCT , THMIN, THMAX, RMIN, RMAX PLTANOT6
REAL LLAT,LLON
CHARACTER LABEL*80
COMMON /DD/ INT,IOR,IT,IS,IC,ICC,IX,IY
C COMMON DECK "ANNOT" INSERTED HERE ANNOT 2
CHARACTER*IO ANOTES,HNOTES
COMMON/ANNCTL/LENA (4), LENHA (3)
COMMON/ANNCTC/ANOTES (2,4),HNOTES (4,3)
C
IF(PLT.EQ.2. .OR. XMF.LE.O.O .OR. YMF.LE.O.O) GO TO 45
CALL PLOT (XL+XMF* (XR-XL),YB+YMF* (YT-YB),1)
IF(FREQ.LE.O.0) GO TO 30
C
WRTME (LABEL, 25) FREQ
WRITE(LABEL, 25) FREQ
CALL DDTEXT (2, LABEL)
IY=IY+40
C
30 WRITE(LABEL, 35) ID
35 FORMAT('MODEL = ',A3)
CALL DDTEXT (2,IABEL)
C
45 NSPY=97
IOR=0
C
C FIRST THE LOW ALTITUDE-LATITUDE ANNOTATION
50 CALL PLOT (XL,YB, 1)
IX=IX-155
IY=IY-NSPY
WRITE(LABEL, 1840) DEGS*LLON
CALL DDTEXT (2,IABEL)
WRITE(LABEL,1850) DEGS*LLAAT
IY=IY-32
CALL DDTEXT (2,LABEL)
C
C NEXT THE RIGHT IATITUDE ANNOTATION
CALL PLOT(XR,YB,1)
IX=IX-130
IY=IY-NSPY
WRITE(LABEL, 1840) DEGS*RLON
CALL DDTEXT (2,LABEL)
WRITE(LABEL,1850) DEGS*RLAT
IY=IY-32
CALL DDTEXT (2,ILABEL)
C
XMID=(XL+XR)/2.0
IF(PLT.EQ.2.0) GO TO 55
C
C PUT THE HORIZONTAL TIC LABEL
Y=YT
IF(ALTLOW.GE.0.0) Y=YB
CALL PLOT (XMID,Y,I)
PLTANOT7
PLTANOT8
PLTANOT9
C Com
PLTANOII
PLTANOl2
PLTANO13
PLTANOI4
PLTANOI5
PLTANOI6
IY=TY+40
WRITE(IABET 35) ID
PLTANO17
PLTANO18
PLTANO19
PLTANO20
PLTANO20
PLTANO22
PLTANO23
PLTANO24
PLTANO25
PLTANO26
PLTANO27
PLTANO28
PLTANO29
PLTANO30
PLTANO31
PLTANO32
PLTANO33
PLTANO34
PLTANO34
PLTANO35
PLTANO36
PLTANO37
PLTANO38
PLTANO38
PLTANO40
PLTANO41
PLTANO42
PLTANO43
PLTANO44
PLTANO45
PLTANO46
PLTANO47
PLTANO48
PLTANO49
PLTANO49
PLTANO51
PLTANO52
PLTANO53
PLTANO54

```
```

C PLTANO55
IF(ALTLOW.LT.0.0) IY=IY+80
IF(ALTLOW.GE.0.0) IY=IY-95
GO TO 60
C
55 CALL PLOT(XMID,YB,1)
IY=IY-95
C
60 IX=IX-235
NOTEA=1
TMP=(THMAX-THMIN)*DEGS
IF(TMP.GT.10.) NOTEA=2
C
CALL DDTEXT (LENHA (NOTEA), HNOTES (1,NOTEA))
C
C PUT THE VERTICAL TIC LABEL
CALL PLOT(XL, (YB+YT)/2.0,1)
IOR=1
IF(PLT.NE.2.) GO TO 100
C
C HORIZONTAL PLOT PUT Y-AXIS ANNOTATION
C
IX=IX-125
IY=200
CALL DDTEXT (LENHA (3),HNOTES (1,3))
GO TO 200
C
100 IX=IX-125
IY=IY-75
NOTEA=1
IF(ALTLOW.GE.0.0) NOTEA=3
IF(ABS (ALTHI-ALTLOW).GE.1.) NOTEA=NOTEA+1
CALL DDTEXT (LENA (NOTEA),ANOTES (1,NOTEA))
C
200 IOR=0
1840 FORMAT(F7.2,' DEG E.'')
1850 FORMAT(F7.2,' DEG N.'')
C
END
PLTANO56
PLTANO57
PLTANO58
PLTANO59
PLTANO60
PLTANO61
PLTANO62
PLTANO63
PLTANO64
PLTANO65
PLTANO66
PLTANO67
PLTANO68
PLTANO69
PLTANO70
PLTANO71
PLTANO72
PLTANO73
PLTANO74
PLTANO75
PLTANO76
PLTANO77
PLTANO78
PLTANO79
PLTANO80
PLTANO81
PLTANO82
PLTANO83
PLTANO84
PLTANO85
PLTANO86
PLTANO87
PLTANO88
PLTANO89
PLTANO90
PLTANO91
PLTANO92
PLTANO93
c SUBROUTINE DRAWTKS (DTICH,DTICV,XLPR,XR,YBPR,YT,PLOT)
DRAWTKS2
C Dramen DRAWTKS3
C HORIZONTAL PLOT PROJECTION SUPPORT ROUTINE.
DRAWTKS4
DRAW BOUNDARY TO PLOT AREA, TICS AND TIC LABELS. DRAWTKS5
ExtERNAL PLOT
c
XL=XLPR
DRAWTexternal plot
c
$\mathrm{XL}=\mathrm{XLPR}$ DRAWTKS7
$\mathrm{YB}=\mathrm{YBPR}$
YMID $=.5 *(\mathrm{YB}+\mathrm{YT})$

```
 TICY=.01*(XR-XL) DRAWTK13
 YBP=YB DRAWTK14
 IF(DTICV.GT.O.) YBP=YMID-AINT((YMID-YB)/DTICV)*DTICV DRAWTK15
 CALL PLOT(XLPR,YMID,1)
 CALI PLOT(XR,YMID,0)
 END
```

DO $40 \mathrm{I}=1, \mathrm{NTICX}$
X=XLPR+I*DTICH
CALL PLOT (X,YB,0)
CALL PLOT (X, YB+TICX, O)
CALL PLOT ( $\mathrm{X}, \mathrm{YB}, 1$ )
$Y B=Y T$
$\mathrm{XL}=\mathrm{XR}$
TICX=-TICX
TICY=-TICY
$I O F=10$

CALL PLOT (XLPR,YMID, 1)
CALL PLOT (XR,YMID,0)
END

DRAWTK15
DRAWTK16
DRAWTK17
DRAWTK18
DRAWTK19
DRAWTK20
DRAWTK21
DRAWTK22
DRAWTK23
DRAWTK24
DRAWTK25
DRAWTK26
DRAWTK27
DRAWTK28
DRAWTK29
DRAWTK30
DRAWTK31 DRAWTK32
DRAWTK33
DRAWTK34
DRAWTK35
DRAWTK36
DRAWTK37

DRAWTK39
DRAWTK40
DRAWTK41
DRAWTK42
DRAWTK43
DRAWTK44
DRAWTK45
DRAWTK46
DRAWTK47
DRAWTK48
DRAWTK49
DRAWTK50

```
 COMMON/WW/ID(10),MAXW,W(NWARSZ) CWW1
 REAL MAXSTP,MAXERR,INTYP,ILAT,LLON CWW2
 EQUIVALENCE (EARTHR,W(1)),(RAY,W(2)),(XMTRH,W(3)),(TLAT,W(4)), CWW2
 l (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)), CWW2
 2 (AZl,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)),, CWW2
 3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), CWW2
 8 (RCVRH,W(20)),
 4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)), (PLON,W(25)) CWW2
 5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)), CWW2
 6 (HMIN,W(27)),(RGMAX,W(28)),
 8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2
 6 (STEP1,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 11
 7(SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75))
 9 (BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2
 1 (LLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86))
 2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
 COMMON/DD/ IINT,IOR,IT,IS,IC,ICC,IX,IY
 COMMON/LABCLT/PROJCT ,THMIN ,THMAX, RMIN , RMAX
C
C
 DATA LIY/-100/
C
 NC=NCP
 GO TO 10
 ENTRY PLTLBN(X,PY,NCP)
 NC=0
C
10
C
 IF(NCP.LT.0) GO TO 200
 F=1.
 IF (AMAXI (ABS (RMAX-EARTHR), ABS (RMIN-EARTHR)).LT.I.) F=1000.
 Y=INT ((Y-EARTHR)*F)/F+EARTHR
 IF(NC.EQ.O) GO TO 100
 V}=
 IF(PROJCT.EQ.3.) V=RMIN+(Y-RMIN)/PFACTR
 IF(ABS (AINT (TICV*F) -TICV*F).GT..O01) GO TO 60
 WRITE (ANNOT,50) INT (ABS (V-EARTHR) *F)
 FORMAT(I3)
 GO TO 90
C
60 WRITE (ANNOT, 80) ABS (V-EARTHR) *F
80
 FORMAT(F6.2)
C
90 CALL PLOT(X,PY,1)
 CALL PLOT(X,Y,I)
C INSURE THAT OVERLAPS OF ANNOTATIONS DO NOT OCCUR
 IF(IABS(IY-LIY).LT.80) GO TO 100
 LIY=IY
 IX=IX-100
 IOR=0
 CALL DDTEXT(1,ANNOT)
C
```

            CALL PLOT(X,Y,NC)
            RETURN
    C
CALL PLOT (X,Y,1)
RETURN
END
PLTLB 52
PLTLB }5
PLTLB 54
PLTLB 55
PLTLB 56
PLTLB }5
SUBROUTINE ARCTIC(THMIN,THMAX,HEIGHT,TICY, PLOT)
ARCTIC 2
C DRAW RANGE AXIS IN RAY TRACE PLOT. INCLUDES ANY CURVILINEAR
ARCTIC 3 PROJECTIONS PROVIDED IN DDGRAPH.
ARCTIC 4
COMMON DECK "WWR" INSERTED HERE CWWR
PARAMETER (NWARSZ=1000)
CWWI 3
COMMON/WW/ID(10), MAXW,W(NWARSZ) CWWI
REAL MAXSTP, MAXERR, INTYP, LLAT,LLON CWW2
EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)),(TLAT,W(4)), CWW2
1 (TLON,W(5)), (OW,W(6)), (FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)), CWW2 4
2 (AZ1,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)), CWW2 5
3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), CWW2 6

```
```

8 (RCVRH,W(20)), CWW2 7

```
8 (RCVRH,W(20)), CWW2 7
4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))CWW2 8
5, (HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)), CWW2 9
6 (HMIN,W(27)), (RGMAX,W(28)), CWW2 10
8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 11
6 (STEP1,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 12
7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75))) CWW2 13
9 , (BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 14
1 (LLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86)) CWW2 15
\(2,(T I C, W(87)),(H B, W(88)),(H T, W(89)),(T I C V, W(96))\) CWW2 16
COMMON /DDSCALE/ XMIN, XMAX, YMIN, YMAX,MINX,MAXX,MINY, MAXY, SCX,SCY, ARCTIC 6
1 NSCX,NXCY,MSCX,MSCY,ISCX,ISCY ARCTIC 7
C
```


## NTIC=2

```
IF (TIC.NE.O.) NTIC=1+(THMAX-THMIN)/TIC
NLINE=MAXO (2,100/NTIC)
ARCTIC 8
ARCTIC 9
ARCTIClo
ARCTICII
TICN=TIC/(NLINE-2) ARCTIC12
DO \(10 \mathrm{I}=1\),NTIC
\(\mathrm{X}=\mathrm{THM} \mathrm{IN}+(\mathrm{I}-1)\) *TIC
CALL PLOT (X,HEIGHT+TICY, 1)
DO \(10 \mathrm{~J}=2\), NLINE
\(\mathrm{XJ}=\mathrm{X}+(\mathrm{J}-2) * T I C N\)
IF (XJ.GT.THMAX) GO TO 15
ARCTICl 3
ARCTIC14
CALL PIOT (XJ HETGHT O) ARCTIC19
10 CALL PLOT (XJ,HEIGHT, 0)
ARCTIC15
CALL PLOT (THMAX, HEIGHT, 0)
ARCTICl 6
CAIT ARCTIC22
CALL PLOT (THMAX, HEIGHT+TICY, 1)
ARCTIC23
RETURN
ARCTIC24
END
ARCTIC2 5
```

	BLOCK DATA PLOTBL	PLOTBL 2
C	BLOCK DATA INITIALIZING PLOT ROUTINE COUNTERS AND	PLOTBL 3
C	EXTREME VALUES VARIABLES.	PLOTBL 4
	COMMON/KNKN/KNBP , KNVC, KNDT	PLOTBL 5
	COMMON/DDLIM/MXIX, MXIY, MNIX, MNIY	PLOTBL 6
	DATA MXIX,MXIY,MNIX,MNIY/2*-1000,2*1000/	PLOTBL 7
	DATA KNBP, KNVC, KNDT/3*0/	PLOTBL 8
	END	PLOTBL 9
	SUBROUTINE DDINIT (N,TEXT)	DDINIT 2
C	INITIALIZES PLOTTING PROCESS (DDPLOT)	DDINIT 3
C	WRITE PARAMETERS TO GRAPHICS CALLS FILE	DDINIT 4
C	COMMON DECK "RAYDEV" INSERTED HERE	CRAYDEV2
C	DEVICE ASSIGNED TO RAYTRC INPUT FILE	CRAYDEV4
	COMMON/RAYDEV/NRYIND, NDEVTMP, NFRMAT, NDEVGRP, NDEVBIN	CRAYDEV5
	CHARACTER TEXT* (*)	DDINIT 6
C		DDINIT 7
	DATA IDD/0/	DDINIT 8
10	FORMAT (5Al0)	DDINIT 9
	IF (IDD.EQ.0) REWIND NDEVGRP	DDINIT10
	IDD=1	DDINITII
	WRITE (NDEVGRP) 0,0,0	DDINIT12
	WRITE (NDEVGRP) M, LEN (TEXT) , TEXT	DDINIT13
	END	DDINIT14
	SUBROUTINE DDBP	DDBP 2
C	SETS A VECTOR ORIGIN (DDPLOT)	DDBP 3
C	WRITE PARAMETERS TO GRAPHICS CALLS FILE	DDBP 4
C	COMMON DECK "RAYDEV" INSERTED HERE	CRAYDEV2
C	DEVICE ASSIGNED TO RAYTRC INPUT FILE	CRAYDEV4
	COMMON/RAYDEV/NRYIND, NDEVTMP, NFRMAT, NDEVGRP, NDEVBIN	CRAYDEV5
	COMMON/DD/IN, IOR,IT, IS, IC, ICC,IX, IY	DDBP 6
	COMMON/KNKN/KNBP, KNVC, KNDT	DDBP 7
	COMMON/DDLIM/MXIX, MXIY, MNIX, MNIY	DDBP 8
	MNIX=MINO (MNIX, IX)	DDBP 9
	MXIX=MAX0 (MXIX, IX)	DDBP 10
	MNIY=MINO (MNIY, IY)	DDBP 11
	MXIY=MAXO (MXIY, IY)	DDBP 12
	IF (IX.LT.O.OR.IX.GT.1023.OR.IY.LT.O.OR.IY.GT.1023	DDBP 13
	1 ) PRINT 10,'DDBP ',KNBP, IX, IY	DDBP 14
10	FORMAT (Al0, 3I5)	DDBP 15
	KNBP=KNBP+1	DDBP 16
	WRITE (NDEVGRP) 1,IX,IY	DDBP 17
	END	DDBP 18


	SUBROUTINE DDVC	DDVC 2
C	PLOTS A VECTOR(DDPLOT)	DDVC 3
C	WRITE PARAMETERS TO GRAPHICS CALLS FILE	DDVC 4
C	COMMON DECK "RAYDEV" INSERTED HERE	CRAYDEV2
C	DEVICE ASSIGNED TO RAYTRC INPUT FILE	CRAYDEV4
	COMMON/RAYDEV/NRYIND, NDEVTMP, NFRMAT, NDEVGRP, NDEVBIN	CRAYDEV5
	COMMON/DD/IN, IOR, IT, IS, IC, ICC, IX, IY	DDVC 6
	COMMON/KNKN/KNBP, KNVC, KNDT	DDVC 7
	COMMON/DDLIM/MXIX, MXIY, MNIX, MNIY	DDVC 8
	MNIX=MINO (MNIX, IX)	DDVC 9
	MXIX=MAX0 (MXIX, IX)	DDVC 10
	MNIY=MINO (MNIY, IY)	DDVC 11
	MXIY=MAXO (MXIY, IY)	DDVC 12
	IF(IX.LT.O.OR.IX.GT.1023.OR.IY.LT.O.OR.IY.GT. 1023	DDVC 13
	$1)$ PRINT 10,'DDVC ',KNVC,IX,IY	DDVC 14
10	FORMAT (Al0, 3I5)	DDVC 15
	KNVC=KNVC+1	DDVC 16
	WRITE (NDEVGRP) 2,IX,IY	DDVC 17
	END	DDVC 18
	SUBROUTINE DDTEXT ( $\mathrm{N}, \mathrm{TEXT}$ )	DDTEXT 2
C	WRITES A CHARACTER ARRAY PACKED AlO (DDPLOT)	DDTEXT 3
C	WRITE PARAMETERS TO GRAPHICS CALLS FILE	DDTEXT 4
C	COMMON DECK "RAYDEV" INSERTED HERE	CRAYDEV2
C	DEVICE ASSIGNED TO RAYTRC INPUT FILE	CRAYDEV4
	COMMON/RAYDEV/NRYIND, NDEVTMP, NFRMAT, NDEVGRP, NDEVBIN	CRAYDEV5
	CHARACTER TEXT* (*)	DDTEXT 6
	COMMON/DD/IN,IOR,IT,IS,IC,ICC,IX,IY COMMON/KNKN/KNBP, KNVC, KNDT	DDTEXT 7
	COMMON/KNKN/KNBP, KNVC, KNDT FORMAT (A10,2I5,I2,1X,8A10)	DDTEXT 8
100	KNDT $=$ KNDT+1 ${ }^{215,12,1 X, 8 A 10) ~}$	DDTEXT 9
	WRITE (NDEVGRP) 3,IX,IY	DDTEXTII
	WRITE (NDEVGRP) IOR,N,N*10, (TEXT (I:I), $\mathrm{I}=1, \mathrm{~N} * 10$ )	DDTEXTI2
	END 1	DDTEXTl3
	SUBROUTINE DDTAB	DDTAB 2
C	INITIALIZES TABULAR PLOTTING(DDPLOT)	DDTAB 3
C	WRITE PARAMETERS TO GRAPHICS CALLS FILE	DDTAB 4
C	COMMON DECK "RAYDEV" INSERTED HERE	CRAYDEV2
C	DEVICE ASSIGNED TO RAYTRC INPUT FILE	CRAYDEV4
	COMMON/RAYDEV/NRYIND, NDEVTMP, NFRMAT, NDEVGRP, NDEVBIN	CRAYDEV5
	END	DDTAB 6


	SUBROUTINE DDFR	DDFR 2
C	ADVANCE ONE PLOTTING FRAME (DDPLOT)	DDFR
C	WRITE PARAMETERS TO GRAPHICS CALLS FILE	DDFR 4
C	COMMON DECK "RAYDEV" INSERTED HERE	CRAYDEV2
C	DEVICE ASSIGNED TO RAYTRC INPUT FILE	CRAYDEV4
	COMMON/RAYDEV/NRYIND, NDEVTMP, NFRMAT, NDEVGRP, NDEVBIN	CRAYDEV5
10	FORMAT (A10)	DDFR
	WRITE (NDEVGRP) -2,0,0	DDFR 7
	END	DDFR 8
	SUBROUTINE DDEND	DDEND 2
C	EMPTIES PLOT BUFFER AND RELEASES PLOTTING COMMAND FILE (DDPLOT)	DDEND 3
C	WRITE PARAMETERS TO GRAPHICS CALLS FILE	DDEND 4
C	COMMON DECK "RAYDEV" INSERTED HERE	CRAYDEV2
C	DEVICE ASSIGNED TO RAYTRC INPUT FILE	CRAYDEV4
	COMMON/RAYDEV/NRYIND, NDEVTMP, NFRMAT, NDEVGRP, NDEVBIN	CRAYDEV5
	COMMON/KNKN/KNBP, KNVC, KNDT	DDEND 6
	COMMON/DDLIM/MXIX, MXIY,MNIX, MNIY	DDEND 7
10	FORMAT (3A10,5I5)	DDEND 8
	WRITE (NDEVGRP) -1,0,0	DDEND 9
	END	DDEND 10


	SUBROUTINE DASH	DASH 2
C	ACTIVATE DASHED LINE CONNECTIONS (DISSPLA)	DASH 3
C	WRITE PARAMETERS TO GRAPHICS CALLS FILE	DASH 4
C	COMMON DECK "RAYDEV" INSERTED HERE	CRAYDEV2
C	DEVICE ASSIGNED TO RAYTRC INPUT FILE	CRAYDEV4
	COMMON/RAYDEV/NRYIND, NDEVTMP, NFRMAT, NDEVGRP, NDEVBIN	CRAYDEV5
	WRITE (NDEVGRP) 37,0,0	DASH 6
	END	DASH 7
	SUBROUTINE RESET (S)	RESET 2
C	RESETS AN OPTION TO ITS DEFAULT VALUE (DISSPLA)	RESET 3
C	WRITE PARAMETERS TO GRAPHICS CALLS FILE	RESET 4
C	COMMON DECK "RAYDEV" INSERTED HERE	CRAYDEV2
C	DEVICE ASSIGNED TO RAYTRC INPUT FILE	CRAYDEV4
	COMMON/RAYDEV/NRYIND, NDEVTMP, NFRMAT, NDEVGRP, NDEVBIN	CRAYDEV5
	CHARACTER S*10	RESET 6
	WRITE (NDEVGRP) 38,0,0	RESET 7

```
WRITE(NDEVGRP) S
```

END

```
```

END

```
\begin{tabular}{ll}
SUBROUTINE HEIGHT（H） & HEIGHT 2 \\
SETS REFERENCE CHARACTER HEIGHT IN INCHES（DISSPLA） & HEIGHT 3 \\
WRITE PARAMETERS TO GRAPHICS CALLS FILE & HEIGHT 4 \\
COMMON DECK＂RAYDEV＂INSERTED HERE & CRAYDEV2 \\
DEVICE ASSIGNED TO RAYTRC INPUT FILE & CRAYDEV4 \\
COMMON／RAYDEV／NRYIND，NDEVTMP，NFRMAT，NDEVGRP，NDEVBIN & CRAYDEV5 \\
WRITE（NDEVGRP） \(13, H, 0\) & HEIGHT 6 \\
END & HEIGHT 7
\end{tabular}

SUBROUTINE MXIALF（T1，T2）
C SPECIFY USE OF ALTERNATE CHARACTER SET NUMBER I（DISSPLA）
C WRITE PARAMETERS TO GRAPHICS CALLS FILE COMMON DECK＂RAYDEV＂INSERTED HERE

MXIALF 2

DEVICE ASSIGNED TO RAYTRC INPUT FILE
COMMON／RAYDEV／NRYIND，NDEVTMP，NFRMAT，NDEVGRP，NDEVBIN WRITE（NDEVGRP）11，T1，T2 END

MXIALF 3
MXIALF 4
CRAYDEV2
CRAYDEV4
CRAYDEV5
MXIALF 6
MXIALF 7

SUBROUTINE MX2ALF（T1，T2）
C SPECIFY USE OF ALTERNATE CHARACTER SET NUMBER 2 （DISSPLA） WRITE PARAMETERS TO GRAPHICS CALLS FILE COMMON DECK＂RAYDEV＂INSERTED HERE

MX2ALF 2
MX2ALF 3

DEVICE ASSIGNED TO RAYTRC INPUT FILE COMMON／RAYDEV／NRYIND，NDEVTMP，NFRMAT，NDEVGRP，NDEVBIN

MX2ALF 4
CRAYDEV2 WRITE（NDEVGRP） \(12, T 1, T 2\) END CRAYDEV4
CRAYDEV5
MX2ALF 6
MX2ALF 7

SUBROUTINE SCMPLX
SCMPLX 2
SPECIFY USE OF SIMPLEX CHARACTER SET（DISSPLA）
SCMPLX 3
WRITE PARAMETERS TO GRAPHICS CALLS FILE COMMON DECK＂RAYDEV＂INSERTED HERE DEVICE ASSIGNED TO RAYTRC INPUT FIIE COMMON／RAYDEV／NRYIND，NDEVTMP，NFRMAT ，NDEVGRP，NDEVBIN SCMPLX 4 CRAYDEV2 WRITE（NDEVGRP） \(10,0,0\) CRAYDEV4 CRAYDEV5 END

\section*{DISPERSION-RELATION ROUTINES (Tape File 4)}

SUBROUTINE ANWNL
C DISPERSION RELATION FOR ACOUSTIC WAVES NO WIND, NO LOSSES
C COMMON DECK "RKAM" INSERTED HERE
REAL KR, KTH, KPH
COMMON//R, TH, PH, KR, KTH , KPH , RKVARS (14) , TPULSE , CSTEP , DRDT (20)
C

C

C COMMON DECK "RK" INSERTED HERE
COMMON DECK "CC" INSERTED HERE
REAL MODC
COMMON/CC/MODC (4) , CS , PCST, PCSR, PCSTH, PCSPH
COMMON DECK "CONST" INSERTED HERE
COMMON/PCONST/CREF, RGAS , GAMMA
COMMON/MCONST/PI, PIT2, PID2 , DEGS , RAD, ALN10
DEFINE SIZE REQUIRED FOR RAY STATE SAVE ARRAY
ANWNL 8
ANWNL 9
RKAMCOM2
RKAMCOM4
RKAMCOM5
CCC 2
CCC 4
CCC 5
CCONST 2
CCONST 4
CCONST 5
CRK 2
CRK 4
12+LRKAMS,MXEQPT=21)
PARAMETER (NRKSAV=NXRKMS+MXEQPT-1)
CRK 5
COMMON /RK/ NEOS, STEP, MODE, EIMAX, EIMIN, E2MAX E2MIN FACT RSTART CRK 6
C
COMMON DECK "RINREAL" INSERTED HERE
LOGICAL SPACE
REAL LPOLAR, LPOLRI, KPHK, KPHKI, KAY2,KAY2I
CHARACTER DISPM*6
COMMON/RINPL/DISPM
COMMON /RIN/ MODRIN (8), RAYNAME (2, 3), TYPE (3), SPACE
COMMON/RIN/OMEGMIN , OMEGMAX, KAY2, KAY2I,
1
H, HI , PHT , PHTI , PHR , PHRI , PHTH , PHTHI , PHPH , PHPHI
2, PHOW, PHOWI, PHKR, PHKRI, PHKTH, PHKTI, PHKPH, PHKPI
3 , KPHK, KPHKI, POLAR, POLARI, LPOLAR, LPOLRI , SGN
COMMON DECK "UU" INSERTED HERE
REAL MODU
COMMON/UU/MODU (4)
\(1, V, P V T, P V R, P V T H \quad, P V P H\)
2 , VR , PVRT , PVRR , PVRTH , PVRPH
, VTH, PVTHT , PVTHR, PVTHTH, PVTHPH
4 , VPH, PVPHT , PVPHR, PVPHTH, PVPHPH
COMMON DECK "WW" INSERTED HERE
PARAMETER (NWARSZ=1000)
COMMON/WW/ID (10) ,MAXW,W(NWARSZ)
REAL MAXSTP, MAXERR, INTYP,LIAT,LLON
EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)), (TLAT,W(4)),
1 (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)),
(AZ1,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)),
(BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)) 8 (RCVRH,W(20)),
4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))
5, (HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)),
6 (HMIN,W(27)),(RGMAX,W(28)),
8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)),
6 (STEPI,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)),
(SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75))
, (BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)),
1 (LLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86))
CRK
7
CRINREA2
CRINREA4
CRINREA5
CRINREA6
CRINREA7
CRINREA8
CRINREA9
CRINRE10
CRINREII
CRINRE12
CUU 2
CUU 4
CUU 5
CUU 6
CUU 7
CUU 8
CUU 9
CWW 2
CWWI 3
CWW1 4
CWW2 2
CWW2 3
CWW2 4
CWW2 5
CWW2 6
CWW2 7
CWW2 8
CWW2 9
CWW2 10
CWW2 11
CWW2 12
CWW2 13
CWW2 15
(
CWW2 16
REAL MMODEL,MFORM,MID
CWW3
WIND 100-124
CWW3
EQUIVALENCE (W(100), UMODEL), (W(101), UFORM), (W(102),UID)
\begin{tabular}{|c|c|c|c|}
\hline C & & CWW3 & 6 \\
\hline C & DELTA WIND 125-149 & CWW3 & 7 \\
\hline & EQUIVALENCE (W (125), DUMODEL), (W (126), DUFORM), (W (127), DUID) & CWW3 & 8 \\
\hline C & & CWW3 & 9 \\
\hline \multirow[t]{3}{*}{C} & SOUND SPEED 150-174 & CWW3 & 10 \\
\hline & EQUIVALENCE (W (150), CMODEL), (W (151), CFORM), (W (152), CID) & CWW3 & 11 \\
\hline & EQUIVALENCE (W(153),REFC) & CWW3 & 12 \\
\hline \multirow[t]{3}{*}{C} & DELTA SOUND SPEED 175-199 & CWW3 & 13 \\
\hline & DELTA SOUND SPEED 175-199 & CWW3 & 14 \\
\hline & EQUIVALENCE (W (175), DCMODEL), (W (176), DCFORM), (W (177), DCID) & CWW3 & 15 \\
\hline \multirow[t]{3}{*}{C} & TEMPERATURE 200-224 & CWW3 & 16 \\
\hline & EQUIVALENCE (\(\mathrm{W}(200)\), TMODEL) , (W 201\(),\) TFORM) , \((\mathrm{W}(202)\), TID \()\) & CWW3 & 17 \\
\hline & EQUIVALENCE (W (200),TMODEL) , (W (201),TFORM), (W (202),TID) & CWW3 & 18 \\
\hline \multirow[t]{2}{*}{C} & DELTA TEMPERATURE 225-249 & CWW3 & 19 \\
\hline & EQUIVALENCE (W (225), DTMODEL), (W (226), DTFORM), (W (227), DTID) & CWW3 & 20 \\
\hline C & EQUIVALENCE (W 225\(),\) DTMODEL), (W 226\(),\) DTFORM), (W (227), DTID) & CWW3 & 21 \\
\hline \multirow[t]{2}{*}{C} & MOLECULAR 250-274 & CWW3 & 22 \\
\hline & EQUIVALENCE (W (250), MMODEL), (W (251), MFORM), (W (252),MTD) & CWW3 & 23 \\
\hline C & & CWW3 & 24 \\
\hline \multirow[t]{2}{*}{C} & RECEIVER HEIGHT 275-299 & CWW3 & 25 \\
\hline & EQUIVALENCE (\(\mathrm{W}(275\)) , RMODEL) , (W (276), RFORM) , (W (277),RID) & CWW3 & 26 \\
\hline C & & CWW3 & 27 \\
\hline \multirow[t]{2}{*}{C} & TOPOGRAPHY 300-324 & CWW3 & 28 \\
\hline & EQUIVALENCE (W(300), GMODEL), (W (301), GFORM), (W (302), GID) & CWW3 & 29 \\
\hline \multirow[t]{3}{*}{C} & (W) & CWW3 & 30 \\
\hline & DELTA TOPOGRAPHY 325-349 & CWW3 & 31 \\
\hline & EQUIVALENCE (W (325), GUMODEL), (W (326), GUFORM), (W (327), GUID) & CWW3 & 32 \\
\hline \multirow[t]{3}{*}{C} & (W) , & CWW3 & 33 \\
\hline & UPPER SURFACE TOPOGRAPHY 350-374 & CWW3 & 34 \\
\hline & EQUIVALENCE (W (350), SMODEL), (W (351), SFORM), (W (352), SID) & CWW3 & 35 \\
\hline C & PLOT ENHANCEMENTS CONTROL PARAMETERS & CWW3 & 37 \\
\hline \multirow[t]{2}{*}{C} & & CWW3 & 37
38 \\
\hline & EQUIVALENCE (W (490), XFQMDL), (W (491), YFQMDL) & CWW3 & 38
39 \\
\hline \multirow[t]{2}{*}{C} & ABSORPTION 500-524 & CWW3 & 49 \\
\hline & EQUIVALENCE (W (500), AMODEL), (W (501), AFORM), (W (502), AID) & CWW 3 & 40 \\
\hline \multirow[t]{2}{*}{C} & & CWW3 & 42 \\
\hline & DELTA ABSORPTION 525-549 & CWW3 & 43 \\
\hline & EQUIVALENCE (W) 525), DAMODEL), (W(526), DAFORM), (W (527), DAID) & CWW3 & 44 \\
\hline \multirow[t]{2}{*}{C} & PRESSURE 550-574 & CWW3 & 45 \\
\hline & & CWW3 & 46 \\
\hline & EQUIVALENCE (W(550), PMODEL), (W (551), PFORM), (W (552), PID) & CWW3 & 47 \\
\hline \multirow[t]{2}{*}{C} & DELTA PRESSURE 575-599 & CWW3 & 48 \\
\hline & & CWW3 & 49 \\
\hline C & EQUIVALENCE (W (575), DPMODEL), (W (576), DPFORM) , (W (577), DPID) & CWW3 & 50 \\
\hline C & & CWW3 & 51 \\
\hline c & & ANWNL & 17 \\
\hline & REAL KVECT (24) & ANWNL & 18 \\
\hline & REAL VSET (20) & ANWNL & 19 \\
\hline & EQUIVALENCE (KVECT, KAY2), (VSET, V) & ANWNL & 20 \\
\hline \multirow[t]{4}{*}{C} & & ANWNL & 21 \\
\hline & DATA MODRIN/8HACOUSTIC , 8H WAVE **, 8H** NO WI, 8HND *** N & ANWNL & 22 \\
\hline & \(1,8 \mathrm{HO}\) LOSSES, \(3 * 1 \mathrm{H} /{ }^{\text {d }}\), & ANNBL & 2 \\
\hline & DATA DISPM/'ANWNL'/ & ANNBL & 3 \\
\hline
\end{tabular}
DATA TYPE/3*1HO / ANNBL 5
ENTRY IDISPER
```ANWNL 25
```

ANWNL 26

```CALL ISPEED
```

CALL IRECVR 27

```ANWNL
```

CALL ITOPOG
CAL工 ISURFAC
RETURN

```C
```

ENTRY DISPER
ENTRY RINDEXSPACE=.FALSE.C
$\mathrm{KS}=\mathrm{KR} * \mathrm{KR}+\mathrm{KTH} * \mathrm{KTH}+\mathrm{KPH} * \mathrm{KPH}$
SOUND SPEED
CALL SPEED
OWS=OW*OW
KAY2=OWS/CS
H=OW*OW - CS*KS

```MKS \(=-\) KS
```

PHT=MKS *PCST
PHR=MKS * PCSR
PHTH=MKS *PCSTH

```PHPH=MKS*PCSPH
```

C
PHOW=2.0*OW
CS2 $=-2.0 *$ CS
PHKR=CS2*KR
PHKTH=CS2*KTH
PHKPH=CS2*KPH

```KPHK=CS2 * KS
```

RETURN
END
ANWNL 28
ANWNL 29
ANWNL 30
ANWNL 31
ANWNL 32
ANWNL 33
ANWNL 34
ANWNL 35
ANWNL 36
ANWNL 37
ANWNL 38
ANWNL 39
ANWNL 40
ANWNL 41
ANWNL 42
ANWNL 43
ANWNL 44
ANWNL 45
ANWNL 46
ANWNL 47
ANWNL 48
ANWNL 49
ANWNL 50
ANWNL 51
ANWNL 52
ANWNL 53
ANWNL 54
ANWNL 55
ANWNL 56
ANWNL 57
ANWNL 58
SUBROUTINE AWWNL

```8
```

AWWNL
C DISPERSION RELATION FOR ACOUSTIC WAVES WITH WIND, NO LOSSES AWWNL

```9COMMON DECK "RKAM" INSERTED HEREREAL KR, KTH, KPHCOMMON//R,TH, PH, KR , KTH, KPH, RKVARS (14) ,TPULSE , CSTEP, DRDT (20)RKAMCOM2RKAMCOM4
```

RKAMCOM5

```COMMON DECK "CC" INSERTED HERECCC2
```

REAL MODC CCC 4
COMMON/CC/MODC (4) , CS , PCST, PCSR, PCSTH, PCSPH 5
C COMMON DECK "CONST" INSERTED HERE CCONST 2

```COMMON/PCONST/CREF, RGAS , GAMMACOMMON/MCONST/PI , PIT2, PID2, DEGS , RAD, ALN10
```

CCONST 4
CCONST 5
C COMMON DECK "RK" INSERTED HERE CRK

```2
```

C DEFINE SIZE REQUIRED FOR RAY STATE SAVE ARRAY CRK 4
PARAMETER (LRKAMS $=87+2 * 100$, NXRKMS $=12+L R K A M S, M X E Q P T=21$) CRK 5
PARAMETER (NRKSAV=NXRKMS+MXEQPT-1) CRK
COMMON /RK/ NEQS,STEP,MODE,E1MAX,E1MIN,E2MAX,E2MIN,FACT,RSTART
COMMON DECK "RINREAL" INSERTED HERE
LOGICAL SPACE
REAL LPOLAR, LPOLRI, KPHK, KPHKI, KAY2, KAY2I
CHARACTER DISPM*6
COMMON/RINPL/DISPM
COMMON /RIN/ MODRIN (8), RAYNAME $(2,3)$, TYPE (3) , SPACE
COMMON/RIN/OMEGMIN, OMEGMAX, KAY2, KAY2I,

COMMON DECK "UU" INSERTED HERE
REAL MODU
COMMON/UU/MODU (4)

3 ,VTH, PVTHT', PVTHR,'PVTHTH, PVTHPH
4 , VPH, PVPHT, PVPHR, PVPHTH, PVPHPH \quad CUU 8
$\begin{array}{ll}\text { COMMON DECK "WW" INSERTED HERE } & \text { CUU } 9 \\ 9\end{array}$
PARAMETER (NWARSZ=1000)
CWW1 3
COMMON/WW/ID (10), MAXW,W (NWARSZ) CWW1 4
REAL MAXSTP, MAXERR, INTYP, LLAT, LLON CWW1 4
EQUIVALENCE (EARTHR,W(1)),(RAY,W(2)),(XMTRH,W(3)),(TLAT,W(4)), CWW2 2
1 (TLON,W(5)), (OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)), CWW2 4
2 (AZ1,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)), 3 (BETA,W(14)),((ELBEG,W(15)),(ELEND,W(16)),(ELSTEP) 4
3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), CWW2 6

5, (HMAX,W(26)),(RAYFNC,W(29)), (EXTINC,W(33)), CWW2 9

$\begin{array}{lll}7 \\ 9 & \text { (}(\operatorname{BINRAY}, \mathrm{W}(76)),(\operatorname{PAGLN}, \mathrm{W}(77)),(\operatorname{PLT}, \mathrm{W}(81)),(\operatorname{PFACTRT}, \mathrm{W}(82))), & \text { CWW2 } \\ 13\end{array}$
1 (LLAT,W(83)),(LLON,W(84)), (RLAT,W(85)),(RLON,W(86)) \quad CWW2 15
$\begin{array}{cl}\text { 2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96)) } & \text { CWW2 } 15 \\ \text { REAL MMODEL, MFORM,MID } & \text { CWW2 } \\ 16\end{array}$

SOUND SPEED 150-174 CWW3 9
EQUIVALENCE (W(150), CMODEL) (W(151) CFOPM) CWW3 10
EQUIVALENCE (W(153), REFC) (W(151),CFORM),(W(152),CID) CWW3 11
DELTA SOUND SPEED 175-199
EQUIVALENCE (W(175), DCMODEL), (W(176), DCFORM),(W(177), DCID) CWW3 14
TEMPERATURE 200-224
CWW3 15
CWW3 16
EQUIVALENCE (W(200),TMODEL), (W(201),TFORM),(W(202),TID)
CWW3 17
CWW3 18
CWW3 19
DELTA TEMPERATURE 225-249
CWW3 20

```
    EQUIVALENCE (W(225),DTMODEL),(W(226),DTFORM),(W(227),DTID) CWW3 21
    SPACE=. FALSE.
    KS=KR*KR+KTH*KTH+KPH*KPH
    WIND VELOCITY
```

MOLECULAR 250-274

RECEIVER HEIGHT 275-299

TOPOGRAPHY 300-324

DELTA TOPOGRAPHY 325-349

ABSORPTION 500-524
PLOT ENHANCEMENTS CONTROL PARAMETERS

DELTA ABSORPTION 525-549

PRESSURE 550-574

DELTA PRESSURE 575-599

REAL KS, KV
REAL KVECT (24)
EQUIVALENCE (KVECT , KAY2)

1 , 8H** NO LO , 4HSSES , 2*1H /
DATA DISPM/'AWWNL'/
DATA TYPE/3*1H1 /
ENTRY IDISPER
CALL ISPEED
CALL IWINDR
CALL IRECVR
CALL ITOPOG
CALI ISURFAC
RETURN
ENTRY DISPER
SPACE=. FALSE.
$\begin{array}{ll}\mathrm{KS}=\mathrm{KR} * \mathrm{KR}+\mathrm{KTH} * \\ \mathrm{C} & \mathrm{WIND} \text { VELOCITY }\end{array}$

```
CWW 3
CWW3
CWW3
CWW3
EQUIVALENCE ( \(\mathrm{W}(250\) ) , MMODEL) , (W (251) , MFORM) , (W (252), MID)
EQUIVALENCE (W(275),RMODEL), (W(276),RFORM), (W(277),RID)
EQUIVALENCE ( \(\mathrm{W}(300)\), GMODEL) , \((W(301), G F O R M),(W(302), G I D)\)
EQUIVALENCE (W(325), GUMODEL), (W(326), GUFORM), (W(327), GUID)
EQUIVALENCE (W(490), XFQMDL), (W(491), YFQMDL) 350-374
EQUIVALENCE ( \(W(350)\), SMODEL \(),(W(351), S F O R M),(W(352), S I D)\)
EQUIVALENCE ( \(W(500)\), AMODEL) , \((W(501), A F O R M),(W(502), A I D)\)
EQUIVALENCE (W(525), DAMODEL), (W(526), DAFORM), (W(527), DAID)
EQUIVALENCE (W(550), PMODEL), (W(551), PFORM), (W(552), PID)
EQUIVALENCE (W(575),DPMODEL), (W(576),DPFORM), (W(577), DPID)
DATA MODRIN/8HACOUSTIC , 8H WAVE ** , 8H* WITH W ,8HIND ****
```

CWW3
CWW 3
CWW3
CWW3
CWW3
CWW 3
CWW3
CWW3
CWW3
34
CWW3 35
CWW3 36
CWW3 37
CWW3 38
CWW3 39
CWW3 40
CWW3 41
CWW3 42
CWW3 43
CWW3 44
CWW3 45
CWW3 46
CWW3 47
CWW3 48
CWW3 49
CWW 30
CWW3 51
AWWNL 17
AWWNL 18
AWWNL 19
AWWNL 20
AWWNL 21
AWNBL 2
AWNBL 3
AWNBL 4
AWNBL 5
AWWNL 24
AWWNL 25
AWWNL 26
AWWNL 27
AWWNL 28
AWWNL 29
AWWNL 30
AWWNL 31
AWWNL 32
AWWNL 33
AWWNL 34
AWWNL 35
AWWNL 36
AWWNL 37
AWWNL 38

```
            CALL WINDR
            KV=KR*VR+KTH*VTH+KPH*VPH
            AWWNL 39
                    AWWNL }4
                    VLS=KV*KV/KS
                    SOUND SPEED
                        CALL SPEED
                OWS=OW*OW
                KAY2=OWS/(SQRT (CS)+KV/SQRT (KS))**2
            OWI=OW-KV
            H=OWI*OWI - CS*KS
            POWIT=-KR*PVRT - KTH*PVTHT - KPH*PVPHT
            PHT=2.0*OWI*POWIT - KS*PCST
            POWIR=-KR*PVRR - KTH*PVTHR - KPH*PVPHR
            PHR=2.0*OWI*POWIR - KS*PCSR
            POWITH=-KR*PVRTH - KTH*PVTHTH - KPH*PVPHTH
            PHTH=2.0*OWI*POWITH - KS*PCSTH
            POWIPH=-KR*PVRPH - KTH*PVTHPH - KPH*PVPHPH
            PHPH=2.0*OWI*POWIPH - KS*PCSPH
            PHOW=2.0*OWI
            PHKR=-2.0*(OWI*VR + CS*KR)
            PHKTH=-2.0*(OWI*VTH + CS*KTH)
            PHKPH=-2.0*(OWI*VPH + CS*KPH)
            KPHK=-2.0*(OWI*KV + CS*KS)
            RETURN
                    END
                    AWWNL 41
                    AWWNL 42
                    AWWNL }4
                    AWWNL }4
                    AWWNL }4
                    AWWNL 46
                    AWWNL }4
                    AWWNL }4
                    AWWNL }4
                    AWWNL 50
                    AWWNL 51
                    AWWNL 52
                    AWWNL 53
                    AWWNL 54
                    AWWNL 55
                    AWWNL 56
                    AWWNL }5
                    AWWNL 58
                    AWWNL 59
                    AWWNL }6
                    AWWNL 61
                    AWWNL }6
AWWNL }6
AWWNL }6
SUBROUTINE ANWWL
ANWWL 8 COMMON DECK "RKAM" INSERTED HERE
ANWWL 9 REAL KR, KTH, KPH
COMMON//R, TH, PH, KR, KTH , KPH, RKVARS (14) , TPULSE , CSTEP, DRDT (20)
RKAMCOM2
RKAMCOM4
RKAMCOM5
COMMON DECK "CC" INSERTED HERE
CCC 2
REAL MODC
COMMON/CC/MODC (4), CS, PCST, PCSR, PCSTH, PCSPH 4
COMMON DECK "CONST" INSERTED HERE CCC 5
COMMON/PCONST/CREF, RGAS , GAMMA
COMMON/MCONST/PI, PIT2, PID2, DEGS, RAD, CCONST 4
COMMON DECK "RK" INSERTED HERE CCONST 5
DFFINE SIZE PEOUTPED FOR RAY CRK 2
PARAMETER (TRKAMS=87+2*1) CRK 4
PARAMETER (NRKSAV=NXRRMS MXEPT CRK 5
PARAMETER (NRKSAV=NXRKMS+MXEQPT-1) CRK 6
COMMON /RK/ NEQS, STEP,MODE, EIMAX,E1MIN, E2MAX, E2MIN,FACT,RSTART CRK 7
COMMON DECK "RINREAL" INSERTED HERE
CRINREA2
```


LOGICAL SPACE

```
REAL LPOLAR, LPOLRI, KPHK, KPHKI ,KAY2, KAY2I
CHARACTER DISPM*6
COMMON/RINPL/DISPM
COMMON /RIN/ MODRIN (8) , RAYNAME (2, 3), TYPE (3), SPACE
COMMON/RIN/OMEGMIN, OMEGMAX, KAY2, KAY2I,
CRINREA4
CRINREA5
CRINREA6
CRINREA7
1 H HI PHT PHTI PHR CRINREA9
CRINREIO
```

```
    2, PHOW, PHOWI, PHKR, PHKRI, PHKTH, PHKTI, PHKPH, PHKPI
            CRINREll
    3 ,KPHK,KPHKI, POLAR, POLARI, LPOLAR, LPOLRI, SGN
    COMMON DECK "UU" INSERTED HERE
    REAL MODU
    COMMON/UU/MODU (4)
    l ,V ,PVT ,PVR ,PVTH ,PVPH
    2 ,VR , PVRT , PVRR , PVRTH , PVRPH
    3 ,VTH, PVTHT, PVTHR, PVTHTH, PVTHPH
    4 ,VPH, PVPHT, PVPHR, PVPHTH, PVPHPH
    COMMON DECK "WW" INSERTED HERE
    PARAMETER (NWARSZ=1000)
    COMMON/WW/ID (10),MAXW,W(NWARSZ)
        CWW1 3
    REAL MAXSTP,MAXERR,INTYP,LLAT,LLON CWW2 2
    EQUIVALENCE (EARTHR,W(1)),(RAY,W(2)),(XMTRH,W(3)),(TLAT,W(4)), CWW2
    l (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)), CWW2
    (AZ1,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)), CWW2 5
    3(BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)),, CWW2 6
    8 (RCVRH,W(20)),
    CWW2 }
    (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))CWW2 8
    5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)), CWW2 9
    6 (HMIN,W(27)),(RGMAX,W(28)),
    8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 11
    6 (STEPI,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 12
    (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75))
    9,(BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 14
    l (LLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86))
    2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
    REAL MMODEL,MFORM,MID CWW3
    CWW3 3
    WIND 100-124
    CWW3 4
    EQUIVALENCE (W(100),UMODEL),(W(101),UFORM),(W(102),UID) CWW3 5
    DELTA WIND 125-149
    EQUIVALENCE (W(125),DUMODEL),(W(126),DUFORM),(W(127),DUID) CWW3 8
    SOUND SPEED 150-174
    EQUIVALENCE (W(150),CMODEL),(W(151),CFORM),(W(152),CID)
    EQUIVALENCE (W(153),REFC)
    DELTA SOUND SPEED 175-199
    EQUIVALENCE (W(175),DCMODEL),(W(176),DCFORM),(W(177),DCID
    TEMPERATURE 200-224
    EQUIVALENCE (W(200),TMODEL),(W(201),TFORM),(W(202),TID)
    DELTA TEMPERATURE 225-249
    EQUIVALENCE (W(225),DTMODEL),(W(226),DTFORM),(W(227),DTID)
    MOLECULAR 250-274
    EQUIVALENCE (W(250),MMODEL),(W(251),MFORM),(W(252),MID)
    RECEIVER HEIGHT 275-299
    EQUIVALENCE (W(275),RMODEL),(W(276),RFORM),(W(277),RID)
    TOPOGRAPHY 300-324
C
C
CWW3
29
```

EQUIVALENCE (W(300), GMODEL), (W(301), GFORM), (W(302), GID) CWW3 30
DELTA TOPOGRAPHY 325-349 CWW3 31

```EQUIVALENCE (W (325), GUMODEL) , (W (326), GUFORM), (W (327), GUID)CWW3 33
```

UPPER SURFACE TOPOGRAPHY 350-374 34
EQUIVALENCE (W (350), SMODEL), (W (351), SFORM), (W (352), SID) CWW3 35
PLOT ENHANCEMENTS CONTROL PARAMETERS CWW3 36
CWW3 38

```CWW3 37
```

EQUIVALENCE (W(490), XFQMDL), (W(491), YFQMDL) ABSORPTION (W(490),
500-524 CWW3 40
EQUIVALENCE (W(500), AMODEL), (W(501), AFORM), (W(502),AID) CWW3 41
DELTA ABSORPTION 525-549
CWW 3 42
EQUIVALENCE (W(525), DAMODEL), (W(526), DAFORM), (W(527), DAID) CWW3 44
PRESSURE 550-574 CWW3
CWW3 46

```EQUIVALENCE (W(550), PMODEL), (W(551), PFORM), (W(552), PID)
```

CWW3 47 47
CWW3 DELTA PRESSURE 575-599 CWW3 49
EQUIVALENCE (W(575), DPMODEL), (W(576), DPFORM), (W(577), DPID) CWW3 50
CWW3 51
ANWWL 17 COMMON DECK "AA" INSERTED HERE CAA 2
REAL MODA
REAL MODA
CAA 4
REAL MU,MUPT,MUPR,MUPTH,MUPPH CAA 5
REAL KAP, KAPPT, KAPPR, KAPPTH, KAPPPH
CAA 6
CAA 6
COMMON/AA/MODA (4) ,MU , MUPT , MUPR , MUPTH , MUPPH
CAA 7
CAA 7
COMMON/AA/KAP , KAPPT , KAPPR, KAPPTH , KAPPPH

```COMMON DECK "PP" INSERTED HEREANWWL 19
```

REAL MODP

```COMMON/PP/MODP (4) , P, PPT , PPR, PPTH, PPPH
```

CPP 2
CPP 4
CPP 5
ANWWL 21

```COMMON DECK "MM" INSERTED HEREREAL M, MODMCOMMON/MM/MODM (4) ,M, PMT, PMR , PMTH , PMPH
```

REAL KS,MKS
REAL KVECT (24)
REAL VSET (20)
EQUIVALENCE (KVECT , KAY2) , (VSET, V)
DATA MODRIN/8HACOUSTIC , 8H WAVE ** , 8H** NO WI , 8HND

```CMM2
```

CMM 4
CMM 5
ANWWL 23
ANWWL 24
ANWWL 25
ANWWL 26
ANWWL 27
ANWWL 28
ANWBL 2
ANWBL 3
DATA DISPM/'ANWWL'/

```ANWBL 4
```

DATA TYPE/3*1H2 /
ENTRY IDISPER
ANWBL 5

```CALL ISPEED
```

CALL IRECVR
CALL ITOPOG
CALL ISURFAC
C
CALL IPRES
ANWWL 31
ANWWL 32
ANWWL 32
ANWWL 34
ANWWL 35
ANWWL 36
ANWWL 37
ANWWL 38

	CALL IABSRP	ANWWL 39
	RETURN	ANWWL 40
C		ANWWL 41
	ENTRY DISPER	ANWWL 42
	ENTRY RINDEX	ANWWL 43
C		ANWWL 44
	SPACE=. FALSE.	ANWWL 45
C		ANWWL 46
	KS $=\mathrm{KR} * \mathrm{KR}+\mathrm{KTH} * \mathrm{KTH}+\mathrm{KPH} * \mathrm{KPH}$	ANWWL 47
C	SOUND SPEED	ANWWL 48
	CALL SPEED	ANWWL 49
	OWS=OW*OW	ANWWL 50
	KAY2=OWS/CS	ANWWL 51
C		ANWWL 52
	H=OW*OW - CS*KS	ANWWL 53
	MKS $=-\mathrm{KS}$	ANWWL 54
	PHT=MKS*PCST	ANWWL 55
	PHR=MKS*PCSR	ANWWL 56
	PHTH=MKS *PCSTH	ANWWL 57
	PHPH=MKS *PCSPH	ANWWL 58
C		ANWWL 59
	PHOW=2.0*OW	ANWWL 60
	CS2=-2.0*CS	ANWWL 61
	PHKR=CS2 *KR	ANWWL 62
	PHKTH=CS2*KTH	ANWWL 63
	PHKPH=CS2*KPH	ANWWL 64
	KPHK=CS2*KS	ANWWL 65
C		ANWWL 66
	CALL PRES	ANWWL 67
	CALL ABSRP	ANWWL 68
	GMS=GAMMA-1.0	ANWWL 69
	KAY2I=-(OWI/(GAMMA*P)) * (4./3. *MU+GMS *GMS*M/ (GAMMA*RGAS) *KAP) *KAY2	ANWWL 70
	RETURN	ANWWL 71
	END	ANWWL 72
	SUBROUTINE AWWWL	AWWWL 8
C	DISPERSION RELATION FOR ACOUSTIC WAVES WITH WIND, WITH LOSSES	AWWWL 9
C	COMMON DECK "RKAM" INSERTED HERE	RKAMCOM2
	REAL KR, KTH, KPH	RKAMCOM4
	COMMON//R, TH, PH, KR, KTH, KPH, RKVARS (14) , TPULSE, CSTEP, DRDT (20)	RKAMCOM5
C	COMMON DECK "CC" INSERTED HERE	CCC 2
	REAL MODC	CCC 4
	COMMON/CC/MODC (4) , CS , PCST, PCSR, PCSTH, PCSPH	CCC 5
C	COMMON DECK "CONST" INSERTED HERE	CCONST 2
	COMMON/PCONST/CREF, RGAS, GAMMA	CCONST 4
	COMMON/MCONST/PI, PIT2, PID2, DEGS , RAD, ALN10	CCONST 5
C	COMMON DECK "RK" INSERTED HERE	CRK 2
C	DEFINE SIZE REQUIRED FOR RAY STATE SAVE ARRAY	CRK 4
	PARAMETER (LRKAMS $=87+2 * 100$, $\mathrm{NXRKMS}=12+$ LRKAMS , MXEQPT=21)	CRK 5
	PARAMETER (NRKSAV=NXRKMS+MXEQPT-1)	CRK 6
	COMMON /RK/ NEQS, STEP,MODE, ElMAX, ElMIN, E2MAX, E2MIN, FACT, RSTART	CRK 7

C		CWW3	22
c	MOLECULAR 250-274	CWW3	23
	EQUIVALENCE (W (250), MMODEL), (W (251), MFORM), (W (252), MID)	CWW3	24
C		CWW3	25
C	RECEIVER HEIGHT 275-299	CWW3	26
	EQUIVALENCE (W (275), RMODEL), (W (276),RFORM), (W (277),RID)	CWW3	27
C		CWW3	28
C	TOPOGRAPHY 300-324	CWW3	29
	EQUIVALENCE (W (300), GMODEL), (W (301), GFORM), (W (302), GID)	CWW3	30
C		CWW3	31
C	DELTA TOPOGRAPHY 325-349	CWW3	32
	EQUIVALENCE (W (325) , GUMODEL), (W (326), GUFORM), (W (327) , GUID)	CWW 3	33
C		CWW3	34
C	UPPER SURFACE TOPOGRAPHY 350-374	CWW 3	35
	EQUIVALENCE (W (350), SMODEL), (W (351), SFORM), (W (352), SID)	CWW3	36
C	PLOT ENHANCEMENTS CONTROL PARAMETERS	CWW3	37
C		CWW3	38
	EQUIVALENCE (W (490), XFQMDL), (W (491), YFQMDL)	CWW3	39
C	ABSORPTION 500-524	CWW3	40
	EQUIVALENCE (W (500), AMODEL), (W (501), AFORM), (W (502), AID)	CWW3	41
C		CWW3	42
C	DELTA ABSORPTION 525-549	CWW3	43
	EQUIVALENCE (W (525), DAMODEL), (W (526), DAFORM), (W (527), DAID)	CWW3	44
C		CWW3	45
C	PRESSURE 550-574	CWW3	46
	EQUIVALENCE (W (550), PMODEL), (W (551), PFORM), (W (552), PID)	CWW3	47
C		CWW3	48
C	DELTA PRESSURE 575-599	CWW3	49
	EQUIVALENCE (W (575), DPMODEL), (W (576), DPFORM), (W (577), DPID)	CWW3	50
C		CWW 3	51
C		AWWWL	17
C	COMMON DECK "AA" INSERTED HERE	CAA	2
	REAL MODA	CAA	4
	REAL MU,MUPT,MUPR,MUPTH,MUPPH	CAA	5
	REAL KAP, KAPPT, KAPPR, KAPPTH, KAPPPH	CAA	6
	COMMON/AA/MODA (4 , MU , MUPT, MUPR, MUPTH, MUPPH	CAA	7
	COMMON/AA/KAP , KAPPT , KAPPR , KAPPTH , KAPPPH	CAA	8
C		AWWWL	19
C	COMMON DECK "PP" INSERTED HERE	CPP	2
	REAL MODP	CPP	4
	COMMON/PP/MODP (4) , P , PPT, PPR, PPTH , PPPH	CPP	5
C		AWWWL	21
C	COMMON DECK "MM" INSERTED HERE	CMM	2
	REAL M,MODM	CMM	4
	COMMON/MM/MODM (4) , M , PMT, PMR, PMTH, PMPH	CMM	5
C		AWWWL	23
	REAL KS, KV	AWWWL	24
	REAL KVECT (24)	AWWWL	25
	EQUIVALENCE (KVECT , KAY2)	AWWWL	26
C		AWWWL	27
	DATA MODRIN/8HACOUSTIC , 8H WAVE ** , 8H* WITH W , 8HIND ****	AWWBL	2
	1 , $8 \mathrm{H} * *$ WITH , 6HLOSSES , $2 * 1 \mathrm{H} /$	AWWBL	3
	DATA DISPM/'AWWWL'/	AWWBL	4
	DATA TYPE/3*1H3 /	AWWBL	5
C		AWWWL	30

ENTRY IDISPER
CALL ISPEED

```AWWWL31
```

CALL IWINDR AWWWL 32
CALL IRECVR AWWWL 33
CALL ITOPOG
AWWWL 34
CALL ISURFAC
AWWWL 35
AWWWL 36
CALL IPRES
AWWWL 37
CALL IABSRP AWWWL 38
RETURN
AWWWL 39
AWWWL 40
ENTRY DISPER
AWWWL 41
AWWWL 42
SPACE=.FALSE.
$\mathrm{KS}=\mathrm{KR} * \mathrm{KR}+\mathrm{KTH} * \mathrm{KTH}+\mathrm{KPH} * \mathrm{KPH}$
AWWWL 43
AWWWL 44
AWWWL 45
WIND VELOCITY AWWWL 46
CALL WINDR AWWWL 47
$\mathrm{KV}=\mathrm{KR} * \mathrm{VR}+\mathrm{KTH} * \mathrm{VTH}+\mathrm{KPH} * \mathrm{VPH}$ AWWWL 48
VLS=KV*KV/KS AWWWL 49
SOUND SPEED
AWWWL 50
CALL SPEED AWWWL 51
OWS=OW*OW
AWWWL 52
KAY2=OWS / (SQRT (CS) +KV/SQRT (KS)) **2 AWWWL 5
OWI=OW-KV
AWWWL 55
H=OWI*OWI - CS*KS
AWWWL 56
POWIT $=-K R * P V R T ~-~ K T H * P V T H T ~-~ K P H * P V P H T ~$ AWWWL 57
PHT=2.0*OWI*POWIT - KS*PCST AWWWL 58
POWIR=-KR*PVRR - KTH*PVTHR - KPH*PVPHR
AWWWL 59
PHR=2.0*OWI*POWIR - KS*PCSR AWWWL 60
POWITH=-KR*PVRTH - KTH*PVTHTH - KPH*PVPHTH AWWWL 61
PHTH=2.0*OWI*POWITH - KS*PCSTH AWWWL 62
POWIPH $=-K R * P V R P H ~-~ K T H * P V T H P H ~-~ K P H * P V P H P H ~$
PHPH=2.0*OWI*POWIPH - KS*PCSPH
AWWWL 63
AWWWL 64
AWWWL 65
PHOW=2.0*OWI
AWWWL 66
PHKR=-2.0*(OWI*VR + CS*KR)
AWWWL 67
PHKTH=-2.0* (OWI*VTH + CS*KTH) AWWWL 68
PHKPH=-2.0* (OWI*VPH + CS*KPH) AWWWL 69
KPHK=-2.0*(OWI*KV + CS*KS)
AWWWL 70
AWWWL 71
AWWWL 72
CALL PRES
AWWWL 73
CALL ABSRP
AWWWL 74
GMS=GAMMA-1. 0
AWWWL
AWWWL 75 75
KAY2 I $=-(\mathrm{OW} /(\mathrm{GAMMA} * P)) *(4 \cdot / 3 . * M U+G M S * G M S * M /(G A M M A * R G A S) * K A P) * K A Y 2$ RETURN
AWWWL 76
AWWWL 77

```AWWWL 77AWWWL 78
```


EQUIVALENCE (W (250), MMODEL), (W(251), MFORM), (W(252), MID) CWW3 24
RECEIVER HEIGHT 275-299 CWW3 25
EQUIVALENCE (W(275), RMODEL), (W(276),RFORM), (W(277),RID) CWW 3 26
CWW3 27
CWW3 28
TOPOGRAPHY 300-324
29
29
EQUIVALENCE (W(300), GMODEL), (W(301), GFORM), (W(302), GID) CWW3 30
CWW3 31
DELTA TOPOGRAPHY 325-349
CWW3
CWW3 32 32
EQUIVALENCE (W(325), GUMODEL), (W(326), GUFORM), (W(327), GUID) CWW3 33
UPPER SURFACE TOPOGRAPHY 350-374

```CWW3 34
```

EQUIVALENCE (W(350),SMODEL), (W(351), SFORM), (W(352), SID) CWW3 35
PLOT ENHANCEMENTS CONTROL PARAMETERS CWW3 36
EQUIVALENCE (W (490), XFQMDL), (W (491), YFQMDL) CWW3 38
ABSORPTION 500-524
CWW3
EQUIVALENCE (W(500), AMODEL), (W (501), AFORM), (W(502), AID) CWW3 41
DELTA ABSORPTION 525-549
CWW3 42
EQUIVALENCE (W(525), DAMODEL), (W(526), DAFORM), (W(527), DAID) CWW3 43
PRESSURE 550-574 CWW3 45
EQUIVALENCE (W(550), PMODEL), (W(551), PFORM), (W(552), PID) CWW3 46
47

```DELTA PRESSURE575-599
```

EQUIVALENCE (W(575), DPMODEL), (W(576), DPFORM), (W(577), DPID) CWW3 49

```COMMON DECK "BI" INSERTED HERECWW3
```

INTEGER UMX,UNTBL,UITBL, UFRMTBL, IDSU (10) CBI 2
CBI 4
COMMON/B1/UMX,UNTBL (10),UITBL (10) ,UFRMTBL (10) ,UGP (10)
EQUIVALENCE (UGP,IDSU) CBI 5

```EQUIVALENCE (W(103), URO)
                            EQUIVALENCE (W(104),UTHO),(W(105),UPHO),(W(106),PUPHZ0)
    DATA RECOGU/1.0/
    DATA UMX/I/
    DATA UNTBL/1,11,8*0/
    DATA UITBL/l,9*0/
    DATA UFRMTBL/1,9*0/
```

ENTRY IWINDR
IF (RECOGU . NE. UMODEL)
1 CALL RERROR('SPEED ','WRNG MODEL',RECOGU)
MODU (1) $=7 \mathrm{HWLINEAR}$
EQUIVALENCE (W(104),UTHO),(W(105),UPHO),(W(106),PUPHZ0)
WLINEA17
WLINEA18
WLINEA19
WLINEA20
WNEARBL2
WNEARBL3
WNEARBL4
WNEARBL5
WLINEA23
WLINEA24
WLINEA25
WLINEA2 6
WLINEA2 7
WLINEA28
WLINEA29
WLINEA30
WLINEA31
WLINEA32
WLINEA33
WLINEA34
WLINEA35

```WLINEA36WLINEA37
```

CALI CLEAR (V,20) WLINEA38

```
    VR = URO
    VTH = UTHO
    VPH = (UPHO + PUPHZO * H)
V=SQRT(VR*VR+VTH*VTH+VPH*VPH)
PVR=PUPHZO
IF(V.NE.O.0) PVR=VPH/V*PUPHZO
PVPHR = PUPHZO
CALL PWINDR
    RETURN
    END
```

 SUBROUTINE WTIDE
 REAL KR, KTH, KPH
 COMMON//R,TH, PH, KR, KTH, KPH, RKVARS (14) ,TPULSE, CSTEP, DRDT (20)
 COMMON DECK "UU" INSERTED HERE
 REAL MODU
 COMMON/UU/MODU (4)
 1 , $\mathrm{V}, \mathrm{PVT}, \mathrm{PVR}, \mathrm{PVTH}, \mathrm{PVPH}$
2 , VR , PVRT , PVRR , PVRTH , PVRPH
3 , VTH, PVTHT, PVTHR, PVTHTH, PVTHPH
4 , VPH, PVPHT, PVPHR, PVPHTH, PVPHPH
COMMON DECK "WW" INSERTED HERE
PARAMETER (NWARSZ=1000)
COMMON/WW/ID(10) ,MAXW,W (NWARSZ)
REAL MAXSTP,MAXERR,INTYP,LLAT,LLON CWW2
EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)),(TLAT,W(4)), CWW2
1 (TLON,W(5)), (OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)),
2 (AZl,W(10)), (AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)),
3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)),
(RCVRH,W(20)) CWW2
4 (ONLY,W(21)), (HOP,W(22)), (MAXSTP,W(23)), (PLAT,W(24)), (PLON,W(25))
5, ($\operatorname{HMAX}, \mathrm{W}(26))$) (RAYFNC,W(29)), (EXTINC,W(33)),
6 (HMIN,W(27)), (RGMAX,W(28)),
8 (INTYP,W(41)), (MAXERR,W(42)), (ERATIO,W(43)),
6 (STEPI,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)),
7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75))
9 (${ }^{(B I N R A Y, W(76)),(P A G L N, W(77)),(P L T, W(81)),(P F A C T R, W(82)), ~}$
1 (LLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86))
2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
REAL MMODEL,MFORM,MID
WIND 100-124
WTIDE8
WIND VELOCITY MODEL WTIDE 9PROVIDES WIND FIELD OF THE ATMOSPHERIC TIDES BY ZONAL ANDMERIDONAL HEIGHT PROFILES THAT ARE SINUSOIDAL AND IN PHASEWTIDE 11QUADRATURE.
WTIDE 12
WTIDE 13
WTIDE 14
RKAMCOM2
RKAMCOM4RKAMCOM5
CUU 2
CUU
cUu
CUU
CUU
CUU
cuv
CWW
CWWI
3
4
CWW2 2
CWW2 3
CWW2 4
CWW2 5
CWW2 6
CWW2 7
4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))CWW2 8
5, (HMAX,W(26)), (RAYFNC,W(29)),(EXTINC,W(33)), CWW2
CWW2 10
8 (INTYP,W(41)), (MAXERR,W(42)), (ERATIO,W(43)), CWW2 11
6 (STEPI,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 12
7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75)) CWW2 13
9 ,(BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 14
2 CTC (87)) CWW2 15
REAL MMODEL,MFORM,MID
WIND 100-124

PVTHT=CSA*S*UTHO
PVPHT=SSA*S*UPHO
CALL PWINDR
RETURN
END

WTIDE 22
WTIDE 23
WDEBL 2
WDEBL 3
WDEBL 4
WDEBL 5
WTIDE 26
WTIDE 27
WTIDE 28
WTIDE 29
WTIDE 30
WTIDE 31
WTIDE 32
WTIDE 33
WTIDE 34
WTIDE 35
WTIDE 36
WTIDE 37
WTIDE 38
WTIDE 39
WTIDE 40
WTIDE 41
WTIDE 42
WTIDE 43
WTIDE 44
WTIDE 45
WTIDE 46
WTIDE 47
WTIDE 48
WTIDE 49
WTIDE 50
WTIDE 51
WTIDE 52
WTIDE 53
WTIDE 54
WTIDE 55
WTIDE 56
WTIDE 57
WTIDE 58
WTIDE 59

SUBROUTINE ULOGZ2

ULOGZ2 8
C LOGARITHMIC WIND VELOCITY PROFILE
ULOGZ2 9
C SINGULARITY IS AVOIDED BY A LINEAR TANGENT UNIQUELY
C DETERMINED BY CONTINUITY OF VALUE AND SLOPE GOING THROUGH
C THE ORIGIN.
REAL K
EQUIVALENCE (USTAR,W(103)), (K,W(104)),(20,W(105))
LOGZ210
ULOGZ211
ULOGZ212
ULOGZ213
ULOGZ214
ULOGZ215
c
COMMON DECK "RKAM" INSERTED HERE
RKAMCOM2

EQUIVALENCE (W(300), GMODEL), (W(301), GFORM), (W(302), GID) CWW3 30
C
C CWW3

```DELTA TOPOGRAPHY 325-34931
```

CWW3 32

```EQUIVALENCE (W(325),GUMODEL), (W(326), GUFORM), (W(327), GUID)
```

CWW3 33UPPER SURFACE TOPOGRAPHY 350-374CWW334

```
CWW3 ..... 35
EQUIVALENCE (W (350), SMODEL), (W (351), SFORM), (W(352), SID)
PLOT ENHANCEMENTS CONTROL PARAMETERS
```CWW3 37
```

CWW3

```37
38
```

EQUIVALENCE ( $\mathrm{W}(490$ ), XFQMDL), (W(491), YFQMDL)
ABSORPTION 500-524 ..... CWW3 40
C

```EQUIVALENCE ( \(\mathrm{W}(500\) ), AMODEL) , (W (501), AFORM), (W (502), AID)
```

C C

```C
DELTA ABSORPTION 525-549
```EQUIVALENCE (W (525), DAMODEL) , (W(526), DAFORM) , (W (527), DAID)
```

CWW3 41
CWW3 42
CWW3 43
CWW3 44
PRESSURE 550-574 CWW3 45
EQUIVALENCE (W (550), PMODEL) , (W (551) , PFORM), (W (552), PID) 46
DELTA PRESSURE 575-599
CWW3 48
EQUIVALENCE (W(575), DPMODEL), (W(576), DPFORM), (W(577), DPID)

```CWW3 50
```

COMMON DECK "BI" INSERTED HERE CWW3 51
INTEGER UMX,UNTBL,UITBL,UFRMTBL,IDSU(10) CBI 2
COMMON/B1/UMX, UNTBL (10), UITBL (10) ,UFRMTBL (10), UGP (10) CBI 4
EQUIVALENCE (UGP,IDSU)

```CBI
```

REAL MODG CGG
C COMMON DECK "GG" INSERTED HERE 2

```5
6
```

CGG
COMMON/GG/MODG (4) 4
COMMON/GG/G , PGR, PGRR, PGRTH, PGRPH 5 5
COMMON/GG/PGTH, PGPH , PGTHTH , PGPHPH , PGTHPH , GSELECT , GTIME
CGG 6
DATA RECOGU/6.0/

```DATA UMX/I/DATA UNTBL/1,11,8*0/DATA UITBL/1,9*0/DATA UFRMTBL/1,9*0/
```

ENTRY IWINDR

```CIF (RECOGU . NE . UMODEL)
```

1 CALL RERROR ('ULOGZ2 ','WRNG MODEL',RECOGU)

```
    MODU (1)=6HULOGZ2
```

 MODU (1)=6HULOGZ2
 MODU (2)=UID
 ZOE=ZO*EXP(1.0)
 C=USTAR/K
 CZOE=C/ZOE
 CALL IPWINDR
 C
RETURN
C
ENTRY WINDR
CALL CLEAR(V,20).
CALL TOPOG
ULOGZ221
UGZ2BL 2
UGZ2BL }
UGZ2BL }
UGZ2BL 5
ULOGZ224
ULOGZ225
ULOGZ226
ULOGZ227
ULOGZ228
ULOGZ229
ULOGZ230
ULOGZ231
ULOGZ232
ULOGZ233
ULOGZ234
ULOGZ235
ULOGZ236
ULOGZ237
ULOGZ238
ULOGZ239
ULOGZ240
ULOGZ241
ULOGZ242

```
\begin{tabular}{|c|c|c|}
\hline & \(Z=G / P G R\)
\(I F(Z . G T . Z O E) ~ G O ~ T O ~\)
100 & \begin{tabular}{l}
ULOGZ243 \\
ULOGZ244
\end{tabular} \\
\hline \multirow[t]{6}{*}{C} & & ULOGZ 245 \\
\hline & VPH=CZOE*Z & ULOGZ 246 \\
\hline & PVPHR=CZOE*PGR & ULOGZ 247 \\
\hline & PVPHTH=CZOE*PGTH & ULOGZ248 \\
\hline & PVPHPH=CZOE*PGPH & ULOGZ249 \\
\hline & GO TO 120 & ULOGZ250 \\
\hline \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { C } \\
& 100
\end{aligned}
\]} & & ULOGZ 251 \\
\hline & \(\mathrm{VPH}=\mathrm{C*}\) ALOG ( \(\mathrm{Z} / \mathrm{ZO}\) ) & ULOGZ 252 \\
\hline & \(\mathrm{CZ}=\mathrm{C} / \mathrm{Z}\) & ULOGZ 253 \\
\hline & PVPHR=CZ * PGR & ULOGZ254 \\
\hline & PVPHTH=CZ *PGTH & ULOGZ255 \\
\hline & PVPHPH=CZ * PGPH & ULOGZ256 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { C } \\
& 120
\end{aligned}
\]} & \(\mathrm{V}=\mathrm{ABS}\) (VPH) & ULOGZ257 \\
\hline & \(V=A B S\)
\(P V R=S I G N\) & ULOGZ258 \\
\hline \multirow[t]{4}{*}{C} & & ULOGZ259 \\
\hline & CALL PWINDR & ULOGZ261 \\
\hline & RETURN & ULOGZ262 \\
\hline & END & ULOGZ263 \\
\hline \multirow[b]{2}{*}{C} & SUBROUTINE VVORTX3 & VVORTX39 \\
\hline & WIND VELOCITY MODEL & VVORTX10 \\
\hline C & VERTICAL VORTEX WIND PERTURBATION WITH VISCOUS CORE AND & VVORTX11 \\
\hline C & MULTIPLIES VELOCITY FIELD BY A GUASSIAN HEIGHT PROFILE. & VVORTX12 \\
\hline \multirow[t]{4}{*}{C} & & VVORTX13 \\
\hline & COMMON DECK CONST INSERTED HERE & CCONST 2 \\
\hline & COMMON/PCONST/CREF,RGAS,GAMMA & CCONST 4 \\
\hline & COMMON/MCONST/PI, PIT2, PID2, DEGS, RAD, ALN10 & CCONST 5 \\
\hline \multirow[t]{3}{*}{C} & COMMON DECK "RKAM" INSERTED HERE & RKAMCOM2 \\
\hline & REAL KR, KTH, KPH & RKAMCOM4 \\
\hline & COMMON//R, TH, PH, KR, KTH, KPH,RKVARS (14) , TPULSE, CSTEP, DRDT (20) & RKAMCOM5 \\
\hline \multirow[t]{6}{*}{C} & COMMON DECK "UU" INSERTED HERE & CUU 2 \\
\hline & COMMON/UU/MODU (4) & CUU 4 \\
\hline & 1 , V , PVT , PVR , PVTH , PVPH & Cus 5 \\
\hline & 2 , VR , PVRT , PVRR , PVRTH , PVRPH & CUU \\
\hline & 3 , VTH, PVTHT, PVTHR, PVTHTH, PVTHPH & CUU 8 \\
\hline & 4 , VPH, PVPHT, PVPHR, PVPHTH, PVPHPH & CUU 9 \\
\hline \multirow[t]{11}{*}{C} & COMMON DECK "WW" INSERTED HERE & CWW \\
\hline & PARAMETER (NWARSZ \(=1000\) ) & CWW1 \\
\hline & COMMON/WW/ID (10) , MAXW,W (NWARSZ) & CWW1 \\
\hline & REAL MAXSTP, MAXERR, INTYP, LLAT, LLON & CWW2 \\
\hline & EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)), (TLAT,W(4)), & CWW2 3 \\
\hline &  & CWW2 4 \\
\hline & 2 (AZl, W(10)), (AZBEG,W(11)), (AZEND,W(12)), (AZSTEP,W(13)), & CWW2 5 \\
\hline & 3 (BETA,W(14)), (ELBEG,W(15)), (ELEND,W(16)), (ELSTEP,W(17)), & CWW2 \\
\hline & \begin{tabular}{l}
8 (RCVRH,W(20)), \\
4 (ONLY,W(21)), (HOP,W(22)) (MAXSTP,W(23)) (PIAT W (24)) (DION W (25))
\end{tabular} & CWW2 7 \\
\hline &  & CWW2 8 \\
\hline & 5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)), & CWW2 9 \\
\hline
\end{tabular}

```

 EQUIVALENCE (W(575),DPMODEL),(W(576),DPFORM),(W(577),DPID) CWW3 50
    ```
    EQUIVALENCE (W(575),DPMODEL),(W(576),DPFORM),(W(577),DPID) CWW3 50
        EQUIVALENCE (U0,W(103)),(RO,W(104)),(THO,W(105)),(PHO,W(106))
        EQUIVALENCE (U0,W(103)),(RO,W(104)),(THO,W(105)),(PHO,W(106))
        EQUIVALENCE (HWIDTH,W(107)),(HVMAX,W(108))
        EQUIVALENCE (HWIDTH,W(107)),(HVMAX,W(108))
    COMMON DECK "Bl" INSERTED HERE CBI
    COMMON DECK "Bl" INSERTED HERE CBI
    INTEGER UMX,UNTBL,UITBL,UFRMTBL,IDSU (10)
    INTEGER UMX,UNTBL,UITBL,UFRMTBL,IDSU (10)
    COMMON/Bl/UMX,UNTBL(10),UITBL(10),UFRMTBL(10),UGP (10)
    COMMON/Bl/UMX,UNTBL(10),UITBL(10),UFRMTBL(10),UGP (10)
    EQUIVALENCE (UGP,IDSU)
    EQUIVALENCE (UGP,IDSU)
    DATA RECOGU/9.0/
    DATA RECOGU/9.0/
    DATA UMX/I/
    DATA UMX/I/
    DATA UNTBL/1,11,8*0/
    DATA UNTBL/1,11,8*0/
    DATA UITBL/1,9*0/
    DATA UITBL/1,9*0/
    DATA UFRMTBL/1,9*0/
    DATA UFRMTBL/1,9*0/
    ENTRY IWINDR
    ENTRY IWINDR
    IF(RECOGU .NE. UMODEL)
    IF(RECOGU .NE. UMODEL)
    1 CALL RERROR('SPEED ','WRNG MODEL',RECOGU)
    1 CALL RERROR('SPEED ','WRNG MODEL',RECOGU)
    MODU (1)=7HVVORTX3
    MODU (1)=7HVVORTX3
    MODU (2)=UID
    MODU (2)=UID
        DENOM=0.0
        DENOM=0.0
        IF(HWIDTH.NE.0.0) DENOM=1.0/HWIDTH**2
        IF(HWIDTH.NE.0.0) DENOM=1.0/HWIDTH**2
    CALL IPWINDR
    CALL IPWINDR
    RETURN
    RETURN
    ENTRY WINDR
    ENTRY WINDR
    CALL CLEAR(V,20)
    CALL CLEAR(V,20)
    DR=R-EARTHR-HVMAX
    DR=R-EARTHR-HVMAX
    DTH = TH - (PID2-THO)
    DTH = TH - (PID2-THO)
    DPH = PH - PHO
    DPH = PH - PHO
    RAD2 = EARTHR * SQRT(DTH * DTH + DPH * DPH)
    RAD2 = EARTHR * SQRT(DTH * DTH + DPH * DPH)
    A = 1.397
    A = 1.397
    B = - 1.26
    B = - 1.26
EXPO=RAD2/RO
EXPO=RAD2/RO
EXPO=B*EXPO*EXPO
EXPO=B*EXPO*EXPO
EXB=0.0
EXB=0.0
    IF(EXPO .GT. -675.0) EXB = EXP(EXPO)
    IF(EXPO .GT. -675.0) EXB = EXP(EXPO)
FX=1. -EXB
FX=1. -EXB
    DUM = A * EARTHR * UO * RO / RAD2 * * 2
    DUM = A * EARTHR * UO * RO / RAD2 * * 2
FZ=EXP(-DR*DR*DENOM)
FZ=EXP(-DR*DR*DENOM)
DFDZ=-2.*DR*DENOM
DFDZ=-2.*DR*DENOM
    DUM=FZ*DUM
    DUM=FZ*DUM
    DUX = FX / RAD2 + RAD2 * B * EXB / RO * * 2
    DUX = FX / RAD2 + RAD2 * B * EXB / RO * * 2
    VTH = - DUM * FX * DPH
    VTH = - DUM * FX * DPH
    VPH = DUM * FX * DTH
    VPH = DUM * FX * DTH
V=SQRT (VTH*VTH + VPH*VPH)
V=SQRT (VTH*VTH + VPH*VPH)
    DUM2=2.*DUM*EARTHR*EARTHR
    DUM2=2.*DUM*EARTHR*EARTHR
    PVTHTH = DUM2 * DTH * DPH / RAD2 * DUX
    PVTHTH = DUM2 * DTH * DPH / RAD2 * DUX
    PVPHPH = - PVTHTH
    PVPHPH = - PVTHTH
    PVTHPH = DPH**2 * DUM2 / RAD2 * DUX -DUM*FX
    PVTHPH = DPH**2 * DUM2 / RAD2 * DUX -DUM*FX
    PVPHTH = - DTH**2* DUM2 / RAD2* DUX + DUM*FX
    PVPHTH = - DTH**2* DUM2 / RAD2* DUX + DUM*FX
        CWW3 51
    VVORTXI8
    VVORTX19
    CB1 4
    COMMON/BI/UMX,UNTBL(10),UITBL(10),UFRMTBL(10),UGP(10) CBI 5
    COMMON/BI/UMX,UNTBL(10),UITBL(10),UFRMTBL(10),UGP(10) CBI 5
    EQUINALENCE (UGP,IDSU)
    EQUINALENCE (UGP,IDSU)
    CB1 6
    VVORTX21
    VRTX3BL2
    VRTX3BL3
    VRTX3BL4
    VRTX3BL5
    VVORTX24
    VVORTX25
    VVORTX26
    VVORTX27
    VVORTX28
    VVORTX29
    VVORTX30
    VVORTX31
    VVORTX32
    VVORTX33
    VVORTX34
VVORTX35
VVORTX36
VVORTX37
VVORTX38
VVORTX39
VVORTX40
VVORTX41
VVORTX42
VVORTX43
VVORTX44
VVORTX45
VVORTX46
VWORTX47
VVORTX48
VVORTX49
VVORTX50
VVORTX51
VVORTX52
VVORTX53
VVORTX54
VVORTX55
VVORTX56
VVORTX57
VVORTX58
VVORTX59
VVORTX60
VVORTX61
VVORTX62
VVORTX63
VVORTX64
VVORTX65
```

```
    PVTH=(VTH*PVTHTH + VPH*PVPHTH)/V 
    C
    C
    CALL PWINDR
        RETURN
        END
        VVORTX67
        PVTHR=VTH*DFDZ
        PVPHR=VPH*DFDZ
        PVR=(VTH*PVTHR+VPH*PVPHR)/V
    SUBROUTINE WGAUSS2
    WIND VELOCITY MODEL
    EXPONENTTAITY DECAYTNG WGFAUSS29
    COMMON DECK "NGNUSSIO
    COMMON DECK "CONST" INSERTED HERE
    COMMON/PCONST/CREF, RGAS , GAMMA
    COMMON/MCONST/PI, PIT2, PID2 , DEGS , RAD, ALN10
    COMMON DECK "RKAM" INSERTED HERE
    REAL KR,KTH,KPH
    COMMON//R , TH , PH,KR,KTH , KPH , RKVARS (14) ,TPULSE , CSTEP , DRDT (20)
    COMMON DECK "UU" INSERTED HERE
    REAL MODU
    COMMON/UU/MODU (4)
        l ,V ,PVT ,PVR ,PVTH ,PVPH CUU
        2 ,VR ,PVRT ,PVRR ,PVRTH ,PVRPH CUU
        3 ,VTH, PVTHT, PVTHR, PVTHTH, PVTHPH CUU
        4 ,VPH, PVPHT , PVPHR, PVPHTH, PVPHPH CUU
        COMMON DECK "WW" INSERTED HERE
        PARAMETER (NWARSZ=1000)
        COMMON/WW/ID(IO),MAXW,W(NWARSZ)
        REAL MAXSTP,MAXERR,INTYP,LLAT,ILON
    EQUIVALENCE (EARTHR,W(1)),(RAY,W(2)),(XMTRH,W(3)),(TLAT,W(4)),
        l (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)),
        2 (AZ1,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13))
        (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)),
        (RCVRH,W(20)),
        4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))
        5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33))
    (HMIN,W(27)),(RGMAX,W(28)),
    (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W (43)),
    (STEPl,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)),
    (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75))
    ,(BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)),
    (LILAT,W(83)), (IION W(84)), (RTAT W(85)), (RLONW(86))
    2,(TIC,W(87)),(HB,W(88))
    2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
C
C WIND 100-124
CWW3 3
    EQUIVALENCE (W(100),UMODEL),(W(101),UFORM),(W(102),UID) CWW3 4
C
C
    DELTA WIND 125-149
CWW3
CWW3 6
CWW3
7
```

```
    EQUIVALENCE (W(125),DUMODEL),(W(126),DUFORM),(W(127),DUID) CWW3 8
    C
C
    SOUND SPEED 150-174
    CWW3 9
    EQUIVALENCE (W(150), CMODEL),(W(151),CFORM),(W(152),CID) CWW3 10
    EQUIVALENCE (W(153),REFC)
    DELTA SOUND SPEED 175-199
    CWW3 12
    13
    EQUIVALENCE (W(175),DCMODEL),(W(176), CWFORM),(W(177),DCDD) CWW3 14
    CWW3 16
    CWW3 17
    EQUIVALENCE (W(200),TMODEL),(W(201),TFORM),(W(202),TID) CWW3 18
    DELTA TEMPERATURE 225-249
    EQUIVALENCE (W(225),DTMODEL),(W(226),DTFORM),(W(227),DTID) CWW3 20
    MOLECULAR 250-274
    CWW3
    MOLECULAR 250-274 CWW3 23
    RECEIVER HEIGHT 275-299
    EQUIVALENCE (W(275),RMODEL),(W(276),RFORM),(W(277),RID)
    RECEIVER HEIGHT 275-299 CWW3 26
    TOPOGRAPHY 300-324
    EQUIVALENCE (W(300),GMODEI) (W(301),GFORM),(W(302),GID)
    DELTA TOPOGRAPHY 325-349
    EQUIVALENCE (W(325),GUMODEL), (W(326),GUFORM), (W(327),GUID) CWW3 32
    UPPER SURFACE TOPOCRAPHY CWW3 34
    EQUIVATFNCE (W(350),SMODEL)
    PLOT ENOL
    PLOT ENHANCEMENTS CONTROL PARAMETERS CWW3 37
    EOUIVAIENCE (W(490) XFOMDI) (W (401), YFQMDL) CWW3 38
    ABSORPTION CNO CNW 39
    EQUIVALENCE (W(500),AMODEL),(W(501),AFORM),(W(502),ATD)
    DELTA ABSORPTION 525-549 CWW3 42
    EQUIVALENCE (W(525),DAMODEL),(W(526),DAFORM),(W(527),DAID)
    PRESSURE CWW3 45
    EQUIVAENCE 550-574 (W) CWW3 46
    EQUIVALENCE (W(550),PMODEL),(W(551),PFORM),(W(552),PID) CWW3 47
    DELTA PRESSURE 575-599
    EQUIVALENCE (W(575),DPMODEL),(W(576),DPFORM),(W(577),DPID) CWW3 49
    COMMON DECK "B1" INSERTED HERE CWW3 51
    TNTEGRP MNX CMNT CBI 2
    INTEGER UMX,UNTBL,UITBL,UFRMTBL,IDSU(10) CBl 4
COMMON/BI/UMX,UNTBL(10),UITBL(10),UFRMTBL(10),UGP(10) CBl 5
EQUIVALENCE (UGP,IDSU)
CB1 
EQUIVALENCE (UPHO,W(103)),(WH,W(104)),(WTH,W(105))
EQUIVALENCE (WPH,W(106)),(HO,W(107)),(WGTHO,W(108)),(PHO,W(109)) WGAUSS17
DATA RECOGU/7.0/
DATA UMX/1/
```



```
DATA WUSS2L 3
DATA UITBL/1,9*0/
DATA UFRMTBL/1,9*0/
WGAUSS16
WGGAUSSI7
WUSS2L 4
WUSS2L 5
```

```
C
    ENTRY IWINDR
    C
C
C
        MODU (I)=7HWGAUSS2
    MODU (2)=UID
    CALL IPWINDR
    WIDH=0.0
    WIDTH=0.0
    WIDPH=0.0
    THO= PID2-WGTHO
        IF(WH.NE.0.0) WIDH=1.0/WH
        IF(WTH.NE.O.0) WIDTH=1.0/WTH
        IF(WTH.NE.0.0) WIDTH=1.0/WTH
        RETURN
C
    ENTRY WINDR
    CALL CLEAR(V,20)
    H = R - EARTHR
    DFH= (H-HO) *WIDH
    DFTH=(TH-THO) *WIDTH
    DFPH=(PH-PHO) *WIDPH
    EXPO=- (DFH*DFH+DFTH*DFTH+DFPH*DFPH)
    EXPN=0.0
    IF(EXPO.GT.-200.0) EXPN=EXP(EXPO)
    VPH = UPHO*EXPN
    PVPHR = - 2.* VPH * DFH*WIDH
    PVPHTH = - 2. * VPH * DFTH*WIDTH
    PVPHPH = - 2.* VPH * DFPH*WIDPH
    END
        WGAUSS21
        IF(RECOGU . NE. UMODEL)
        l CALL RERROR('SPEED ','WRNG MODEL',RECOGU)
        CALL IPWINDR
        WGAUSS22
        WGAUSS23
        WGAUSS24
        WGAUSS25
        WGAUSS26
        WGAUSS27
        WGAUSS28
        WGAUSS29
        WGAUSS30
        WGAUSS31
        WGAUSS32
        WGAUSS33
        WGAUSS34
        WGAUSS35
        WGAUSS36
        WGAUSS37
        WGAUSS38
        WGAUSS39
        WGAUSS40
        WGAUSS41
        WGAUSS42
        WGAUSS43
        WGAUSS44
        WGAUSS45
        WGAUSS46
        WGAUSS47
        WGAUSS48
        WGAUSS49
        WGAUSS50
        WGAUSS51
    WGAUSS52
    WGAUSS53
    M
```



```
    EQUIVALENCE (W(550), PMODEL),(W(551),PFORM),(W(552),PID) CWW3 47
C
C
    DELTA PRESSURE 575-599
    EQUIVALENCE (W(575),DPMODEL),(W(576),DPFORM),(W(577),DPID) CWW3 50
C COMMON DECK "B2" INSERTED HERE
    INTEGER DUMX,DUNTBL,DUITBL,DUFRMTB,IDSDU(10) CB2 4
    COMMON/B2/DUMX,DUNTBL(10),DUITBL(10),DUFRMTB(10),DUGP(10) CB2 5
    EQUIVALENCE (DUGP,IDSDU)
    DATA RECOGDU/O.0/
    DATA DUMX/l/
    DATA DUNTBL/l,11,8*0/
    DATA DUITBL/l,9*O/
    DATA DUFRMTB/1,9*0/
C
    ENTRY IPWINDR
    IF(RECOGDU . NE. DUMODEL)
    l CALL RERROR('DWINDR ','WRNG MODEL',RECOGDU)
    MODU (3)=6HNPWIND
    MODU (4) = DUID
    RETURN
C
    ENTRY PWINDR
    RETURN
    END
    SUBROUTINE GAMRTDM
C SOUND SPEED MODEL, C**2=GAMMA*R*T/M G GAMRTDM8
C COMMON DECK "CC" INSERTED HERE CCC 2
    REAL MODC
    CCC 4
    COMMON/CC/MODC(4),CS,PCST,PCSR,PCSTH,PCSPH CCC 5
    COMMON DECK "TT" INSERTED HERE CTT
    REAL MODT
    COMMON/TT/MODT(4), T,PTT,PTR,PTTH,PTPH CTTT
    COMMON DECK "MM" INSERTED HERE CMM
    REAL M,MODM CMM
    COMMON/MM/MODM (4),M, PMT , PMR , PMTH , PMPH
    COMMON DECK "CONST" INSERTED HERE
    COMMON/PCONST/CREF,RGAS,GAMMA
    COMMON/MCONST/PI,PIT2,PID2,DEGS,RAD,ALN1O
    COMMON DECK "WW" INSERTED HERE
    PARAMETER (NWARSZ=1000) CWW
    COMMON/WW/ID(10),MAXW,W(NWARSZ) CWW1
    REAL MAXSTP,MAXERR,INTYP,LLAT,LLON CWW
    EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)),(XMTRRH,W(3)),(TLAT,W(4)), CWW2 3
    1 (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)),, CWW2}
    2 (AZ1,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)), CWW2 5
    3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), CWW2 6
    8 (RCVRH,W(20)),
    4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25)) CWW2
    5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)),
```



```
            EQUIVALENCE (W(575),DPMODEL),(W(576),DPFORM),(W(577),DPID) CWW3 50
```RETURN
ENTRY SPEEDCALL TEMP
CALL MOLWT
CS=GAMMA*RGAS*T/M
PCST=CS* (PTT/T - PMT/M)
PCSR=CS* (PTR/T - PMR/M)
PCSTH=CS* (PTTH/T - PMTH/M)
PCSPH=CS* (PTPH/T - PMPH/M)
CC
CALL PSPEED
RETURN
END
SUBROUTINE CSTANH
SPEED PROFILE REPRESENTED BY A SEQUENCE OF LINEAR SEGMENTS
C SMOOTHLY JOINED BY HYPERBOLIC FUNCTIONS. PARAMETERS ARE INPUT
AS TABULAR DATA WITH SLOPES COMPUTED FROM SPEED DATA.
(20), ALC(20),B(19),DL(19)
C
COMMON DECK "B3" INSERTED HERE
INTEGER CMX,CNTBL,CITBL,CFRMTBL,IDSC(10)
COMMON/B3/CMX, CNTBL (10), CITBL (10) , CFRMTBL (10) , CGP (512) CB3 4
5
EQUIVALENCE (CGP,IDSC),(ANC,CGP(11)) CB3 6
DATA CMX/l/ GRTDMBL2
DATA CNTBL/1,11,8*0/ GRTDMBL3
DATA CITBL/1,9*0/
DATA CFRMTBL/1,9*0/
GRTDMBL4
DATA RECOGC/I.0/
GRTDMBL5
GAMRTD19
GAMRTD19
ENTRY ISPEED
IF (REFC.GT.0.0) CREF=REFC
IF (RECOGC . NE. CMODEL) GAMRTD23MODC (1) \(=7\) HGAMRTDM
MODC (2)=CID
CALL ITEMP
CALL IMOLWT GAMRTD2 8
CALL IPSPEED GAMRTD29
CWW3 51
GAMRTDI5
```CB32
```

GAMRTD20
GAMRTD21
GAMRTD22
GAMRTD24

```GAMRTD25GAMRTD26
```

GAMRTD30
GAMRTD31
GAMRTD32
GAMRTD3 3

```GAMRTD34
```

GAMRTD35
GAMRTD36
GAMRTD37
GAMRTD38
GAMRTD3 9
GAMRTD40
GAMRTD4 1
GAMRTD42

```GAMRTD43
```

GAMRTD44
GAMRTD45

```GAMRTD4 6
```

CSTANHIO

```CSTANHII
```

CSTANHI2
CSTANHI3
CSTANH14

```CSTANH15
```

RKAMCOM2

```RKAMCOM4
```

RKAMCOM5

```CB3 2
```

CB3 4

```
            COMMON/B3/CMX,CNTBL(10),CITBL(10),CFRMTBL(10),CGP(512) CB3 5
            EQUIVALENCE (CGP,IDSC),(ANC,CGP(1l)) CB3 6
COMMON DECK "CC" INSERTED HERE
    REAL MODC
    COMMON/CC/MODC (4) ,CS,PCST,PCSR,PCSTH, PCSPH
C COMMON DECK "CONST" INSERTED HERE
    COMMON/PCONST/CREF,RGAS,GAMMA
    COMMON/MCONST/PI, PIT2,PID2,DEGS,RAD,ALN10
    COMMON DECK "WW" INSERTED HERE
    PARAMETER (NWARSZ=1000)
    COMMON/WW/ID(10),MAXW,W(NWARSZ)
    REAL MAXSTP,MAXERR,INTYP,LLAT,LLON
    EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)),(XMTRH,W(3)),(TLAT,W(4)),
    l (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)), CWW2 4
    (AZl,W(l0)),(AZBEG,W(ll)),(AZEND,W(l2)),(AZSTEP,W(l3)), CWW2 5
    3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), CWW2 6
    (RCVRH,W(20)), CWW2
    (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))CWW2 8
    5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)), CWW2 9
    6 (HMIN,W(27)),(RGMAX,W(28)),
    CWW2 10
    (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 ll
    6 (STEPl,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 l2
    7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75))
    9,(BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 14
    1 (LLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86))
    2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
    REAL MMODEL,MFORM,MID
    WIND 100-124
    EQUIVALENCE (W(100),UMODEL),(W(101),UFORM),(W(102),UID)
    DELTA WIND 125-149
    EQUIVALENCE (W(125),DUMODEL),(W(126),DUFORM),(W(127),DUID)
    SOUND SPEED 150-174
    EQUIVALENCE (W(150), CMODEL),(W(151),CFORM),(W(152), CTD)
    EQUIVALENCE (W(153), REFC)
    DELTA SOUND SPEED 175-199
    EQUIVALENCE (W(175),DCMODEL),(W(176),DCFORM),(W(177),DCID)
    EQUIVAIENCE (W(200),TMODEL),(W(201), TFORM),(W(202), TID)
    DELTA TEMPERATURE 225-249
    EQUIVALENCE (W(225),DTMODEL),(W(226),DTFORM),(W(227),DTID) (W)
    EQUIVALENCE (W(250),MMODEL),(W(251),MFORM),(W(252),MID) CWW3 24
    RECEIVER HEIGHT 275-299
    EQUIVALFNCE (W(275), PMODEL),(W(276),RFORM),(W(277),RID)
    CWW3 28
    TOPOGRAPHY 300-324 CWW3 29
    EQUIVALENCE (W(300),GMODEL),(W(301),GFORM),(W(302),GID) CWW3 30
```

C		CWW3 31
C	DELTA TOPOGRAPHY 325-349	CWW3 32
	EQUIVALENCE (W (325), GUMODEL) , (W (326) , GUFORM) , (W (327) , GUID)	CWW3 33
C		CWW3 34
C	UPPER SURFACE TOPOGRAPHY 350-374	CWW3 35
	EQUIVALENCE (W (350), SMODEL), (W (351), SFORM), (W (352), SID)	CWW3 36
C	PLOT ENHANCEMENTS CONTROL PARAMETERS	CWW3 37
C		CWW3 38
	EQUIVALENCE (W (490), XFQMDL), (W (491), YFQMDL)	CWW3 39
C	ABSORPTION 500-524	CWW3 40
	EQUIVALENCE (W (500), AMODEL), (W (501), AFORM), (W (502), AID)	CWW3 41
C		CWW3 42
C	DELTA ABSORPTION 525-549	CWW3 43
	EQUIVALENCE (W (525), DAMODEL), (W (526), DAFORM), (W (527), DAID)	CWW3 44
C		CWW3 45
C	PRESSURE 550-574	CWW3 46
	EQUIVALENCE (W (550), PMODEL), (W (551), PFORM), (W (552), PID)	CWW3 47
C		CWW3 48
C	DELTA PRESSURE 575-599	CWW3 49
	EQUIVALENCE (W (575), DPMODEL), (W (576), DPFORM) , (W (577), DPID)	CWW3 50
C		CWW3 51
C		CSTANH21
	EQUIVALENCE ($\mathrm{Z} 0, \mathrm{CGP}(12)),(\operatorname{CSO}, \mathrm{CGP}(32))$ ($\mathrm{DLO}, \mathrm{CGP}(52))$	CSTANH22
	EQUIVALENCE (Z, CGP (13)), (B,CGP (33)), (DL, CGP (53))	CSTANH23
C		CSTANH24
	DATA RECOGC,N/2.0,0/	CSTANH25
	DATA PCST, PCSTH, PCSPH/3*0.0/	CANHBL 2
	DATA ANC/0.0/	CANHBL 3
	DATA CMX/2/	CANHBL 4
	DATA CNTBL/1,11,72,7*0/	CANHBL 5
	DATA CITBL/1,20,8*0/	CANHBL 6
	DATA CFRMTBL/1,2,8*0/	CANHBL 7
C		CSTANH28
	ENTRY ISPEED	CSTANH29
C		CSTANH30
	IF (REFC.GT.0.0) CREF=REFC	CSTANH31
C		CSTANH32
	CALL IPSPEED	CSTANH33
C		CSTANH34
C	IF HAD PREVIOUS CALL BUT NOTHING THIS TIME, EXIT NOW	CSTANH35
C	RETAINING PREVIOUS TABULAR DATA COUNT	CSTANH36
	IF (N.GT. O .AND. ANC.EQ.0.0) RETURN	CSTANH37
C		CSTANH38
	IF (RECOGC . NE. CMODEL)	CSTANH39
	1 CALL RERROR('SPEED ','WRNG MODEL',RECOGC)	CSTANH40
	$\operatorname{MODC}(1)=6 \mathrm{HCSTANH}$	CSTANH41
	MODC (2) = CID	CSTANH42
	$\mathrm{N}=\mathrm{ANC} / 3$	CSTANH43
	IF (ANC.NE. $3 * N . O R . N . L E .0)$	CSTANH44
	1 CALL RERROR('CSTANH', 'BAD NUMBER', ANC+2.0)	CSTANH45
	$\mathrm{N}=\mathrm{N}-2$	CSTANH46
	$\mathrm{ANC}=0.0$	CSTANH47
C		CSTANH48
C		CSTANH49
C	CONVERT 'C' ARRAY INPUT(OVERIAYS 'B' ARRAY) TO 'B' ARRAY	CSTANH50

	6 (STEPl,W(44)), (STPMAX,W(45)),(STPMIN,W(46)), (FACTR,W(47)),	CWW2	12
	7 (SKIP,W(71)), (RAYSET,W(72)), (PRTSRP,W(74)) , (HITLET,W(75))	CWW2	13
	9 , (BINRAY,W(76)), (PAGLN,W(77)), (PLT,W(81)), (PFACTR,W(82)),	CWW2	14
	1 (LLAT, W (83)), (LLON,W(84)) , (RLAT, W (85)), (RLON,W(86))	CWW2	15
	2,(TIC,W(87)), (HB,W(88)), (HT,W(89)),(TICV,W(96))	CWW2	16
	REAL MMODEL,MFORM, MID	CWW3	2
C		CWW3	3
C	WIND 100-124	CWW3	4
	EQUIVALENCE (W (100), UMODEL), (W (101), UFORM), (W (102), UID)	CWW3	5
C		CWW3	6
C	DELTA WIND 125-149	CWW3	7
	EQUIVALENCE (W (125), DUMODEL), (W (126), DUFORM), (W (127), DUID)	CWW 3	8
C		CWW3	9
C	SOUND SPEED 150-174	CWW3	10
	EQUIVALENCE (W (150), CMODEL), (W (151), CFORM), (W (152), CID)	CWW3	11
	EQUIVALENCE (W (153), REFC)	CWW3	12
C		CWW3	13
C	DELTA SOUND SPEED 175-199	CWW3	14
	EQUIVALENCE (W (175), DCMODEL), (W (176), DCFORM), (W (177), DCID)	CWW 3	15
C		CWW3	16
C	TEMPERATURE 200-224	CWW3	17
	EQUIVALENCE ($\mathrm{W}(200$), TMODEL), (W (201), TFORM), (W (202),TID)	CWW3	18
C		CWW3	19
C	DELTA TEMPERATURE 225-249	CWW3	20
	EQUIVALENCE (W (225), DTMODEL), (W (226), DTFORM), (W (227) , DTID)	CWW3	21
C		CWW3	22
C	MOLECULAR 250-274	CWW3	23
	EQUIVALENCE (W (250), MMODEL), (W (251), MFORM), (W (252), MID)	CWW3	24
C		CWW3	25
C	RECEIVER HEIGHT 275-299	CWW3	26
	EQUIVALENCE (W (275), RMODEL), (W (276), RFORM), (W (277), RID)	CWW3	27
C		CWW3	28
C	TOPOGRAPHY 300-324	CWW3	29
	EQUIVALENCE (W (300), GMODEL), (W (301), GFORM), (W (302) , GID)	CWW3	30
C		CWW3	31
C	DELTA TOPOGRAPHY 325-349	CWW3	32
	EQUIVALENCE (W (325), GUMODEL), (W (326), GUFORM) , (W (327), GUID)	CWW3	33
C		CWW3	34
C	UPPER SURFACE TOPOGRAPHY 350-374	CWW3	35
	EQUIVALENCE (W (350), SMODEL) , (W (351), SFORM), (W (352), SID)	CWW3	36
C	PLOT ENHANCEMENTS CONTROL PARAMETERS	CWW3	37
C		CWW3	38
	EQUIVALENCE (W (490), XFQMDL), (W (491), YFQMDL)	CWW3	39
C	ABSORPTION 500-524	CWW3	40
	EQUIVALENCE (W (500), AMODEL), (W (501), AFORM), (W (502), AID)	CWW3	41
C		CWW3	42
C	DELTA ABSORPTION 525-549	CWW3	43
	EQUIVALENCE ($W(525)$, DAMODEL), $(W(526)$, DAFORM $),(W(527)$, DAID	CWW3	44
C		CWW3	45
C	PRESSURE 550-574	CWW3	46
	EQUIVALENCE (W (550), PMODEL), (W (551), PFORM), (W (552), PID)	CWW3	47
C		CWW3	48
C	DELTA PRESSURE 575-599	CWW3	49
	EQUIVALENCE (W (575), DPMODEL), (W (576), DPFORM), (W (577), DPID)	CWW3	50
C		CWW3	51

c

ENTRY PSPEED
RETURN
END
DATA DUMX/1/
DATA DUNTBL/1,11,8*0/
DATA DUITBL/l,9*0/
DATA DUFRMTB/I,9*0/
DATA RECOGDC/0.0/
ENTRY IPSPEED
IF (RECOGDC . NE. DCMODEL)
1 CALL RERROR('DSPEED ','WRNG MODEL',RECOGDC)
$\operatorname{MODC}(3)=7 \mathrm{HNPSPEED}$
$\operatorname{MODC}(4)=$ DCID
RETURN
NPSPEE12
CB2 2
INTEGER DUMX,DUNTBL, DUITBL,DUFRMTB,IDSDU(10) CB2 4
COMMON/B2/DUMX, DUNTBL (10),DUITBL(10),DUFRMTB(10),DUGP(10) CB2 5
EQUIVALENCE (DUGP,IDSDU)
CB2 6
NPSPEE14
NPEEDBL2
NPEEDBL3
NPEEDBL4
NPEEDBL5
NPSPEE17
NPSPEE18
NPSPEE19
NPSPEE20
NPSPEE21
NPSPEE 22
NPSPEE23
NPSPEE24
NPSPEE25
NPSPEE26
NPSPEE27
NPSPEE28
NPSPEE29

SUBROUTINE CBLOB2

SOUND SPEED PERTURBATION MODEL
MULTIPLIICATIVE PERTURBATION WITH EXPONENTIALLIY DECAYING
CBLOB2 8
EFFECT IN ALL THREE DIRECTIONS. GIVE LATITUDE
INSTEAD OF CO-LATITUDE.
COMMON DECK "CONST" INSERTED HERE
COMMON/PCONST/CREF, RGAS, GAMMA
COMMON/MCONST/PI, PIT2, PID2, DEGS, RAD, ALN10
COMMON DECK "RKAM" INSERTED HERE
REAL KR, KTH, KPH
COMMON//R,TH, PH, KR, KTH, KPH, RKVARS (14) ,TPULSE, CSTEP, DRDT (20)
COMMON DECK "B4" INSERTED HERE
INTEGER DCMX, DCNTBL, DCITBL, DCFRMTB, IDSDC (10)
COMMON/B4/DCMX, DCNTBL(10), DCITBL (10), DCFRMTB(10), DCGP(10)
EQUIVALENCE (DCGP,IDSDC)
COMMON DECK "CC" INSERTED HERE
REAL MODC
COMMON/CC/MODC (4) , CS, PCST, PCSR, PCSTH, PCSPH
COMMON DECK "WW" INSERTED HERE
PARAMETER (NWARSZ=1000)
COMMON/WW/ID (10) ,MAXW,W(NWARSZ)
REAL MAXSTP, MAXERR, INTYP, LLAT, LLON
EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)) CWW2
1 (TLON,W(5)), (OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9))), CWW2
2 (AZ1,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)) 4
3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), $\begin{array}{lll} & \text { CWW2 } & 5 \\ 6\end{array}$

```
            8(RCVRH,W(20)),'(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))CWW2 CWW2
            8(RCVRH,W(20)),'(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))CWW2 CWW2
                5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)), CWW2
                6 (HMIN,W(27)),(RGMAX,W(28)),}\mathrm{ CWW2
                8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 11
    6 (STEPl,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 12
                7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75))
                9 ((BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 }1
    9 '(LILAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86))
2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
    REAL MMODEL,MFORM,MID
WIND 100-124
    EQUIVALENCE (W(100),UMODEL),(W(101),UFORM),(W(102),UID)
    C
C
C DELTA WIND 125-149
    DELTA WIND 125-149 (W (125),DUMODEL),(W(126),DUFORM),(W(127),DUID) CWW3 
C
C SOUND SPEED 150-174 CWW3 CW3 10
    EQUIVALENCE (W(150),CMODEL),(W(151),CFORM),(W(152),CID)
    EQUIVALENCE (W(153),REFC)
C DELTA SOUND SPEED 175-199
    DELTA SOUND SPEED 175-199 
C
C TEMPERATURE 200-224
    EQUIVALENCE (W(200),TMODEL),(W(201),TFORM),(W(202),TID)
C DELTA TEMPERATURE 225-249
    EQUIVALENCE (W(225),DTMODEL),(W(226),DTFORM),(W(227),DTID)
C MOLECUIAR 250-274
    EQUIVALENCE (W(250),MMODEL),(W(251),MFORM),(W(252),MID)
    RECEIVER HEIGHT 275-299
    EQUIVALENCE (W (275),RMODEL),(W(276),RFORM),(W(277),RID)
c
C TOPOGRAPHY 300-324
    EQUIVALENCE (W(300),GMODEL),(W(301),GFORM),(W(302),GID)
C
C DELTA TOPOGRAPHY 325-349
    MEM
CWW3 33
C
C UPPER SURFACE TOPOGRAPHY 350-374
    EQUIVALENCE (W(350),SMODEL),(W(351),SFORM),(W(352),SID)
C PLOT ENHANCEMENTS CONTROL PARAMETERS
    EQUIVALENCE (W(490),XFQMDL),(W(491),YFQMDL)
C ABSORPTION 500-524
    EQUIVALENCE (W (500), AMODEL), (W (501), AFORM), (W (502), AID)
C
C
C
    DELTA ABSORPTION 525-549
    EQUIVALENCE (W(525),DAMODEL),(W(526),DAFORM),(W(527),DAID)
        PRESSURE 550-574
                9
                10
    CWW2
    CWW2 15
    CWW2 16
    CWW3 2
    C
CWW3
20
CWW3 21
CWW3 22
C
                            CWW3 34
*
CWW3
CWW3 23
C
    12
    CWW2 14
    CWW3
    CWW3
    CWW3
    CWW3
    CWW3
    CWW
    CWW3 9
    CWW3 12
    CWW3 13
    CWW3 14
    CWW3 15
    CWW3 16
    CWW3 17
CWW3 18
CWW3 19
3
6
23
```

```DELTA WIND 125-1494
```

EQUIVALENCE (W(550), PMODEL), (W(551), PFORM), (W(552), PID) CWW3 47
EQUIVALENCE (W(575),DPMODEL), (W(576), DPFORM), (W(577), DPID)
CWW348
CWW3 49EQUIVALENCE (W(575),DPMODEL), (W(576), DPFORM), (W(577), DPID)
CWW3 50
CWW3 51
EQUIVALENCE (CO,W(178)), (ZO,W(179)), (CBTHO,W(180)) CBLOB2 19
EQUIVALENCE (PHO,W(181)), (WZ,W(182)),(WTH,W(183)),(WPH,W(184)) DATA RECOGDC/2.0/
CBLOB220
CBLOB220
DATA DCMX/1/
CBLOB2 22
DATA DCNTBL/1,11,8*0/
DATA DCITBL/1,9*0/
DATA DCFRMTB/1,9*0/
ENTRY IPSPEEDCOB2BL 2COB2BL 3
COB2BL 4
COB2BL 5
IF (RECOGDC . NE. DCMODEL)CBLOB2 25
CBLOB2271 CALL RERROR('DSPEED ','WRNG MODEL',RECOGDC)
CBLOB228
CBLOB229
$\operatorname{MODC}(3)=6 \mathrm{HCBLOB2}$
MODC (4) = DCID
CBLOB230
$F W Z=0.0$ CBLOB232CBLOB231FWTH=0CBLOB233
$F W P H=0.0$CBLOB234
THO = PID2-CBTHO
CBLOB235
IF (WZ.NE.0.0) FWZ=2.0/WZ/WZ
CBLOB236
IF (WTH.NE.O.0) FWTH=2.0/WTH/WTH CBLOB237
IF (WPH.NE.0.0) FWPH=2.0/WPH/WPH CBLOB238
RETURN
CBLOB2 39
ENTRY PSPEED
CBLOB2 40
CBLOB2 41
IF(CO.EQ.O.O) RETURN CBLOB2 43
CBLOB2 42
CBLOB2 44
DZ=R-EARTHR-ZO CBLOB2 45
DTH=TH-THO CBLOB246
CBLOB247
DPH $=\mathrm{PH}-\mathrm{PH} 0$CBLOB248
DEXPO $=0.0$
EXPO $=-0.5 *(D Z * D Z * F W Z+D T H * D T H * F W T H+D P H * D P H * F W P H) ~$ CBLOB250
IF (EXPO . GT. -200.0) DEXPO=CO*EXP (EXPO)
DEL=1.0+DEXPO
CBLOB2 52
PCSR=PCSR*DEL-CS*DEXPO*FWZ*DZ CBLOB2 53
PCSTH=PCSTH*DEL-CS*DEXPO*FWTH*DTH CBLOB254
PCSPH=PCSPH*DEL-CS*DEXPO*FWPH*DPH CBLOB255 CBLOB255
CS=CS*DEL CBLOB257
RETURN CBLOB2 58
ENDCBLOB259
SUBROUTINE TLINEAR
LINEAR TEMPERATURE PROFILE

C	COMMON DECK "RKAM" INSERTED HERE	RKAMCOM2	
	REAL KR, KTH, KPH	RKAMC	OM4
	COMMON//R,TH, PH, KR, KTH, KPH,RKVARS (14) ,TPULSE, CSTEP, DRDT (20)	RKAM	OM5
C	COMMON DECK "MM" INSERTED HERE	CMM	2
	REAL M, MODM	CMM	4
	COMMON/MM/MODM (4) , M , PMT , PMR, PMTH , PMPH	CMM	5
C	COMMON DECK "TT" INSERTED HERE	CTT	2
	REAL MODT	CTT	4
	COMMON/TT/MODT (4) , T, PTT, PTR, PTTH, PTPH	CTT	5
C	COMMON DECK "WW" INSERTED HERE	CWW	2
	PARAMETER (NWARSZ $=1000$)	CWW1	3
	COMMON/WW/ID (10) , MAXW, W (NWARSZ)	CWW1	4
	REAL MAXSTP, MAXERR, INTYP, LIAT, LLON	CWW2	2
	EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)), (TLAT,W(4))	CWW2	3
	1 (TLON, W (5)), (OW, W (6)), (FBEG,W(7)), (FEND, W (8)) , (FSTEP, W (9)) ,	CWW2	4
	2 (AZ1,W(10)), (AZBEG,W(11)), (AZEND,W(12)), (AZSTEP,W(13)),	CWW2	5
	3 (BETA,W(14)), (ELBEG,W(15)), (ELEND,W(16)), (ELSTEP,W(17)),	CWW2	6
	8 (RCVRH,W(20)),	CWW2	7
	4 (ONLY,W(21)), (HOP,W(22)), (MAXSTP,W(23)), (PLAT,W(24)), (PLON,W(25)	CWW2	8
	5, (HMAX,W(26)), (RAYFNC,W(29)), (EXTINC,W(33)),	CWW2	9
	6 (HMIN,W(27)), (RGMAX,W(28)),	CWW2	10
	8 (INTYP,W(4)) , (MAXERR,W(42)), (ERATIO,W(43)),	CWW2	11
	6 (STEPl,W(44)), (STPMAX,W(45)), (STPMIN,W(46)), (FACTR,W(47)),	CWW2	12
	7 (SKIP,W(71)), (RAYSET,W(72)), (PRTSRP,W(74)), (HITLET,W(75))	CWW2	13
	9 , (BINRAY,W(76)), (PAGLN,W(77)), (PLT,W(81)), (PFACTR,W(82)),	CWW2	14
	1 (LLAT,W (83)), (LLON ,W(84)) , (RLAT, W (85)), (RLON,W(86))	CWW2	15
	2,(TIC,W(87)), (HB,W(88)), (HT,W(89)), (TICV,W(96))	CWW2	16
	REAL MMODEL, MFORM, MID	CWW3	2
C		CWW3	3
C	WIND 100-124	CWW3	4
	EQUIVALENCE (W (100), UMODEL), (W (101), UFORM), (W (102), UID)	CWW3	5
C		CWW3	6
C	DELTA WIND 125-149	CWW3	7
	EQUIVALENCE (W (125), DUMODEL) , (W (126), DUFORM) , (W (127) , DUID)	CWW3	8
C		CWW3	9
C	SOUND SPEED 150-174	CWW3	10
	EQUIVALENCE (W (150), CMODEL), (W (151), CFORM), (W (152), CID)	CWW3	11
	EQUIVALENCE (W (153), REFC)	CWW3	12
C		CWW3	13
C	DELTA SOUND SPEED 175-199	CWW3	14
	EQUIVALENCE (W (175), DCMODEL) , (W (176), DCFORM) , (W (177), DCID)	CWW3	15
C		CWW3	16
C	TEMPERATURE 200-224	CWW3	17
	EQUIVALENCE (W (200), TMODEL), (W (201),TFORM), (W (202), TID)	CWW3	18
C		CWW3	19
C	DELTA TEMPERATURE 225-249	CWW3	20
	EQUIVALENCE (W (225), DTMODEL), (W (226), DTFORM) , (W (227), DTID)	CWW3	21
C		CWW3	22
C	MOLECULAR 250-274	CWW3	23
	EQUIVALENCE (W (250), MMODEL), (W (251), MFORM), (W (252), MID)	CWW3	24
C		CWW3	25
C	RECEIVER HEIGHT 275-299	CWW3	26
	EQUIVALENCE (W (275), RMODEL), (W (276), RFORM), (W (277), RID)	CWW3	27
C		CWW3	28
C	TOPOGRAPHY 300-324	CWW3	29

	EQUIVALENCE (W (300), GMODEL), (W (301), GFORM), (W (302), GID)	CWW3	30
C		CWW3	31
	EQUIVALENCE (W (325), GUMODEL), (W (326), GUFORM) , (W (327), GUID)	CWW3	32
C		CWW3	33
C	UPPER SURFACE TOPOGRAPHY 350-374	CWW3	34
	EQUIVALENCE (W (350), SMODEL), (W (351), SFORM), (W (352), SID)	CWW3	35
C	PLOT ENHANCEMENTS CONTROL PARAMETERS	CWW3	36
C		CWW3	37 38
	EQUIVALENCE (W (490), XFQMDL), (W (491), YFQMDL)	CWW3 CWW 3	38 39
C	ABSORPTION 500-524	CWW3	49
	EQUIVALENCE (W (500), AMODEL), (W (501), AFORM), (W (502), AID)	CWW3	41
C	DELTA ABSORPTION 525-549	CWW3	42
	$525-549$	CWW3	43
	EQUIVALENCE (W (525), DAMODEL), (W (526), DAFORM), (W (527), DAID)	CWW3	44
C	PRESSURE 550-574	CWW3	45
	EQUIVALENCE (W) 550), PMODEL) , (W (551), PFORM), (W (552), PID)	CWW3	46
C		CWW3	47
	DELTA PRESSURE 575-599	CWW3	48
	EQUIVALENCE (W (575), DPMODEL), (W (576), DPFORM), (W (577), DPID)	CWW3	49
C		CWW3	50
	EQUIVALENCE (TGND, W(203)), (A, W(204))	TLINEA14	
C	COMMON DECK "B5" INSERTED HERE	CB5	2
	INTEGER TMX,TNTBL,TITBL,TFRMTBL, IDST(10)	CB5	4
	COMMON/B5/TMX,TNTBL (10) , TITBL (10) , TFRMTBL (10) , TGP (262)	CB5	5
	EQUIVALENCE (TGP,IDST), (ANT,TGP (11))	CB5	6
	DATA RECOGT/1.0/	TLINE	16
	DATA ANT/0.0/	TNEAR	BL2
	DATA TMX/1/	TNEAR	BL3
	DATA TNTBL/1,11,8*0/	TNEAR	LL
	DATA TFRMTBL/1,9*0/	TNEAR	L5
	ENTRY ITEMP	TNEAR	L6
C		TLINE	19
	IF (RECOGT . NE. TMODEL)	TLINE	20
	','WRNG MODEL',RECOGT)	TLINEA21	
C		TLINE	22
	MODT (1) $=7 \mathrm{HTLINEAR}$	TLINEA23	
	$\text { MODT }(2)=T I D$	TLINE	24
	CALL IPTEMP	TLINEA25	
C	CALL IPIEMP	TLINEA	26
	RETURN	TLINE	27
C	RETUR	TLINE	28
	$\begin{aligned} & \text { ENTRY TEMP } \\ & H=R-E A R T H R \\ & T=T G N D+A * H \\ & \text { CALL CLEAR }(P T T, 4) \\ & \text { PTR=A } \end{aligned}$	TLINE	29
		TLINEA	30
		TLINEA	31
		TLINEA	32
		TLINEA	
C		TLINEA	34
	CALL PTEMP	TLINE	
	RETURN	TLINE	
	END	TLINE	
		TLINEA	

EQUIVALENCE (W(250), MMODEL), (W(251),MFORM),(W(252),MID) CWW3 24

```
    RECEIVER HEIGHT 275-299
    CWW3 25
```

 EOUIVALENCE (\(W(275\)) RMODEL) (W(276) RFORM) (W(277) , RID)
 CWW3 28
 CWW3 29
 EQUIVALENCE (W(300),GMODEL),(W(301),GFORM),(W(302),GID) CWW3 30
 DELTA TOPOGRAPHY 325-349 CWW3 31
 EQUIVALENCE (W(325), GUMODEL), (W(326),
 CWW3 34
 UPPER SURFACE TOPOGRAPHY 350-374 CWW3 35
 EQUIVALENCE (W(350),SMODEL),(W(351),SFORM),(W(352),SID) CWW3 36
 PLOT ENHANCEMENTS CONTROL PARAMETERS CWW3 37
 EQUIVALENCE (W (490) XROMDI) CWW3 38
 ABSORPTION CWW3 39
 EQUIVALENCE (W(500), AMODEL) (W(501) AFORM) (W (502) CWW3 40
 CWW3 42
 DELTA ABSORPTION 525-549
 EQUIVALENCE (W(525), DAMODEL) (W(526), DAFORM) (W(527), CWW3 43
 PRESSURE CWW3 45
 CWW3 46
 EQUIVALENCE (W(550), PMODEL), (W(551), PFORM),(W(552), PID) CWW3 47
 DELTA PRESSURE 575-599 CWW3 48
 EQUIVALENCE (W (575), DPMODEI) (W(576), DPFORM) (W (577) CWW3 49
 COMMON DECK "B5" INSERTED HERE CWW3 51
 INTEGR CB5 2
 INTEGER TMX,TNTBL,TITBL,TFRMTBL,IDST(10) CB5 4
 COMMON/B5/TMX,TNTBL(10),TITBL(10),TFRMTBL(10),TGP(262) CB5 5
 EQUIVALENCE (TGP,IDST), (ANT,TGP(11)) CB5 6
 EQUIVALENCE (Z0,TGP(12)),(TM,TGP(33)) TTANH519 6
 EQUIVALENCE (Z,TGP(13)),(C,TGP(32)),(DL,TGP(53))
 DATA RECOGT,N/7.0,0/
 DATA ANT/O.0/
 DATA TMX/2/
 DATA TNTBL/1,11,72,7*0/
 DATA TITBL/1,20,8*0/
 DATA TFRMTBL/1,2,8*0/
 \(\operatorname{COSH}(X)=(\operatorname{EXP}(X)+1 . /(\operatorname{EXP}(X))) / 2\).
 ENTRY ITEMP
 CALL IPTEMP
 IF HAD PREVIOUS CALL BUT NOTHING THIS TIME, EXIT NOW
 RETAINING PREVIOUS TABULAR DATA COUNT
 IF (N.GT.O .AND. ANT.EQ.0.0) RETURN
 IF (RECOGT . NE. TMODEL)
 1 CALL RERROR('TEMP ','WRNG MODEL',RECOGT)
    ```
    MODT (1)=7HTTANH5 TTANH539
    MODT(2)=TID TTANH540
C
C
C
C
C
C
C
            RETURN
C
    ENTRY TEMP
    H = R - EARTHR
    SUM = 0.
C
C LOOP TO SUM OVER ALL COEFFICIENTS
C USE SPECIAL FUNCTION 'ALCOSH' WHICH ALLOWS FOR LARGE ARGUMENTS.
    DO 1 I = 1,N
    l SUM = SUM + DL(I) * (C(I + I) - C(I)) / 2. *(ALCOSH((H - Z
        l(I)) / DL(I)) - ALCOSH((Z(I)-ZO) / DL(I)))
        T=TO + SUM + (C(1) + C(N + 1)) * (H - ZO) * 0.5
        SUM = 0.
        DO 2 I = l, N
    2 SUM = SUM + (C(I + I) - C(I)) / 2. * (1. + TANH ((H - Z(I))/DL
        1 (I)))
        PTT=0.0
        PTR = C(I) + SUM
    PTTH=0.0
    PTPH=0.0
    CALL PTEMP
    RETURN
    END
```

TTANH540
TTANH541
TTANH542
TTANH543
TTANH544
TTANH545
TTANH546
TTANH547
TTANH548
TTANH549
TTANH550
TTANH551
TTANH552
TTANH553
TTANH554
TTANH555
TTANH556
TTANH557
TTANH558
TTANH559
TTANH560
TTANH561
TTANH562
TTANH563
TTANH564
TTANH565
TTANH566
TTANH567
TTANH568
TTANH569
TTANH570
TTANH571
TTANH572
TTANH573
TTANH574
TTANH575
TTANH576
TTANH577
TTANH578
TTANH579
TTANH580
TTANH581
TTANH582
TTANH583
TTANH584
TTANH585
TTANH586
tabular temperature profile that makes a cubic interpolation

| C | BETWEEN POINTS TO INSURE A CONTINUOUS TERMPERATURE GRADIENT | TTABLE10 | |
| :---: | :---: | :---: | :---: |
| | DIMENSION HPC (250), FN2C (250), ALPHA (250), TTBETA (250), GAMM (250), | TTABLE11 | |
| | 1 DELTA $(250), \operatorname{SLOPE}(250), \operatorname{MAT}(4,5)$ | TTABLE12 | |
| c | COMMON DECK "CONST" INSERTED HERE | TTABLE13 | |
| | COMMON/PCONST/CREF,RGAS, GAMMA | CCONST 2CCONST 4 | |
| | COMMON/MCONST/PI, PIT2, PID2, DEGS , RAD, ALN10 | | |
| C | COMMON DECK "RKAM" INSERTED HERE | RKAMCOM2 RKAMCOM4 | |
| | REAL KR, KTH, KPH | | |
| | COMMON//R, TH, PH, KR, KTH , KPH, RKVARS (14) , TPULSE, CSTEP, DRDT (20) | RKAMCOM5 | |
| C | COMMON DECK "TT" INSERTED HERE | CTT | 2 |
| | REAL MODT | CTT | 4 |
| | COMMON/TT/MODT (4) , T, PTT, PTR, PTTH, PTPH | CTT | 5 |
| C | COMMON DECK "WW" INSERTED HERE | $\begin{array}{ll} \text { CWW } & 2 \\ \text { CWWI } & 3 \end{array}$ | |
| | PARAMETER (NWARSZ $=1000$) | | |
| | COMMON/WW/ID (10), MAXW, W (NWARSZ) | CWW1 | |
| | REAL MAXSTP, MAXERR, INTYP, LLAT, LLON | CWW2 | |
| | EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)), (TLAT,W(4)) | CWW2 3 | |
| | 1 (TLON,W(5)), (OW,W(6)), (FBEG,W(7)), (FEND, W(8)), (FSTEP,W(9)), | CWW2 4 | |
| | 2 (AZ1, W (10)), (AZBEG,W(11)), (AZEND,W(12)), (AZSTEP,W(13)), | CWW2 5 | |
| | 8 (RCVRH,W(20)), | CWW2 6 | |
| | 4 (ONLY,W(21)) , (HOP,W(22)), (MAXSTP,W(23)), (PLAT,W(24)) (PLON,W(25)) | CWW2 7 | |
| | 5, (HMAX,W(26)), (RAYFNC,W(29)), (EXTINC,W(33)) , | CWW2 | |
| | 6 (HMIN,W(27)), (RGMAX,W(28)), | CWW2 9 | |
| | 8 (INTYP,W(41)), (MAXERR,W(42)), (ERATIO,W (43) | CWW2 10 | |
| | 6 (STEPI,W(44)), (STPMAX,W(45)), (STPMIN,W(46)) | CWW2 11 | |
| | 7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75)) , | CWW2 12 | |
| | 9 , (BINRAY,W(76)), (PAGLN,W(77)), (PLT,W(81)) (PFACTR,W(82)) | CWW2 13 | |
| | | CWW2 | 14 |
| | 2, (TIC,W(87)), (HB,W(88)) , (HT,W(89)) , (TICV,W(96)) | CWW2 | 15 |
| | REAL MMODEL,MFORM, MID | CWW2 16 | |
| C | $100-124$ | CWW3 | |
| | | CWW3 | |
| C | | CWW3 | 5 |
| C | $125-149$ | CWW3 | |
| | | CWW3 | |
| C | | CWW3 8 | |
| C | | CWW3 | |
| | $\begin{aligned} & 150-174 \\ & (W(150), \text { CMODEL }),(W(151), \text { CFORM }),(W(152), C I D) \\ & (W(153), R E F C) \end{aligned}$ | CWW3 | 10 |
| | | CWW3 | 11 |
| C | | CWW3 | 12 |
| C | DELTA SOUND SPEED 175-199 | CWW3 13 | |
| | (W(175), DCMODEL) , (W (176), DCFORM) , (W (177), DCID) | CWW3 14 | |
| C | | CWW3 | 15 |
| C | (H00-224 | CWW3 16 | |
| | EQUIVALENCE (W) 200),TMODEL), (W (201),TFORM), (W (202),TID) | CWW3 | 17 |
| C | | CWW3 | 18 |
| C | DELTA TEMPERATURE 225-249 | CWW3 19 | |
| | (We 225), DTMODEL) , (W 226$),$ DTFORM) , (W (227), DTID) | CWW3 20 | |
| C | | CWW3 | 21 |
| C | $\begin{aligned} & 250-274 \\ & (W(250), M M O D E L),(W(251), M F O R M),(W(252), M I D) \end{aligned}$ | CWW3 | 22 |
| | | CWW3 | 23 |
| C | | CWW3 | 24 |
| | | CWW3 | 25 |

| C | RECEIVER HEIGHT 275-299 | CWW3 26 |
| :---: | :---: | :---: |
| | EQUIVALENCE (W (275), RMODEL), (W (276),RFORM), (W (277), RID) | CWW3 27 |
| C | | CWW3 28 |
| C | TOPOGRAPHY 300-324 | CWW3 29 |
| | EQUIVALENCE (W (300), GMODEL), (W (301), GFORM), (W (302), GID) | CWW3 30 |
| C | | CWW3 31 |
| C | DELTA TOPOGRAPHY 325-349 | CWW3 32 |
| | EQUIVALENCE (W (325), GUMODEL) , (W (326), GUFORM) , (W (327) , GUID) | CWW3 33 |
| C | | CWW3 34 |
| C | UPPER SURFACE TOPOGRAPHY 350-374 | CWW3 35 |
| | EQUIVALENCE (W (350), SMODEL), (W (351), SFORM), (W (352), SID) | CWW3 36 |
| C | PLOT ENHANCEMENTS CONTROL PARAMETERS | CWW3 37 |
| C | | CWW3 38 |
| | EQUIVALENCE (W (490), XFQMDL), (W (491), YFQMDL) | CWW3 39 |
| C | ABSORPTION 500-524 | CWW3 40 |
| | EQUIVALENCE (W (500), AMODEL), (W (501), AFORM), (W (502), AID) | CWW3 41 |
| C | | CWW3 42 |
| C | DELTA ABSORPTION 525-549 | CWW3 43 |
| | EQUIVALENCE (W (525), DAMODEL), (W (526), DAFORM), (W (527), DAID) | CWW3 44 |
| C | | CWW3 45 |
| C | PRESSURE 550-574 | CWW3 46 |
| | EQUIVALENCE (W) 550$),$ PMODEL), (W (551), PFORM), (W (552), PID) | CWW3 47 |
| C | | CWW3 48 |
| C | DELTA PRESSURE 575-599 | CWW3 49 |
| | EQUIVALENCE (W (575), DPMODEL), (W (576), DPFORM), (W (577) , DPID) | CWW3 50 |
| C | | CWW3 51 |
| C | COMMON DECK "B5" INSERTED HERE | CB5 2 |
| | INTEGER TMX,TNTBL, TITBL, TFRMTBL,IDST (10) | CB5 4 |
| | COMMON/B5/TMX, TNTBL (10), TITBL (10) , TFRMTBL (10), TGP (262) | CB5 5 |
| | EQUIVALENCE (TGP,IDST), (ANT,TGP(11)) | CB5 6 |
| | EQUIVALENCE (AN,TGP(11)), (HPC,TGP(12)),(FN2C,TGP(262)) | TTABLE19 |
| C | | TTABLE20 |
| | DATA RECOGT, NOC/6.0,0/ | TTABLE21 |
| | DATA ANT/0.0/ | TTLEBL 2 |
| | DATA TMX/2/ | TTLEBL 3 |
| | DATA TNTBL/1,11,512,7*0/ | TTLEBL 4 |
| | DATA TITBL/1,250,8*0/ | TTLEBL 5 |
| | DATA TFRMTBL/ $1,2,8 * 0 /$ | TTLEBL 6 |
| C | | TTABLE24 |
| | ENTRY ITEMP | TTABLE25 |
| C | | TTABLE26 |
| C | | TTABLE27 |
| | CALL IPTEMP | TTABLE28 |
| C | | TTABLE29 |
| C | IF HAD PREVIOUS CALL BUT NOTHING THIS TIME, EXIT NOW | TTABLE30 |
| C | RETAINING PREVIOUS TABUIAR DATA COUNT | TTABLE31 |
| | IF (NOC.GT. O . AND. ANT.LE.0.0) RETURN | TTABLE32 |
| C | | TTABLE33 |
| | IF (RECOGT. NE. TMODEL) | TTABLE34 |
| | 1 CALL RERROR('TEMP ', WRNG MODEL',RECOGT) | TTABLE35 |
| C | | TTABLE36 |
| | NOC=ANT/2 | TTABLE37 |
| | IF (ANT. NE. 2 *NOC . OR. NOC.LE.1) | TTABLE38 |
| | 1 CALL RERROR('TTABLE', 'BAD NUMBER',ANT) | TTABLE39 |
| | ANT $=0.0$ | TTABLE40 |

```
    C
        MODT (1)=6HTTABLE
        MODT (2)=TID
    C
    C
        SLOPE (1)=(FN2C(2)-FN2C(1))/(HPC (2)-HPC (1))
        SLOPE (NOC)=0.
        NMAX=1
        DO 6 I=2,NOC
        IF (FN2C(I).GT.FN2C(NMAX)) NMAX=I
        IF (I.EQ.NOC) GO TO 4
        DO 3 J=1,3
        M=I+J-2
        MAT (J, l)=1.
        MAT (J,2)=HPC (M)
        MAT (J, 3) =HPC (M) **2
            MAT (J,4)=FN2C(M)
            CALI GAUSEL (MAT, 4, 3,4,NRANK)
            IF (NRANK.IT.3) GO TO 60
            SLOPE (I) =MAT (2,4)+2.*MAT (3,4) * HPC (I)
        4 DO 5 J=1,2
            M=I+J-2
            MAT (J, 1)=1.
            MAT (J, 2) = HPC (M)
            MAT (J,3)=HPC (M)**2
            MAT (J,4)=HPC (M) **3
            MAT (J,5)=FN2C(M)
            L=J+2
            MAT (L,I)=0.
            MAT (L, 2)=1.
            MAT (L, 3) = 2. *HPC (M)
            MAT (L, 4)=3.*HPC (M) **2
            5 MAT (L, 5)=SLOPE (M)
            CALL GAUSEL (MAT, 4,4,5,NRANK)
            IF (NRANK.LT.4) GO TO 60
            ALPHA (I) =MAT (1,5)
            TTBETA (I)=MAT (2,5)
            GAMM (I)=MAT (3,5)
            6 DELTA (I) =MAT (4,5)
            HMAX=HPC (NMAX)
            NH=2
C
C
            6 0 ~ P R I N T ~ 6 0 0 0 , ~ I , H P C ( I ) ~
    6000 FORMAT(' THE',I4,'TH POINT IN THE TEMPERATURE PROFILE HAS'
        1,' THE HEIGHT',F8.2,' KM, WHICH IS THE SAME AS ANOTHER POINT.')
            CALL EXIT
C
    ENTRY TEMP
C
    IF(NOC.LE.O)
        l CALL RERROR('TTABLE','BAD N VALUE',FLOAT(NOC))
C
```


RETURN

TTABLE41
TTABLE42
TTABLE43
TTABLE44
TTABLE45
TTABLE46
TTABLE47
TTABLE48
TTABLE49
TTABLE50
TTABLE51
TTABLE52
TTABLE53
TTABLE54
TTABLE55
TTABLE56
TTABLE57
TTABLE58
TTABLE59
TTABLE60
TTABLE61
TTABLE62
TTABLE63
TTABLE64
TTABLE65
TTABLE66
TTABLE67
TTABLE68
TTABLE69
TTABLE70
TTABLE71
TTABLE72
TTABLE73
TTABLE74
TTABLE75
TTABLE76
TTABLE77
TTABLE78
TTABLE79
TTABLE80
TTABLE81
TTABLE82
TTABLE83
TTABLE84
TTABLE85
TTABLE86
TTABLE87
TTABLE88
TTABLE89
TTABLE90
TTABLE91
TTABLE92
TTABLE93
TTABLE94
TTABLE95

```
    H=R-EARTHR TTABLE96
    PTT=0.0
TTABLE97
    PTR=0.0
    PTTH=0.0
    PTPH=0.0
    IF (H.GE.HPC(1)) GO TO 12
11 NH=2
    T=FN2C(1)+SLOPE (1)* (H-HPC(1))
    PTR=SLOPE (1)
    RETURN
    12 IF (H.GE.HPC(NOC)) GO TO 18
    NSTEP=1
    IF (H.LT.HPC(NH-1)) NSTEP=-1
    15 IF (HPC(NH-1).LE.H.AND.H.LT.HPC(NH)) GO TO 16
    NH=NH+NSTEP
    GO TO }1
    16T=(ALPHA (NH) +H* (TTBETA (NH) +H* (GAMM (NH) +H*DELTA (NH))))
    PTR=(TTBETA(NH) +H*(2.*GAMM(NH) +H*3.*DELTA(NH)))
    RETURN
18T=FN2C(NOC)
    CALL PTEMP
    RETURN
        END
    TTABLE98
    TTABLE99
    TTABL100
TTABL101
TTABL102
TTABLL03
TTABLl04
TTABL105
TTABL106
TTABL107
TTABL108
TTABL109
TTABLIl0
TTABLllI
TTABLl12
TTABLI13
TTABL114
TTABL115
TTABL116
TTABLIl7
TTABL118
TTABLI19
\begin{tabular}{|c|c|c|c|}
\hline & SUBROUTINE NTEMP & NTEMP & 9 \\
\hline C & DO-NOTHING TEMPERATURE MODEL & NTEMP & 10 \\
\hline C & COMMON DECK "TT" INSERTED HERE & CTT & 2 \\
\hline & REAL MODT & CTT & 4 \\
\hline & COMMON/TT/MODT ( 4) , T, PTT, PTR, PTTH, PTPH & CTT & 5 \\
\hline C & COMMON DECK "WW" INSERTED HERE & CWW & 2 \\
\hline & PARAMETER (NWARSZ=1000) & CWW1 & 3 \\
\hline & COMMON/WW/ID (10), MAXW, W (NWARSZ) & CWW1 & 4 \\
\hline & REAL MAXSTP, MAXERR, INTYP, LLAT, LLON & CWW2 & 2 \\
\hline & EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)), (TLAT, W (4)), & CWW2 & 3 \\
\hline & 1 (TLON,W(5)), (OW,W(6)), (FBEG,W(7)), (FEND,W(8)), (FSTEP,W(9)), & CWW2 & 4 \\
\hline & 2 (AZ1,W(10)), (AZBEG,W(11)), (AZEND,W(12)), (AZSTEP,W(13)), & CWW2 & 5 \\
\hline & 3 (BETA,W(14)), (ELBEG,W(15)), (ELEND,W(16)), (ELSTEP,W(17)), & CWW2 & 6 \\
\hline & 8 (RCVRH, W (20)), & CWW2 & 7 \\
\hline & 4 (ONLY,W(21)), (HOP,W(22)), (MAXSTP,W(23)), (PLAT,W(24)), (PLON,W(25)) & CWW2 & 8 \\
\hline & 5, (HMAX,W(26)), (RAYFNC,W(29)), (EXTINC,W(33)), & CWW2 & 9 \\
\hline & 6 (HMIN,W(27)), (RGMAX,W(28)), & CWW2 & 10 \\
\hline & 8 (INTYP,W(41)), (MAXERR,W(42)), (ERATIO,W(43)), & CWW2 & 11 \\
\hline & 6 (STEPl,W(44)), (STPMAX,W(45)), (STPMIN,W(46)), (FACTR,W(47)), & CWW2 & 12 \\
\hline & 7 (SKIP,W(71)), (RAYSET,W(72)), (PRTSRP,W(74)), (HITLET,W(75)) & CWW2 & 13 \\
\hline & 9 , (BINRAY,W(76)), (PAGLN,W(77)), (PLT,W(81)), (PFACTR,W(82)) , & CWW2 & 14 \\
\hline & 1 (LLAT,W (83)), (LLON,W(84)), (RLAT,W(85)), (RLON,W(86)) & CWW2 & 15 \\
\hline & 2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96)) & CWW2 & 16 \\
\hline & REAL MMODEL,MFORM, MID & CWW3 & 2 \\
\hline C & & CWW3 & 3 \\
\hline C & WIND 100-124 & CWW3 & 4 \\
\hline
\end{tabular}
```

```
            EQUIVALENCE (W(100),UMODEL),(W(101),UFORM),(W(102),UID) CWW3
```

```
\begin{tabular}{|c|c|c|}
\hline EQUIVALENCE (W(100), UMODEL), (W (101), UFORM), (W (102), UID) & CWW3 & 5 \\
\hline DELTA WIND 125-149 & CWW3 & 6 \\
\hline  & CWW3 & 7 \\
\hline EQUIVALENCE (W (125), DUMODEL), (W (126), DUFORM), (W (127), DUID) & CWW3 & 8 \\
\hline SOUND SPEED 150-174 & CWW3 & 9 \\
\hline EQUIVALENCE (W) 150 ), CMODEL), (W (151), CFORM) & CWW3 & 10 \\
\hline EQUIVALENCE ( \(\mathrm{W}(153), \mathrm{REFC}) \mathrm{l}\) ( 151\(), \mathrm{CFORM}),(\mathrm{W}(152), \mathrm{CID})\) & CWW3 & 11 \\
\hline DELTA SOUND SPEED 175-199 & CWW3 & 13 \\
\hline EQUIVA & CWW3 & 14 \\
\hline EQUIVALENCE (W(175), DCMODEL), (W (176), DCFORM), (W (177), DCID) & CWW3 & 15 \\
\hline TEMPERATURE 200-224 & CWW3 & 16 \\
\hline EQUIVALENCE ( \(W\) (200) 204 ,TMODEL) , (W (201), TFORM) (W(202) TID) & CWW3 & 17 \\
\hline EQUIVALENCE (W (200), TMODEL), (W (201),TFORM), (W (202), TID) & CWW3 & 18 \\
\hline DELTA TEMPERATURE 225-249 & CWW3 & 19 \\
\hline EQUIVALENCE (W (225), DTMODEL), (W & CWW3 & 20 \\
\hline & CWW3 & 21 \\
\hline MOLECULAR 250-274 & CWW3 & 22 \\
\hline EQUIVALENCE (W (250), MMODEL), (W (251), MFORM), (W (252), MID) & CWW3 & 23
24 \\
\hline RECEIVER HEIGHT 275-299 & CWW3 & 25 \\
\hline EQUIVAIENCE (W) 275) PMODEL) (W (276) PFORM) (We 277\()\) & CWW3 & 26 \\
\hline EQUIVALENCE (W (275),RMODEL), (W (276), RFORM), (W (277), RID) & CWW3 & 27 \\
\hline TOPOGRAPHY 300-324 & CWW3 & 28 \\
\hline EQUIVALENCE ( \(W(300\) ), GMODEL), (W (301), GFORM) & CWW3 & 29 \\
\hline  & CWW3 & 30 \\
\hline DELTA TOPOGRAPHY 325-349 & CWW3 & 31 \\
\hline EQUIVALENCE (W (325), GUMODEL), (W 326 ), GUFORM), (W (327), GUTD) & CWW3 & 32 \\
\hline  & CWW3 & 33 \\
\hline UPPER SURFACE TOPOGRAPHY 350-374 & CWW3 & 34 \\
\hline EQUIVALENCE ( \(\mathrm{W}(350\) ) , SMODEL) , \(\mathrm{W}(351), \mathrm{SFORM}),(\mathrm{W}(352), \mathrm{SI}\) & CWW3 & 35 \\
\hline PLOT ENHANCEMENTS CONTROL PARAMETERS & CWW3 & 36
37 \\
\hline & CWW3 & 38 \\
\hline EQUIVALENCE (W (490), XFQMDL), (W (491), YFQMDL) & CWW3 & 39 \\
\hline ABSORPTION (W0UTVALENCE (500) \({ }^{\text {500-524 }}\) & CWW3 & 40 \\
\hline EQUIVALENCE (W (500), AMODEL), (W (501), AFORM), (W (502), AID) & CWW3 & 41 \\
\hline DELTA ABSORPTION 525-549 & CWW3 & 42 \\
\hline EQUIVALENCE (W(525), DAMODEL), (W (526), DAFORM), (W (527), DAID) & CWW3 & 43 \\
\hline (W) & CWW3 & 44
45 \\
\hline PRESSURE 550-574 & CWW3 & 46 \\
\hline EQUIVALENCE (W(550), PMODEL), (W (551), PFORM), (W (552), PID) & CWW3 & 47 \\
\hline DELTA PRESSURE 575-599 & CWW3 & 48 \\
\hline EQUIVALENCE (W) 575\()\), DPMODEL) , (W (576), DPFORM), (W (577), DPID) & CWW3 & 49 \\
\hline  & CWW3 & 50 \\
\hline COMMON DECK "B5" INSERTED HERE & CWW3 & 51 \\
\hline INTEGER TMX, TNTBL, TITBL, TFRMTBL, IDST (10) & CB5 & 2 \\
\hline COMMON/B5/TMX,TNTBL (10) ,TITBL (10), TFRMTBL (10), TGP (262) & CB5 & 5 \\
\hline EQUIVALENCE (TGP,IDST), (ANT, TGP (11)) & CB5 & 6 \\
\hline & NTEMP & 14 \\
\hline DATA TMX/1/ & NTEMP & 15 \\
\hline DATA TNTBL/1,11,8*0/ & NMPBL NMPBL & 2 \\
\hline
\end{tabular}
```

```
    DATA TITBL/1,9*0/ NMPBL 4
    DATA TFRMTBL/1,9*0/ NMPBL
        4
C
    ENTRY ITEMP
    IF(RECOGT .NE. TMODEL)
    1 CALL RERROR('TEMP ','WRNG MODEL',RECOGT)
C
    MODT (1) = 5HNTEMP
    MODT (2)=DTID
    RETURN
C
    ENTRY TEMP
    RETURN
    END
NMPBL 5
NTEMP }1
NTEMP }1
NTEMP }2
NTEMP 21
NTEMP }2
NTEMP 23
NTEMP }2
NTEMP }2
NTEMP }2
NTEMP 27
NTEMP }2
NTEMP }2
```

SUBROUTINE TBLOB2

TBLOB2 8

C TEMPERATURE PERTURBATION MODEL TBLOB2 9
C MULTIPLICATIVE PERTURBATION WITH EXPONENTIALLY DECAYING EFFECT IN ALL THREE DIRECTIONS. GIVE LATITUDE
EFFECT IN ALL THREE DIRECTIONS. GIVE LATITUDE
C INSTEAD OF CO-LATITUDE.
C COMMON DECK "CONST" INSERTED HERE
COMMON/PCONST/CREF, RGAS, GAMMA
COMMON/MCONST/PI, PIT2, PID2, DEGS, RAD, ALN10
TBLOB2 10

COMMON DECK "RKAM" INSERTED HERE
REAL KR, KTH, KPH
COMMON//R, TH , PH, KR, KTH, KPH, RKVARS (14) ,TPULSE , CSTEP , DRDT (20)
C COMMON DECK "B6" INSERTED HERE
TBLOB211
TBLOB212
CCONST 2
CCONST 4
CCONST 5
RKAMCOM2
RKAMCOM4
RKAMCOM5
INTEGER DTMX, DTNTBL, DTITBL, DTFRMTB, IDSDT(10) CB6 2
COMMON/B6/DTMX D
EQUIVALENCE (DTGP,IDSDT) CB6 6
C
C COMMON DECK "TT" INSERTED HERE
REAL MODT
COMMON/TT/MODT (4) , T, PTT , PTR, PTTH, PTPH
TBLOB216

COMMON/TT/MODT (4) \quad CTI 4
COMMON DECK "WW" INSERTED HERE CWW 2
PARAMETER (NWARSZ=1000)
COMMON/WW/ID (10) ,MAXW,W (NWARSZ)
CWW1 3
REAL MAXSTP, MAXERR, INTYP, LILAT, LLON CWW1 4
EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)),(XMTRH,W(3)),(TLAT,W(4)), CWW2 3
1 (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)), CWW2 4
2 (AZ1,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)), CWW2 5
3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), CWW2 6

```
8 (RCVRH,W(20)), CWW2
```

4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))
5, (HMAX,W(26)), (RAYFNC,W(29)), (EXTINC,W(33)),
6 (HMIN,W(27)) (RGMAX W(28)) 9
8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 11
6 (STEP1,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 12
7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75)) CWW2 13
9 , (BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 14
1 (LIAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86)) CWW2 15

DATA RECOGDT/2.0/ TBLOB223
DATA DTMX/I/ TOB2BL 2
DATA DTNTBL/l,11,8*0/ TOB2BL 3
DATA DTITBL/1,9*0/
DATA DTFRMTB/l,9*0/
ENTRY IPTEMP
IF (RECOGDT .NE. DTMODEL)
1 CALL RERROR('DTEMP ','WRNG MODEL',RECOGDT)
MODT (3) $=6 \mathrm{HTBLOB2}$$\operatorname{MODT}(4)=D T I D$C
$F W Z=0.0$
$F W T H=0.0$
$F W P H=0.0$
TBLOB237
TBLOB237THO = PID2-TBTHO
IF (WZ.NE.0.0) FWZ=2.0/WZ/WZTOB2BL 4
TOB2BL 5
TBLOB226
TBLOB2 27
TBLOB228
TBLOB229
TBLOB230
TBLOB231
TBLOB2 32
TBLOB233
IF (WTH.NE.O.0) FWTH=2.0/WTH/WTH
IF (WTH.NE.O.0) FWTH=2.0/WTH/WTH
IF (WPH.NE.0.0) FWPH=2.0/WPH/WPH
TBLOB240
TBLOB241TBLOB234
TBLOB2 35
TBLOB2 36
RETURNTBLOB238
TBLOB239
ENTRY PTEMP TBLOB2 43
TBLOB2 42
C
CC
IF(CO.EQ.O.0) RETURN
$\mathrm{DZ}=\mathrm{R}-\mathrm{EARTHR}-\mathrm{ZO}$
$\mathrm{DTH}=\mathrm{TH}-\mathrm{THO}$
$\mathrm{DPH}=\mathrm{PH}-\mathrm{PHO}$
TBLOB244
TBLOB245
TBLOB2 46
TBLOB247
TBLOB2 48TBLOB2 49
DEXPO $=0.0$
TBLOB251TBLOB250
EXPO $=-0.5 *(\mathrm{DZ} * \mathrm{DZ} * F W Z+D T H * D T H * F W T H+D P H * D P H * F W P H)$IF (EXPO .GT. -200.0) DEXPO=CO*EXP (EXPO)
DEL=1.0+DEXPO
TBLOB253
TBLOB254
C
PTR=PTR*DEL-T*DEXPO*FWZ*DZ
PTTH=PTTH*DEL-T*DEXPO*FWTH*DTH
PTPH $=\mathrm{PTPH} * \mathrm{DEL}-\mathrm{T} * \mathrm{DEXPO} * F W P H * D P H$
T=T*DEL
RETURNTBLOB255
TBLOB2 56
ENDTBLOB257
TBLOB258
TBLOB259TBLOB2 60
SUBROUTINE NPTEMP
DO-NOTHING TEMPERATURE PERTURBATION MODEL NPTEMP 9
C 8
REAL MODT CTT
COMMON/TT/MODT (4) , T, PTT, PTR, PTTH, PTPH
COMMON/TT/MODT (4) , T, PTT, PTR, PTTH, PTPH CTT CTT
C COMMON DECK "WW" INSERTED HERE CWW 5
PARAMETER (NWARSZ=1000) CWWI CWW1

COMMON/WW/ID (10) ,MAXW,W (NWARSZ)

COMMON/WW/ID (10) ,MAXW,W (NWARSZ)
REAL MAXSTP,MAXERR,INTYP,IIAT,LLON
REAL MAXSTP,MAXERR,INTYP,IIAT,LLON CWW2 2
C COMMON DECK "TT" INSERTED HERE CTT 2434

RETURN
END END
MODT (3) $=6$ HNPTEMPMODT (4) = DTID
RETURN RETURN
ENTRY IPTEMP
IF (RECOGDT .NE. DTMODEL)
1 CALL RERROR('DTEMP ','WRNG MODEL',RECOGDT)
CWW3
CWW3 43
EQUIVALENCE (W(525), DAMODEL), (W(526), DAFORM), (W(527), DAID) CWW3 44
PRESSURE 550-574 45CWW3
EQUIVALENCE (W (550), PMODEL), (W (551), PFORM), (W(552), PID) 46CWW3
DELTA PRESSURE
CWW3575-599CWW3 49
EQUIVALENCE (W(575), DPMODEL), (W(576), DPFORM),(W(577),DPID) CWW3 50
CWW3 51
NPTEMP12
COMMON DECK "B6" INSERTED HERECB6 2
INTEGER DTMX,DTNTBL, DTITBL, DTFRMTB,IDSDT(10) CB6 4
COMMON/B6/DTMX,DTNTBL(10),DTITBL(10), DTFRMTB(10), DTGP(10) CB6 5
EQUIVALENCE (DTGP,IDSDT) CB6 6
DATA DTMX/l/DATA DTNTBL/1,11,8*0/DATA DTITBL/1,9*0/DATA DTFRMTB/1,9*0/DATA RECOGDT/O.0/
NPTEMP14
NEMPBL 2
NEMPBL 3
NEMPBL 4
NEMPBL 5
NPTEMP17
NPTEMP18
NPTEMP19
NPTEMP20
NPTEMP21
NPTEMP22NPTEMP23NPTEMP24NPTEMP25
NPTEMP26
NPTEMP27NPTEMP28NPTEMP29NPTEMP30
SUBROUTINE MCONSTMCONST 8
C CONSTANT MOLECULAR WEIGHT MODEL MCONST 9
COMMON DECK "WW" INSERTED HERE
COMMON DECK "WW" INSERTED HERE CWW CWW CWWI CWWI
PARAMETER (NWARSZ=1000)
PARAMETER (NWARSZ=1000)
CWW1 COMMON/WW/ID (10) , MAXW, W (NWARSZ) 4 2 2
C
C
CWW2
EOUIVALENCE (EARTHR W (1) 2
CWW2 1 (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)), CWW2
2 (AZ1,W(10)), (AZBEG,W(11)), (AZEND,W(12)), (AZSTEP,W(13)), CWW2
3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)), (ELSTEP,W(17)), CWW2
RCVRH,W(20)) CWW2
5, (HMAX,W(26)), (RAYFNC,W(29)), (EXTINC,W(33)),
CWW2
CWW2 6 (HMIN,W(27)), (RGMAX,W(28)).CWW23
8 (INTYP,W(41)), (MAXERR,W(42)), (ERATIO,W(43)),CWW2 11
6 (STEPl,W(44)), (STPMAX,W(45)), (STPMIN,W(46)), (FACTR,W(47)) CWW2 12
7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75)) CWW2 13

```
    9,(BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 1
    l (LLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86))}
        14
    2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
    REAL MMODEL,MFORM,MID
        CWW3 2
    WIND 100-124 
        EQUIVALENCE (W(100),UMODEL),(W(101),UFORM),(W(102),UID) CWW3 5
    DELTA WIND 125-149 CWW3 6
    EQUIVALENCE (W(125),DUMODEL),(W(126),DUFORM),(W(127),DUID) CWW3 8
    SOUND SPEED 150-174 CWW3 9
    EQUIVALENCE (W(150),CMODEL),(W(151),CFORM),(W(152),CID) CWW3 10
    EQUIVALENCE (W(153),REFC)
    DELTA SOUND SPEED 175-199
    CWW3 12
    CWW3 13
    EQUIVALENCE (W(175),DCMODEL),(W(176),DCFORM), (W(177),DCID)
    TEMPERATURE 200-224 CWW3 16
    EQUIVALENCE (W(200) TMODEL),(W(201) TFORM),(W(202),TID)
    DELTA TEMPERATURE 225-249
    EQUIVALENCE (W(225),DTMODEL),(W(226),DTFORM),(W(227),DTID) CWW3 20
    CWW3 21
    CWW3 }2
    CWW3 23
    CWW3 24
    CWW3 }2
    CWW3 26
    CWW3 27
    CWW3 28
    CWW3 }2
    CWW3 30
    CWW3 31
    CWW3 32
    CWW3 33
    CWW3 34
    CWW3 35
    EQUIVALENCE (W(350),SMODEL),(W(351),SFORM),(W(352),SID) CWW3 35
    PLOT ENHANCEMENTS CONTROL PARAMETERS
    EQUIVALENCE (W (490), XFQMDL),(W(491),YFQMDL)
        CWW3 37
        CWW3 38
    ABSORPTION (400-524),(W(491),YFQMDL)
    EOUIVAIFNCE (W (500)) CWW3 40
    CWW3 41
    CWW3 42
    CWW3 43
    EQUIVALENCE (W(525),DAMODEL),(W(526),DAFORM),(W(527),DAID) (W)
    PRESSURE 550-574
    CWW3 45
                                575-599
                            CWW3 47
CWW3 48
CWW3 49
CWW3 50
CWW3 51
CMM 2
CMM 4
```

```
    COMMON/MM/MODM (4),M, PMT , PMR,PMTH, PMPH CMM 5
    REAL MLCNST MCONST12
    EQUIVALENCE (W(253),MLCNST)
C COMMON DECK "B7" INSERTED HERE
    INTEGER MMX,MNTBL,MITBL,MFRMTBL,IDSM(10) CB7 2
    REAL MGP CB7
    COMMON/B7/MMX,MNTBL (10),MITBL (10),MFRMTBL(10),MGP(10)
    EOUTVAI MNCE (MGP M(10),MIML(10),MFRMHBL(10),MGP(10) CB7 6
    DATA (MGP,IDSM) CB7 7
    DATA RECOGM/1.0/
    DATA MMX/l/
    DATA MNTBL/1,11,8*0/
    DATA MITBL/1,9*0/
    DATA MFRMTBL/1,9*0/
    ENTRY IMOLWT
C
    IF(RECOGM .NE. MMODEL)
    1 CALL RERROR('IMOLWT ','WRNG MODEL',RECOGM)
    MODM (1)=6HMCONST
    MODM (2)=MID
    RETURN
C
    ENTRY MOLWT
    M=MLCNST
    CALL CLEAR(PMT,4)
    END
    MCONSTl5
    MNSTBL 2
    MNSTBL 3
    MNSTBL 4
    MNSTBL 5
    MCONST18
    MCONST19
    MCONST20
    MCONST21
    MCONST22
    MCONST23
    MCONST24
    MCONST25
    MCONST26
    MCONST27
    MCONST28
    MCONST29
    MCONST30
    MCONST31
    MCONST32
    SUBROUTINE GHORIZ
    C
    MmpatN wocel usin
        C TERRAIN MODEL USING FIXED OFFSET TO EARTHR'S SURFACE
        COMMON DECK "GG" INSERTED HERE
        GHORIZ }
        GHORIZ }
        REAL MODG CGG
        ll
        COMMON/GG/MODG (4)
        CGG 4
        COMMON/GG/G, PGR, PGRR, PGRTH , PGRPH
        CGG 5
    COMMON
    COMMON/GG/PGTH, PGPH , PGTHTH, PGPHPH, PGTHPH,GSELECT,GTIME CG CGG 7
    COMMON DECK "WW" INSERTED HERE CWW
    PARAMETER (NWARSZ=1000) CWWl
    COMMON/WW/ID(10),MAXW,W(NWARSZ)
    REAL MAXSTP,MAXERR,INTYP,LLAT,ILON CWW1
    EQUIVALENCE (EARTHR,W(1)),(RAY,W(2)),(XMTRH,W(3)),(TLAAT,W(4)), CWW2
    l (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)), CWW2
    2,(AZl,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)), CWW2
    3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)),,
    8 (RCVRH,W(20)), CWW2
    4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)), (PLON,W(25)) CWW2
    5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)),
    5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)), (RGM,W(28)),
    8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 10
    6 (STEPl,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2}1
    7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75)), CWW2 12
```

| | 9 , (BINRAY, W (76)), (PAGLN,W(77)), (PLT, W(81)), (PFACTR,W(82)), | CWW2 | 14 |
| :---: | :---: | :---: | :---: |
| | 1 (LLAT,W(83)), (LLON,W(84)), (RLAT,W(85)), (RLON,W(86)) | CWW2 | 15 |
| | 2,(TIC,W(87)), (HB,W(88)), (HT,W(89)), (TICV,W(96)) | CWW2 | 16 |
| | REAL MMODEL,MFORM, MID | CWW3 | 2 |
| C | | CWW3 | 3 |
| C | WIND 100-124 | CWW3 | 4 |
| | EQUIVALENCE (W(100), UMODEL), (W (101), UFORM), (W (102), UID) | CWW3 | 5 |
| C | | CWW3 | 6 |
| C | DELTA WIND 125-149 | CWW3 | 7 |
| | EQUIVALENCE (W (125), DUMODEL), (W (126), DUFORM), (W (127) , DUID) | CWW3 | 8 |
| C | | CWW3 | 9 |
| C | SOUND SPEED 150-174 | CWW3 | 10 |
| | EQUIVALENCE (W (150), CMODEL), (W (151), CFORM), (W (152), CID) | CWW3 | 11 |
| | EQUIVALENCE (W (153), REFC) | CWW3 | 12 |
| C | | CWW3 | 13 |
| C | DELTA SOUND SPEED 175-199 | CWW3 | 14 |
| | EQUIVALENCE (W (175), DCMODEL), (W (176), DCFORM), (W (177), DCID) | CWW3 | 15 |
| C | | CWW3 | 16 |
| C | TEMPERATURE 200-224 | CWW3 | 17 |
| | EQUIVALENCE (W (200),TMODEL), (W (201),TFORM), (W (202), TID) | CWW3 | 18 |
| C | | CWW3 | 19 |
| C | DELTA TEMPERATURE 225-249 | CWW3 | 20 |
| | EQUIVALENCE (W (225), DTMODEL), (W (226), DTFORM), (W (227), DTID) | CWW3 | 21 |
| C | MOLECULAR 250-274 | CWW3 | 22 |
| | EQUIVALENCE (W (250), MMODEL), (W (251), MFORM), (W (252), MID) | CWW3 | 23 |
| C | EQUIVALENCE (W 250$)$, MMODEL) , (W (251),MFORM) , (W (252),MID) | CWW3 | 24 |
| C | RECEIVER HEIGHT 275-299 | CWW3 | 26 |
| | EQUIVALENCE (W (275), RMODEL), (W (276), RFORM), (W (277), RID) | CWW3 | 27 |
| C | | CWW3 | 28 |
| C | TOPOGRAPHY 300-324 | CWW3 | 29 |
| | EQUIVALENCE (W (300), GMODEL), (W(301), GFORM), (W (302), GID) | CWW3 | 30 |
| C | | CWW3 | 31 |
| C | DELTA TOPOGRAPHY 325-349 | CWW3 | 32 |
| C | EQUIVALENCE (W (325), GUMODEL), (W (326), GUFORM), (W (327) , GUID) | CWW3 | 33 |
| C | UPPER SURFACE TOPOGRAPHY 350-374 | CWW3 | 34 |
| | EQUIVALENCE (W (350), SMODEL), (W (351), SFORM), (W (352), SID) | CWW3 | 35 |
| C | PLOT ENHANCEMENTS CONTROL PARAMETERS | CWW3 | 36 37 |
| C | | CWW3 | 38 |
| | EQUIVALENCE (W (490), XFQMDL), (W (491), YFQMDL) | CWW3 | 39 |
| C | ABSORPTION 500-524 | CWW 3 | 40 |
| | EQUIVALENCE (W (500), AMODEL), (W (501), AFORM), (W (502), AID) | CWW3 | 41 |
| C | | CWW3 | 42 |
| C | DELTA ABSORPTION 525-549 | CWW3 | 43 |
| | EQUIVALENCE (W (525), DAMODEL), (W (526), DAFORM), (W (527), DAID) | CWW3 | 44 |
| C | | CWW3 | 45 |
| C | PRESSURE 550-574 | CWW3 | 46 |
| | EQUIVALENCE (W (550), PMODEL), (W (551), PFORM), (W (552), PID) | CWW3 | 47 |
| C | | CWW3 | 48 |
| C | DELTA PRESSURE 575-599 | CWW3 | 49 |
| | EQUIVALENCE (W (575), DPMODEL), (W (576), DPFORM), (W (577), DPID) | CWW3 | 50 |
| C | | CWW3 | 51 |
| C | COMMON DECK "RKAM" INSERTED HERE | RKAMC | M2 |
| | REAL KR, KTH, KPH | RKAMC | M4 |COMMON/PCONST/CREF,RGAS, GAMMACOMMON/MCONST/PI, PIT2, PID2, DEGS, RAD, ALN10COMMON DECK "B9" INSERTED HEREINTEGER GMX, GNTBL, GITBL, GFRMTBL,IDSG(10)COMMON/B9/GMX, $\operatorname{GNTBL}(10), \operatorname{GITBL}(10), \operatorname{GFRMTBL}(10), \operatorname{GGP}(113)$EQUIVALENCE (GGP,IDSG), (ANG,GGP(11))COMMON DECK "RKAM" INSERTED HEREREAL KR, KTH, KPHCOMMON//R,TH, PH, KR , KTH, KPH, RKVARS (14) ,TPULSE, CSTEP, DRDT (20)COMMON DECK "GG" INSERTED HEREREAL MODG

COMMON/GG/MODG (4)
COMMON/GG/G, PGR, PGRR, PGRTH, PGRPHCOMMON/GG/PGTH, PGPH, PGTHTH, PGPHPH, PGTHPH, GSELECT, GTIMECOMMON DECK "BIO" INSERTED HEREINTEGER DGMX,DGNTBL, DGITBL, DGFRMTB,IDSDG(10)COMMON/B10/DGMX, DGNTBL (10), DGITBL(10), DGFRMTB(10), DGGP (10)EQUIVALENCE (DGGP,IDSDG)

RKAMCOM5
GHORIZ13
EQUIVALENCE (W(303), z0)
GHORIZ14
GHORIZ15
COMMON DECK "B9" INSERTED HERE
CB8 2
INTEGER GMX, GNTBL, GITBL, GFRMTBL, IDSG (10)
COMMON/B9/GMX, $\operatorname{GNTBL}(10), \operatorname{GITBL}(10), \operatorname{GFRMTBL}(10), \operatorname{GGP}(113) \quad \operatorname{CB8} 5$
EQUIVALENCE (GGP,IDSG), (ANG,GGP(11)) CB8 6
dATA RECOGG/I.0/
DATA GMX/1/
DATA GNTBL/1,11,8*0/
DATA GITBL/1,9*0/
DATA GFRMTBL/1,9*0/
ENTRY ITOPOG
IF (RECOGG . NE. GMODEL)
${ }^{1}$ MODG CALL RERROR('GHORIZ ','WRNG MODEL',RECOGG)
MODG (1) $=6$ HGHORIZ
MODG (2)=GID
RETURN
ENTRY TOPOG
$\mathrm{G}=\mathrm{R}-\mathrm{W}(1)-\mathrm{ZO}$
$\mathrm{PGR}=1.0$
CALL CLEAR (PGRR,8)
END
GHORIZ17
GHORIZ18
GHORIZ19
GRIZBL 2
GRIZBL 3
GRIZBL 4
GRIZBL 5
GHORIZ22
GHORIZ23
GHORIZ24
GHORIZ25
GHORIZ26
GHORIZ27
GHORIZ28
GHORIZ29
GHORIZ30
GHORIZ31
GHORIZ32
GHORIZ33

TERRAIN MODEL USING LORENZIAN SHAPED HORIZONTAL SURFACE LOCATED A ARBITRARY GEOGRAPHICAL LOCATION.

\qquad

TEMPERATURE 200-224
EQUIVALENCE (W(200),TMODEL),(W(201),TFORM),(W(202),TID) CWW3 17

```
COMMON DECK "WW" INSERTED HERE
PARAMETER (NWARSZ=1000)

CWW
CWW1 3
PARAMETER (NWARSZ=1000)
COMMON/WW/ID (10),MAXW,W(NWARSZ) CWWI 4
REAL MAXSTP, MAXERR, INTYP, LLAT,LLON CWW2 2
EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)),(TLAT,W(4)), CWW2 3
1 (TLON,W(5)), (OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)), CWW24 4
2 (AZ1,W(10)), (AZBEG,W(11)), (AZEND,W(12)), (AZSTEP,W(13)), CWW2 5
3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), CWW2 6
8 (RCVRH,W(20)), CWW2
4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))CWW2 8
5, (HMAX,W(26)), (RAYFNC,W(29)),(EXTINC,W(33)), CWW2 9
6 (HMIN,W(27)),(RGMAX,W(28)), CWW2 10
8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 11
6 (STEPl,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 12
7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75)) CWW2 13
9 , (BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 14
1 (LLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86)) CWW2 15
\(2,(\mathrm{TIC}, \mathrm{W}(87)),(\mathrm{HB}, \mathrm{W}(88)),(\mathrm{HT}, \mathrm{W}(89)),(\mathrm{TICV}, \mathrm{W}(96)) \quad\) CWW2 16
REAL MMODEL, MFORM,MID CWW3 2
WIND 100-124 CWW3 3
EQUIVALENCE (W(100),UMODEL),(W(101),UFORM),(W(102),UID) CWW3 5
DELTA WIND 125-149 CWW3 6
EQUIVALENCE (W(125), DUMODEL), (W (126), DUFORM), (W(127),DUID) CWW3 8
SOUND SPEED 150-174 CWW3 10
EQUIVALENCE ( \(W(150)\), CMODEL) , \((W(151)\), CFORM \(),(W(152), C I D) \quad\) CWW3 11
EQUIVALENCE (W(153), REFC)
DELTA SOUND SPEED 175-199
EQUIVALENCE (W(175), DCMODEL), (W(176), DCFORM), (W(177),DCID) CWW3 14

DELTA TEMPERATURE 225-249
EQUIVALENCE (W(225),DTMODEL), (W(226),DTFORM), (W(227),DTID) CWW3 20
MOLECULAR 250-274 CWW3 22
EQUIVALENCE (W(250), MMODEL), (W (251), MFORM) (W (252), MTD) CWW3 23
\(\begin{array}{ll}\text { RECEIVER HEIGHT } 275-299 & \text { CWW3 } 25\end{array}\)
EQUIVALENCE (W (275), RMODEL) (W (276) RFORM) (W(277), CWW3 26
TOPOGRAPHY 300-324 CWW3 28
EQUIVALENCE (W(300), GMODEL), (W(301), GFORM) (W(302), CWW3 29
CWW3 31
EQUIVALENCE (W(325),GUMODEL), (W(326),GUFORM),(W(327),GUID) CWW3 \(\quad 32\)
UPPER SURFACE TOPOGRAPHY 350-374 CWW3 34
EQUIVALENCE (W(350), SMODEL), (W(351),SFORM), (W(352),SID) CWW3 35
PLOT ENHANCEMENTS CONTROL PARAMETERS
 3 4 2 3 4 5 6 7 0 1 2 4 5 2
 . . 7
```

 EQUIVALENCE (W(490),XFQMDL),(W(491),YFQMDL) CWW3 39
 C ABSORPTION 500-524
 EQUIVALENCE (W(500),AMODEL),(W(501),AFORM),(W(502),AID) CWW3 40
 CWW3
 4 0
 C DELTA ABSORPTION 525-549
EQUIVALENCE (W(525),DAMODEL),(W(526),DAFORM),(W(527),DAID)
C PRESSURE 550-574
EQUIVALENCE (W(550), PMODEL),(W(551),PFORM),(W(552),PID)
575-599
EQUIVALENCE (W(575),DPMODEL),(W(576),DPFORM),(W(577),DPID)
EQUIVALENCE (GCZAMP,W(303))
EQUIVALENCE (GCLAMZ,W(304)) ,(GCTHDL,W(305))
EQUIVALENCE (GCBASE,W(306))
DATA RECOGG/4.0/
DATA GMX/I/
DATA GNTBL/1,11,8*0/
DATA GITBL/1,9*0/
DATA GFRMTBL/1,9*0/
C
C
ENTRY ITOPOG
C
C
C
C
C
C
C
IF(RECOGG .NE. GMODEL)
l CALL RERROR('GROUND ','WRNG MODEL',RECOGG)
MODG (1)=7HGLORENZ
MODG (2)=GID
GCTHO=PID2-GCLAMZ
GCINV=1.0/GCTHDL
CALL IPTOPOG
RETURN
ENTRY TOPOG
CALL CLEAR(PGRTH,7)
ETA= (TH-GCTHO) *GCINV
ETA2=ETA*ETA
GBINOM=1.0/(1.0 + ETA2)
Z=GCZAMP*GBINOM
G=R-EARTHR-Z-GCBASE
PGR=1.0
GBINOMB=GBINOM*GCINV
PGTH=2.0*Z*ETA*GBINOMB
PGTHTH=2.0*Z*GBINOMB*GBINOMB*(1.0-3.0*ETA2)
RETURN
END

```
\begin{tabular}{|c|c|c|}
\hline & SUBROUTINE GTANH & GTANH 8 \\
\hline C & TERRAIN PROFILE REPRESENTED BY A SEQUENCE OF LINEAR SEGMENTS & GTANH 9 \\
\hline C & SMOOTHLY JOINED BY HYPERBOLIC FUNCTIONS. PARAMETERS ARE INPUT & GTANH 10 \\
\hline C & AS TABULAR DATA WITH SLOPES COMPUTED FROM TERRAIN DATA. & GTANH 11 \\
\hline C & COMMON DECK "CONST" INSERTED HERE & CCONST 2 \\
\hline & COMMON/PCONST/CREF, RGAS, GAMMA & CCONST 4 \\
\hline & COMMON/MCONST/PI, PIT2, PID2, DEGS , RAD, ALN10 & CCONST 5 \\
\hline C & TERRAIN MODEL & GTANH 13 \\
\hline & REAL C(49), LAMO, LM , LMIM1, LM (49), DL(49), ALC (50) & GTANH 14 \\
\hline C & COMMON DECK "RKAM" INSERTED HERE & RKAMCOM2 \\
\hline & REAL KR, KTH, KPH & RKAMCOM4 \\
\hline & COMMON//R,TH, PH, KR, KTH, KPH,RKVARS (14) , TPULSE, CSTEP, DRDT ( 20 ) & RKAMCOM5 \\
\hline C & COMMON DECK "GG" INSERTED HERE & CGG 2 \\
\hline & REAL MODG & CGG 4 \\
\hline & COMMON/GG/MODG (4) & CGG 5 \\
\hline & COMMON/GG/G, PGR, PGRR, PGRTH , PGRPH & CGG 6 \\
\hline & COMMON/GG/PGTH, PGPH, PGTHTH, PGPHPH, PGTHPH, GSELECT , GTIME & CGG 7 \\
\hline C & COMMON DECK "B9" INSERTED HERE & CB8 2 \\
\hline & INTEGER GMX, GNTBL, GITBL, GFRMTBL, IDSG (10) & CB8 4 \\
\hline & COMMON/B9/GMX, GNTBL (10), GITBL (10), GFRMTBL (10) , GGP (113) & CB8 5 \\
\hline & EQUIVALENCE (GGP, IDSG), (ANG, GGP (11)) & CB8 6 \\
\hline C & COMMON DECK "WW" INSERTED HERE & CWW 2 \\
\hline & PARAMETER (NWARSZ=1000) & CWWI 3 \\
\hline & COMMON/WW/ID (10), MAXW, W (NWARSZ) & CWW1 4 \\
\hline & REAL MAXSTP,MAXERR, INTYP, LLAT, LLON & CWW2 2 \\
\hline & EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)), (TLAT, W (4)), & CWW2 3 \\
\hline & 1 (TLON,W(5)), (OW,W(6)), (FBEG,W(7)), (FEND,W(8)), (FSTEP,W(9)), & CWW2 4 \\
\hline & 2 (AZ1,W(10)), (AZBEG,W(11)), (AZEND,W(12)), (AZSTEP,W(13)), & CWW2 5 \\
\hline & 3 (BETA, W(14)), (ELBEG,W(15)), (ELEND,W(16)), (ELSTEP,W(17)), & CWW2 6 \\
\hline & 8 (RCVRH,W(20)), & CWW2 7 \\
\hline & 4 (ONLY,W(21)), (HOP,W(22)), (MAXSTP,W(23)), (PLAT,W(24)), (PLON,W(25)) & CWW2 8 \\
\hline & 5, (HMAX,W(26)), (RAYFNC,W(29)), (EXTINC,W(33)), & CWW2 9 \\
\hline & 6 (HMIN,W(27)), (RGMAX,W(28)), & CWW2 10 \\
\hline & 8 (INTYP,W(41)), (MAXERR,W(42)), (ERATIO,W(43)), & CWW2 11 \\
\hline & 6 (STEPI,W(44)), (STPMAX,W(45)), (STPMIN,W(46)), (FACTR,W(47)), & CWW2 12 \\
\hline & 7 (SKIP,W(71)), (RAYSET,W(72)),(PRTSRP,W(74)), (HITLET,W(75)) & CWW2 13 \\
\hline & 9 , (BINRAY,W(76)), (PAGLN,W(77)), (PLT,W(81)), (PFACTR,W(82)), & CWW2 14 \\
\hline & 1 (LLAT, W (83)), (LLON,W(84)), (RLAT,W(85)), (RLON,W(86)) & CWW2 15 \\
\hline & 2,(TIC,W(87)),(HB,W(88)), (HT,W(89)), (TICV,W(96)) & CWW2 16 \\
\hline & REAL MMODEL,MFORM,MID & CWW3 2 \\
\hline C & & CWW3 3 \\
\hline C & WIND 100-124 & CWW3 4 \\
\hline & EQUIVALENCE (W (100), UMODEL), (W (101), UFORM), (W (102), UID) & CWW3 5 \\
\hline C & & CWW3 6 \\
\hline C & DELTA WIND 125-149 & CWW3 7 \\
\hline & EQUIVALENCE (W (125), DUMODEL), (W (126), DUFORM), (W (127) , DUID) & CWW3 8 \\
\hline C & & CWW3 9 \\
\hline C & SOUND SPEED 150-174 & CWW3 10 \\
\hline & EQUIVALENCE (W(150), CMODEL), (W (151), CFORM), (W (152), CID) & CWW3 11 \\
\hline & EQUIVALENCE (W(153),REFC) & CWW3 12 \\
\hline C & & CWW3 13 \\
\hline C & DELTA SOUND SPEED 175-199 & CWW3 14 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \multirow[t]{2}{*}{EQUIVALENCE (W (175), DCMODEL), (W (176), DCFORM), (W (177), DCID)} & CWW3 & 15 \\
\hline C & & CWW3 & 16 \\
\hline \multirow[t]{2}{*}{C} & TEMPERATURE 200-224 & CWW3 & 17 \\
\hline & EQUIVALENCE (W (200), TMODEL), (W (201),TFORM), (W (202), TID) & CWW3 & 18 \\
\hline C & & CWW3 & 19 \\
\hline \multirow[t]{2}{*}{C} & DELTA TEMPERATURE 225-249 & CWW3 & 20 \\
\hline & \multirow[t]{2}{*}{EQUIVALENCE (W (225), DTMODEL), (W (226), DTFORM), (W (227), DTID)} & CWW3 & 21 \\
\hline C & & CWW3 & 22 \\
\hline \multirow[t]{2}{*}{C} & MOLECULAR 250-274 & CWW3 & 23 \\
\hline & EQUIVALENCE (W (250), MMODEL), (W (251), MFORM), (W (252), MID) & CWW3 & 24 \\
\hline C & & CWW3 & 25 \\
\hline \multirow[t]{2}{*}{C} & RECEIVER HEIGHT 275-299 & CWW3 & 26 \\
\hline & \multirow[t]{2}{*}{EQUIVALENCE (W (275), RMODEL), (W (276), RFORM), (W (277), RID)} & CWW3 & 27 \\
\hline C & & CWW3 & 28 \\
\hline C & EQUIVALENCE (W(300), GMODEL), (W(301), GFORM) (W(302), GT & CWW3 & 29 \\
\hline C & \& & CWW3 & 30 \\
\hline \multirow[t]{2}{*}{C} & DELTA TOPOGRAPHY 325-349 & CWW3 & 31 \\
\hline & EQUIVALENCE (W (325), GUMODEL), (W (326), GUFORM), (W (327),GUID) & CWW3 & 33 \\
\hline C & & CWW3 & 34 \\
\hline \multirow[t]{2}{*}{C} & UPPER SURFACE TOPOGRAPHY 350-374 & CWW3 & 35 \\
\hline & EQUIVALENCE (W (350), SMODEL), (W (351), SFORM), (W (352), SID) & CWW3 & 36 \\
\hline \multirow[t]{2}{*}{C} & \multirow[t]{2}{*}{PLOT ENHANCEMENTS CONTROL PARAMETERS} & CWW3 & 37 \\
\hline & & CWW3 & 38 \\
\hline \multirow[t]{2}{*}{C} & ABSORPTION (W) \({ }^{\text {a }}\) (490), XFQMDL \(),(\mathrm{W}(491), \mathrm{YFQMDL})\) & CWW3 & 39 \\
\hline & EQUIVALENCE (W (500), AMODEL), (W) & CWW3 & 40 \\
\hline C &  & CWW3 & 41 \\
\hline \multirow[t]{2}{*}{C} & DELTA ABSORPTION 525-549 & CWW3 & 42 \\
\hline & EQUIVALENCE (W) 525\(),\) DAMODEL) , (W (526), DAFORM), (W 527\()\), DAID) & CWW3 & 43 \\
\hline \multirow[t]{2}{*}{C} & (W) & CWW3 & 44 \\
\hline & PRESSURE 550-574 & CWW3 & 45 \\
\hline C & EQUIVALENCE (W (550), PMODEL), (W (551), PFORM), (W (552), PID) & CWW3 & 47 \\
\hline \multirow[t]{2}{*}{C} & & CWW3 & 48 \\
\hline & DELTA PRESSURE 575-599 & CWW3 & 49 \\
\hline & \multirow[t]{2}{*}{EQUIVALENCE (W (575), DPMODEL), (W (576), DPFORM), (W (577), DPID)} & CWW3 & 50 \\
\hline \multirow[t]{3}{*}{C} & & CWW3 & 51 \\
\hline & EQUIVALENCE (LAMO,GGP(12)), (Z0,GGP (62)), (DL0, GGP (112)) & GTANH & 19 \\
\hline & EQUIVALENCE (LM, GGP (13)), (C,GGP(63)), (DL, GGP (113)) & GTANH & 20 \\
\hline \multirow[t]{6}{*}{C} & & GTANH & 21 \\
\hline & DATA RECOGG/3.0/ & GTANH & 22 \\
\hline & DATA ANG/0.0/ & GNHBL & 2 \\
\hline & DATA GMX/2/ & GNHBL & 3 \\
\hline & DATA GNTBL/1,11,162,7*0/ & GNHBL & 4 \\
\hline & DATA GITBL/1,50,8*0/ & GNHBL & 5 \\
\hline C & DATA GFRMTBL/1,2,8*0/ & GNHBL & 6 \\
\hline C & \multirow[b]{2}{*}{ENTRY ITOPOG} & GTANH & 25 \\
\hline & & GTANH & 26 \\
\hline C & \multirow[t]{2}{*}{CALL IPTOPOG} & GTANH & 27 \\
\hline C & & GTANH & 28 \\
\hline C & & GTANH & 29 \\
\hline C & IF HAD PREVIOUS CALL BUT NOTHING THIS TIME, EXIT NOW & GTANH & 30 \\
\hline C & RETAINING PREVIOUS TABULAR DATA COUNT & GTANH & 31 \\
\hline & IF (N.GT. 0 . AND. ANG.EQ.0.0) RETURN & GTANH & 32 \\
\hline C & & GTANH & 33 \\
\hline
\end{tabular}
```

 IF(RECOGG .NE. GMODEL) GTANH 34
 1 CALL RERROR('TOPO ','WRNG MODEL',RECOGG) GTANH 35
 MODG (1)=5HGTANH GTANH 36
 MODG (2)=GID
 N=ANG/3
 IF(ANG.NE. 3*N.OR.N.LE.O)
 1 CALL RERROR('GTANH','BAD NUMBER',ANG+2.0)
 N=N-2
 ANG=0.0
 C
C
C
C
CONVERT 'Z' ARRAY INPUT(OVERLAYS 'C' ARRAY) TO 'C' ARRAY
ZM1=ZO
LAMO=PID2 -IAMO
LMIMI=LAMO
NP1=N+1
DO lO I=I,NPI
Z=C(I)
LMI=PID2-LM(I)
LM(I)=LMI
ALC(I)=ALCOSH((LMI-IAMO) / DL(I))
C(I)=(Z-ZMI)/(IMI-LMIMI)
ZM1=Z
LMIM1=LMI
RETURN
ENTRY TOPOG
C
IF(N.LE.0)
l CALL RERROR('GTANH','BAD N VALUE',FLOAT(N))
SUM = 0.
DO 1 I = 1, N
1 SUM = SUM + DL(I) * (C(I + I) - C(I)) / 2. *(ALCOSH(((TH-LM
l(I)) / DL(I))) - ALC(I))
Z = ZO-SUM + (C(I) + C(N + I)) * (TH-LAMO) / 2.
G=R-EARTHR-Z
PGR=1.0
C
PGTH = C(I)
DO 2 I = 1,N
2 PGTH= PGTH+ (C(I + I) - C(I))/2.* (1. + TANH ((LM(I)-TH)/DL GTANH 77
l (I)))
PGTH=-PGTH
PGTHTH=0.0
DO }3I=1,
PGTHTH=PGTHTH+
1 (C(I+1)-C(I))/2.*(1.0-TANH((IM(I)-TH)/DL(I))**2)/DL(I)
CALL PTOPOG
RETURN
END
GTANH }3
C
C
GTANH }3
GTANH 38
GTANH }3
GTANH }4
GTANH 41
GTANH }4
GTANH }4
GTANH 44
CONVERT 'Z' ARRAY INPUT(OVERLAYS 'C' ARRAY) TO 'C' ARRAY GTANH 45
GTANH }4
GTANH }4
GTANH }4
GTANH }4
NPl=N+1
GTANH 51
GTANH }5
GTANH }5
GTANH }5
GTANH 55
GTANH }5
GTANH }5
GTANH }5
GTANH }5
GTANH }6
GTANH 61
GTANH }6
GTANH }7
GTANH 7l
GTANH }7
GTANH 72
GTANH }7
GTANH }7
GTANH }7
GTANH }7
GTANH }7
GTANH }7
GTANH }8
GTANH 81
GTANH }8
GTANH }8
GTANH }8
GTANH }8
GTANH }8
GTANH }8

```
```

 SUBROUTINE NPTERR NPTERR 8
 C DO-NOTHING TERRAIN PERTURBATION MODEL
NPTERR }
COMMON DECK "GG" INSERTED HERE CGG 2
REAL MODG CGG
COMMON/GG/MODG (4) CGG
COMMON/GG/G,PGR,PGRR, PGRTH,PGRPH CGG C
5
COMMON/GG/PGTH , PGPH, PGTHTH, PGPHPH, PGTHPH,GSELECT,GTIME CGG 7
C COMMON DECK "BIO" TNSERTED HERE NPTERRII
INTEGER DGMX,DGNTBL,DGITBL,DGFRMTB,IDSDG(IO) CB9 4
COMMON/B10/DGMX,DGNTBL(10),DGITBL(10),DGFRMTB(10),DGGP(10) CB9 5
EQUIVALENCE (DGGP,IDSDG) CB9 6
DATA DGMX/I/
DATA DGNTBL/1,11,8*0/
DATA DGITBL/1,9*0/
DATA DGFRMTB/1,9*0/
ENTRY IPTOPOG
MODG (3)=6HNPTERR
ENTRY PTOPOG
END NPTERR21
NPTERR13
NERRBL 2
NERRBL }
NERRBL }
NERRBL 5
NPTERR16
NPTERRI7
NPTERR18
NPTERR19
NPTERR20
SUBROUTINE MUARDC MUARDC 8
C ARDC BACKGROUND ABSORPTION FORMULA
COMMON DECK "WW" INSERTED HERE
PARAMETER (NWARSZ=1000)
COMMON/WW/ID(10),MAXW,W(NWARSZ)
C
REAL MAXSTP,MAXERR,INTYP,LLAT,LLON
CWW1
REAI MAXSTP MAXERR INON CWW1 4
EQUIVALENCE (EARTHR,W(1)),(RAY,W(2)),(XMTRH,W(3)),(TLAT,W(4)), CWW2
l (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)), CWW2}
2 (AZ1,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)), CWW2 5
3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), CWW2 6
8 (RCVRH,W(20)), CWW2
4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))CWW2 8
5,(HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)), CWW2 9
6 (HMIN,W(27)),(RGMAX,W(28)),
8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 11
6 (STEPI,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 12
7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLLET,W(75))
9 (BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 14
l (LLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86))
2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96))
REAL MMODEL,MFORM,MID
CWW3 2
C
CWW3 3

```
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{C} & WIND & 100-124 & CWW3 & \\
\hline & EQUIVALENCE & (W(100), UMODEL), (W (101), UFORM) , (W (102), UID) & CWW3 & \\
\hline C & Detma WIND & & CWW3 & \\
\hline \multirow[t]{2}{*}{C} & DELTA WIND & 125-149 & CWW3 & \\
\hline & \multirow[t]{2}{*}{EQUIVALENCE} & (W (125) , DUMODEL) , (W (126), DUFORM) , (W (127) , DUID) & CWW3 & \\
\hline \multirow[t]{4}{*}{C
C} & & & CWW3 & 9 \\
\hline & \multirow[t]{3}{*}{SOUND SPEED EQUIVALENCE EQUIVALENCE} & 150-174 & CWW3 & 10 \\
\hline & & (W(150), CMODEL) , (W (151), CFORM) , (W (152), CID & CWW3 & 11 \\
\hline & & (W(153), REFC) & CWW3 & 12 \\
\hline C & & & CWW3 & 13 \\
\hline C & \multirow[t]{2}{*}{DELTA SOUND EQUIVALENCE} & SPEED 175-199 & CWW3 & 14 \\
\hline & & (W(175), DCMODEL) , (W (176), DCFORM) , (W (177) , DCID) & CWW3 & 15 \\
\hline C & \multirow[b]{3}{*}{TEMPERATURE EQUIVALENCE} & & CWW3 & 16 \\
\hline C & & 200-224 & CWW3 & 17 \\
\hline & & (W (200), TMODEL), (W (201), TFORM), (W (202), TID) & CWW3 & 18 \\
\hline C & & & CWW3 & 19 \\
\hline \multirow[t]{2}{*}{C} & DELTA TEMPERATURE & 225-249 & CWW3 & 20 \\
\hline & EQUIVALENCE & (W (225), DTMODEL), (W (226), DTFORM) , (W (227), DTID) & CWW3 & 21 \\
\hline \multirow[t]{2}{*}{C} & \multirow[b]{2}{*}{\begin{tabular}{l}
MOLECULAR \\
EQUIVALENCE
\end{tabular}} & 250-274 & CWW3 & 22 \\
\hline & & (W (250) , MMODEL) , (W (251), MFORM), (W(252), M & CWW3 & 23 \\
\hline \multirow[t]{2}{*}{\({ }_{\text {C }}\)} & & (W(250),MMODEL), (W(251),MFORM) ,(W(252),MID) & CWW3 & 24 \\
\hline & \multicolumn{2}{|l|}{RECEIVER HEIGHT 275-299} & CWW3 & 26 \\
\hline & \multirow[t]{2}{*}{QUIVALENCE} & (W(275) , RMODEL) , (W (276), RFORM) , (W (277) , RID) & CWW3 & 27 \\
\hline c & & & CWW3 & 28 \\
\hline \multirow[t]{2}{*}{C} & TOPOGRAPHY & 300-324 & CWW3 & 29 \\
\hline & EQUIVALENCE & (W (300), GMODEL) , (W (301), GFORM) , (W (302), GID) & CWW 3 & 30 \\
\hline c & & & CWW3 & 31 \\
\hline \multirow[t]{2}{*}{C} & DELTA TOPOGRAPHY & APHY 325-349 & CWW3 & 32 \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{EQURALENCE (W (325),GUMODEL), (W (326), GUFORM), (W (327), GUID)}} & CWW3 & 33 \\
\hline C & & & CWW3 & 34 \\
\hline C & EQUIVALENCE & UPPER SURFACE TOPOGRAPHY 350-374 & CWW3 & 35 \\
\hline \multirow[t]{3}{*}{C} & \multicolumn{2}{|l|}{PLOT ENHANCEMENTS CONTROL PARAMETERS} & CWW3 & 36
37 \\
\hline & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{EQUIVALENCE (W (490), XFQMDL), (W (491), YFQMDL)}} & CWW 3 & 38 \\
\hline & & & CWW3 & 39 \\
\hline \multirow[t]{2}{*}{C} & ABSORPTION & 500-524 & CWW3 & 40 \\
\hline & EQUIVALENCE & (W(500), AMODEL), (W (501), AFORM), (W (502), AID) & CWW3 & 41 \\
\hline \multirow[t]{2}{*}{C} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{DELTA ABSORPTION 525-549}} & CWW3 & 42 \\
\hline & & & CWW3 & 43 \\
\hline C & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{EQUIVALENCE (W (525), DAMODEL), (W (526), DAFORM), (W (527), DAID)}} & CWW3 & 44 \\
\hline C & & & CWW3 & 45 \\
\hline \multirow[t]{2}{*}{C} & \multicolumn{2}{|l|}{PRESSURE 550-574} & CWW3 & 46 \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{EQUIVALENCE (W (550), PMODEL), (W (551), PFORM), (W (552), PID)}} & CWW3 & 47 \\
\hline C & & & CWW3 & 48 \\
\hline \multirow[t]{2}{*}{C} & \multicolumn{2}{|l|}{DELTA PRESSURE 575-599} & CWW3 & 49 \\
\hline & EQUIVALENCE & (W (575), DPMODEL), (W(576), DPFORM), (W (577), DPID) & CWW3 & 50 \\
\hline \multirow[t]{2}{*}{C
C} & & & CWW3 & 51 \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{EQUIVALENCE (W (503), BETAV), (W (504), SUTH), (W (505), PRNDTL)}} & MUARD & Cl2 \\
\hline & & & MUARD & C13 \\
\hline C & & & MUARD & Cl4 \\
\hline \multirow[t]{4}{*}{C} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{```
COMMON DECK "RINREAL" INSERTED HERE
LOGICAL SPACE
REAL IPOLAR,LPOLRI,KPHK,KPHKI,KAY2,KAY2I
CHARACTER DISPM*6
```}} & CRINR & EA2 \\
\hline & & & CRINR & EA4 \\
\hline & & & CRINP & EA5 \\
\hline & & & CRINR & A6 \\
\hline
\end{tabular}
```

        COMMON/RINPL/DISPM
    COMMON /RIN/ MODRIN (8),RAYNAME (2,3),TYPE(3),SPACE CRINREA8
    COMMON/RIN/OMEGMIN, OMEGMAX,KAY2,KAY2I,
    l H,HI, PHT, PHTI, PHR , PHRI, PHTH, PHTHI , PHPH, PHPHI
    2, PHOW, PHOWI, PHKR, PHKRI, PHKTH, PHKTI, PHKPH, PHKPI
    3 ,KPHK,KPHKI, POLAR, POLARI,LPOLAR, LPOLRI,SGN
        COMMON DECK "CONST" INSERTED HERE
        COMMON/PCONST/CREF, RGAS , GAMMA
        COMMON/MCONST/PI , PIT2 , PID2 , DEGS , RAD,ALN10
    C COMMON DECK "TT" INSERTED HERE CTT 2
REAL MODT CTT 4
COMMON/TT/MODT (4) , T,PTT,PTR,PTTH,PTPH CTT 5
COMMON DECK "AA" INSERTED HERE
REAL MODA
REAL MU,MUPT,MUPR,MUPTH,MUPPH
REAL KAP,KAPPT,KAPPR,KAPPTH,KAPPPH
COMMON/AA/MODA (4),MU, MUPT,MUPR, MUPTH,MUPPH
COMMON/AA/KAP,KAPPT,KAPPR,KAPPTH,KAPPPH CAA 8
OMMON DECK "MM" INSERTED HERE
REAL M,MODM
COMMON/MM/MODM (4) ,M, PMT , PMR , PMTH, PMPH
COMMON DECK "CBl7" INSERTED HERE
INTEGER VMX,VNTBL,VITBL,VFRMTBL,IDSV(10)
COMMON/B17/VMX,VNTBL(10),VITBL(10),VFRMTBL(10),VGP(53)
EQUIVALENCE (VGP,IDSV),(ANV,VGP(11))
C
DATA VMX/1/
DATA VNTBL/l,11,8*0/
DATA VITBL/l,9*0/
DATA VFRMTBL/1,9*0/
DATA RECOGA/1.0/
C
ENTRY IABSRP
IF(RECOGA .NE. AMODEL)
1 CALL RERROR('ABSRP ','WRNG MODEL',RECOGA)
MODA (1)=6HMUARDC
MODA (2)=AID
C SET ALL VICOSITY/CONDUCTIVITY VALUES TO ZERO
C INITIALLY
CALL CLEAR(MU,10)
CALL IPABSRP
RETURN
C
ENTRY ABSRP
MU=BETAV*T**1.5/(SUTH+T)
KAP=GAMMA*RGAS*MU/((GAMMA-1.0)*M*PRNDTL)
CALL PABSRP
END
CRINREA7
CRINREA8
CRINREA9
CRINRE10
CRINRE1I
CRINRE12
CCONST }
CCONST 4
CCONST 5
CMMON DECK "AA" INSERTED HERE CAA 2
CAA 4
CAA 5
COMMON/AA/MODA (4) MTU CAA 6
MUARDC19
CMM 2
CMM 4
CMM 5
MUARDC21
CBI7 2
CB17 4
CB17 5
CBl7 6
MUARDC23
MRDCBL }
MRDCBL }
MRDCBL }
MRDCBL 5
MUARDC26
MUARDC27
MUARDC28
MUARDC29
MUARDC30
MUARDC31
MUARDC32
MUARDC33
MUARDC34
MUARDC35
MUARDC36
MUARDC37
MUARDC38
MUARDC39
MUARDC40
MUARDC41
MUARDC42
MUARDC43

```
DO-NOTHING ABSORPTION PERTURBATION MODEL
```COMMON DECK "WW" INSERTED HEREPARAMETER (NWARSZ=1000)COMMON/WW/ID (10) ,MAXW, W (NWARSZ)NPABSR 8
```

NPABSR 9
CWWI 3
REAL MAXSTP, MAXERR, INTYP, LLAT, LLON CWW1
EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)), (TLAT,W(4)), CWW2
1 (TLON,W(5)), (OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)), CWW2
(AZ1,W(10)), (AZBEG,W(11)), (AZEND,W(12)), (AZSTEP,W(13)), CWW2
3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), CWW2
CWW2 7
4 (ONLY,W(21)),(HOP,W(22)), (MAXSTP,W(23)),(PLAT,W(24)), (PLON,W(25)) CWW2 8

```5, (HMAX,W(26)),(RAYFNC,W(29)), (EXTINC,W(33)),
```

6 (HMIN,W(27)),(RGMAX,W(28)),

```CWW2 10
```

8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), 11
CWW2
6 (STEPI,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)),
7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75)) 12
, (BINRAY,W(76)), (PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)) $\begin{array}{ll}\text { CWW2 } & 13 \\ \text { CWW2 } & 14\end{array}$
1 (LLAT,W(83)),(LLON ,W(84)), (RLAT,W(85)),(RLON,W(86)) CWW2 15
2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96)) CWW2 16
REAL MMODEL,MFORM,MID
CWW3 2
WIND 100-124
EQUIVALENCE (W(100), UMODEL), (W(101),UFORM), (W(102), UID) CWW3 4
DELTA WIND 125-149 6

```EQUIVALENCE (W (125), DUMODEL), (W(126), DUFORM), (W(127), DUID)
```

CWW
CWW3 8

```EQUIVALENCE (W (150), CMODEL) , (W(151), CFORM), (W(152), CID)CWW3
```

CWW3 10
EQUIVALENCE (W (153), REFC) CWW3 11
CWW3 12

```DELTA SOUND SPEED 175-199
```

CWW3 13
CWW3 14

```EQUIVALENCE (W(175),DCMODEL), (W(176),DCFORM), (W(177),DCID)
```

CWW3 15

```CWW3 16
```

CWW3 17

```EQUIVALENCE (W(200),TMODEL), (W(201),TFORM), (W(202),TID)
```

CWW3 18
CWW3 19

```EQUIVALENCE (W (225), DTMODEL), (W(226), DTFORM), (W(227), DTID)CWW3 20
```

CWW3 21 22
CWW3
CWW3 MOLECULAR 250-274 CWW3 23
EQUIVALENCE (W(250),MMODEL), (W(251), MFORM), (W(252), MID) CWW3 24
RECEIVER HEIGHT 275-299 CWW3 25
EQUIVALENCE (W(275),RMODEL), (W(276),RFORM), (W(277),RID) CWW3 27
TOPOGRAPHY 300-324

```CWW3 29
```

EQUIVALENCE (W(300), GMODEL), (W(301), GFORM), (W(302), GID) CWW3 30

```CWW3CWW3 32
```

EQUIVALENCE (W(325),GUMODEL), (W (326), GUFORM), (W(327), GUID) CWW3 33

```UPPER SURFACE TOPOGRAPHY 350-374CWW3 35EQUIVALENCE (W(350),SMODEL), (W(351),SFORM), (W(352),SID) CWW3 36
```

C PLOT ENHANCEMENTS CONTROL PARAMETERS CWW3 37
C CWW3EQUIVALENCE (W(490), XFQMDL), (W (491), YFQMDL)CWW338
ABSORPTION 500-524 39CWW3EQUIVALENCE (W(500),AMODEL), (W(501),AFORM), (W(502),AID)CWW3 41
CWW3 42
CWW3 43
EQUIVALENCE (W(525), DAMODEL), (W(526), DAFORM), (W(527), DAID) CWW3 44CWW3 45
CWW3 46
EQUIVALENCE (W(550), PMODEL), (W(551), PFORM), (W(552), PID) CWW3 47EQUIVALENCE (W (575), DPMODEL), (W(576), DPFORM) , (W (577), DPID)CWW3 48CWW3 49
CWW3 50
C CWW3 51
CAA 2REAL MODA
CAA 4REAL MU,MUPT,MUPR, MUPTH, MUPPH
CAA 5REAL KAP,KAPPT,KAPPR,KAPPTH, KAPPPH
CAA 6COMMON/AA/MODA (4) ,MU , MUPT, MUPR , MUPTH , MUPPH
COMMON/AA/KAP , KAPPT, KAPPR, KAPPTH , KAPPPH CAA 7
CAA 8
NPABSR12CBl8 2
INTEGER DVMX, DVNTBL, DVITBL, DVFRMTB, IDSDV (10) CBl8 4
COMMON/B18/DVMX,DVNTBL(10),DVITBL (10) ,DVFRMTB (10) ,DVGP (11) CB18 5
EQUIVALENCE (DVGP,IDSDV), (ANDV,DVGP(11)) CBl8 6
DATA DVMX/1/DATA DVNTBL/1,11,8*0/DATA DVITBL/1,9*0/DATA DVFRMTB/1,9*0/
DATA RECOGDA/0.0/C
ENTRY IPABSRP
IF (RECOGDA . NE. DAMODEL)
NPABSR14
NBSRBL 2NBSRBL 3
NBSRBL 4
NBSRBL 5
NPABSR17
NPABSR18
NPABSR19
NPABSR20
1 CALL RERROR('DABSRP ','WRNG MODEL',RECOGDA) NPABSR21
MODA (3) $=6$ HNPABSRMODA (4) =DAIDRETURNNPABSR23
NPABSR24NPABSR25
NPABSR26
ENTRY PABSRPNPABSR27
RETURN NPABSR2 8ENDNPABSR29
SUBROUTINE PEXP PEXP 8
C PEXP 9
SCALE HEIGHT PRESSURE MODELCPEXP 10
COMMON DECK "WW" INSERTED HERE PEXP 11
CWW
PARAMETER (NWARSZ=1000) CWWI 32

EQUIVALENCE (W(500),AMODEL), (W(501), AFORM), (W(502),AID) CWW3 41
DELTA ABSORPTION 525-549 CWW3 43
EQUIVALENCE (W(525), DAMODEL), (W(526), DAFORM), (W(527), DAID) CWW3 44
CWW3 45
PRESSURE 550-574

```EQUIVALENCE (W(550), PMODEL), (W(551), PFORM), (W(552), PID)C DELTA PRESSURE575-599EQUIVALENCE (W(575), DPMODEL), (W(576), DPFORM), (W(577), DPID)C COMMON DECK "RKAM" INSERTED HEREREAL KR, KTH, KPHCOMMON//R, TH , PH , KR , KTH , KPH, RKVARS (14) , TPULSE , CSTEP , DRDT (20)
C COMMON DECK "CONST" INSERTED HERE
    COMMON/PCONST/CREF,RGAS,GAMMA
    COMMON/MCONST/PI,PIT2,PID2,DEGS,RAD,ALN10
C COMMON DECK "PP" INSERTED HERE CPP C 2
    REAL MODP
    CWW3 46
    CWW3 47
    CWW3 48
    CWW3 49
    CWW3 50
    CWW3 5l
    RKAMCOM2
    RKAMCOM4
    RKAMCOM5
    CCONST 2
    CCONST 4
    CCONST 5
    CPP 4
    COMMON/PP/MODP (4),P,PPT,PPR,PPTH,PPPH CPP 5
    COMMON DECK "TT" INSERTED HERE CTT
    REAL MODT CTT
    COMMON/TT/MODT (4), T,PTT,PTR,PTTH, PTPH CTT
    COMMON DECK "MM" INSERTED HERE CMM
    REAL M,MODM CMM
    COMMON/MM/MODM ( 4) ,M, PMT , PMR, PMTH, PMPH CMM
    EQUTVATENCE (W(553), PO) (W 554) HSCATE) PEXP 18
    EQUIVALENCE (W(553),PO),(W(554),HSCALE) PEXP 19
    COMMON DECK "CBI9" INSERTED HERE PEXP 20
```



```
    IN, CB19 4
    COMMON/B19/PRMX,PRNTBL(10),PRITBL(10),PRFRMTB(10),PRGP(11) CB19 5
    EQUIVALENCE (PRGP,IDSPR),(ANP,PRGP(11)) CB19 6
    DATA PRMX/I/
    DATA PRNTBL/1, 8*0/ PMBL 2
    DATA PRTTBL/1,9*0/ PRBL 3
    PPBL 4
    DATA PRFRMTB/1,9*0/
    DATA RECOGP/1.0/
    ENTRY IPRES
    IF(RECOGP . NE . PMODEL)
    l CALL RERROR ('PRESUR ' 'WRNG MODEL' RECOGP)_ PEXP 28
    MODP (1)=4HPEXP PEXP 29
    MODP (2)=PID
    CALL IPPRES
    RETURN
    ENTRY PRES
    Z=R-EARTHR
    EX=-Z/HSCALE
    P=PO*EXP(EX)
    PPT=0.0
    PPR=P*EX/Z
    39
    PPPH=0.0 PEXP 40
    PPTH=0.0 PEXP 41
```



```
C
C TOPOGRAPHY 300-324
    EQUIVALENCE (W(300),GMODEL),(W(301),GFORM),(W(302),GID)
CWW328
```

C N

```EQUIVALENCE (W(300), GMODEL), (W(301), GFORM), (W(302), GID)29
```

30

```DELTA TOPOGRAPHY 325-349CWW3
```

CWW3 32

```DELIA TOPOGRAPHY 325-34931
```

EQUIVALENCE (W(325),GUMODEL), (W(326), GUFORM), (W(327), GUID) CWW3
CWW3 34
UPPER SURFACE TOPOGRAPHY 350-374 CWW3 35
EQUIVALENCE (W (350), SMODEL) , (W (351) ,SFORM) , (W (352), SID) CWW3 36
PLOT ENHANCEMENTS CONTROL PARAMETERS CWW3 37
EQUIVALENCE (W(490),XFQMDL), (W(491), YFQMDL)
CWW3 38
ABSORPIT CWW3 39

```EQUIVALENCE (W(500), AMODEL), (W(501), AFORM), (W(502),AID)CWW340
```

CWW3 41
CWW3 42
DELTA ABSORPTION 525-549 43
EQUIVALENCE (W(525), DAMODEL), (W(526), DAFORM), (W(527), DAID) CWW3 44
CWW3 45
PRESSURE 550-574 CWW3 46
EQUIVALENCE (W(550), PMODEL), (W(551), PFORM), (W(552), PID) CWW3 47
DELTA PRESSURE 575-599

```CWW3 49
```

EQUIVALENCE (W(575), DPMODEL), (W(576), DPFORM), (W(577), DPID) CWW3 50
COMMON DECK "PP" INSERTED HERE 51

```CPP
```

REAL MODP

```CPP 4
```

COMMON/PP/MODP (4) , P, PPT, PPR, PPTH, PPPH CPP 5C COMMON DECK "CB20" INSERTED HEREINTEGER DPMX, DPNTBL, DPITBL, DPFRMTB,IDSDP (10)NPPRES12

```
```CB20 2
```

```COMMON/B20/DPMX, DPNTBL (10), DPITBL (10), DPFRMTB (10), DPGP (11)EQUIVALENCE (DPGP,IDSDP), (ANDP,DPGP(11))
```

DATA DPMX/1/
DATA DPNTBL/l,11,8*0/
DATA DPITBL/1,9*0/
DATA DPFRMTB/l,9*0/
DATA RECOGDP/0.0/
ENTRY IPPRES
IF (RECOGDP . NE. DPMODEL)
CB20 5
CB2 0 ..... 6
NPPRES14
NRESBL 2
NRESBL 3
NRESBL 4
NRESBL 5

```NPPRES 17
```

NPPRES18

```NPPRES19
```

NPPRES20
1 CALL RERROR('DPPRES ','WRNG MODEL',RECOGDP) ..... NPPRRES22
MODP (3) = 6 HNPPRES ..... NPPRES23
MODP (4)=DPID

```RETURN
```

```NPPRES24
```

ENTRY PPRES

```RETURNEND
```

NPPRES26
NPPRES27
NPPRES28
NPPRES29


```
C
 DELTA TOPOGRAPHY 325-349
 N
 EQUIVALENCE (W(325),GUMODEL),(W(326),GUFORM),(W(327),GUID)
CWW332
```

EQUIVALENCE (W(325), GUMODEL), (W(326), GUFORM), (W(327),GUID) ..... CWW3 ..... 33

```\(c\)UPPER SURFACE TOPOGRAPHY 350-374CWW3 35
```

EQUIVALENCE (W (350), SMODEL), (W(351), SFORM), (W(352),SID) ..... CWW3

```35
```

PLOT ENHANCEMENTS CONTROL PARAMETERS CWW3 ..... 37
C

```CWW338
```

EQUIVALENCE (W(490), XFQMDL), (W(491), YFQMDL) ..... CWW3 ..... 39
ABSORPIION (W(500) AMOD ..... CWW3 40
EQUIVALENCE (W(500),AMODEL), (W(501),AFORM), (W(502),AID) CWW3 ..... 41
CWW3 ..... 42
C ..... N ..... 43
EQUIVALENCE (W(525), DAMODEL), (W(526), DAFORM), (W(527), DAID) ..... CWW3 44
PRESSURE 550-574

```CWW3-45EQUIVALENCE (W(550), PMODEL), (W(551), PFORM), (W(552), PID)CWW3CWW3 47
```

CWW3 ..... 48
DELTA PRESSURE ..... 575-599

```CWW3 49
```

EQUIVALENCE (W(575), DPMODEL), (W(576), DPFORM), (W(577), DPID) ..... CWW3 50
CWW3 ..... 51
RKAMCOM2

```RKAMCOM4
```

RKAMCOM5
RHORIZ13
CB10 ..... 2
INTEGER RMX,RNTBL,RITBL,RFRMTBL,IDSR(10) ..... CB10 4
COMMON/B8/RMX,RNTBL(10),RITBL(10),RFRMTBL(10), RGP (10)

```EQUIVALENCE (RGP,IDSR)
 DATA RECORR/1.0/
 DATA RMX/l/
 DATA RNTBL/l,ll,8*0/
 DATA RITBL/1,9*0/
 DATA RFRMTBL/1,9*0/
 ENTRY IRECVR
 IF(RECORR .NE. RMODEL)
 l CALL RERROR('RECEIVR','WRNG MODEL',RECORR)
 MODREC(1)=6HRHORIZ
 RETURN
 ENTRY RECEVER
 F=R-W(1)-W(20)
 PFR=1.0
 CALL CLEAR(PFRR,8)
 END
CBlO 6
RHORIZ15
RHORIZ16
RRIZBL }
RRIZBL 3
RRIZBL 4
RRIZBL 5
RHORIZ19
RHORIZ20
RHORIZ21
RHORIZ22
RHORIZ23
RHORIZ24
RHORIZ25
RHORIZ26
RHORIZ27
RHORIZ28
RHORIZ29
RHORIZ30
RHORIZ31
RHORIZ32
\begin{tabular}{|c|c|c|c|}
\hline C & \begin{tabular}{l}
COMMON DECK "RKAM" INSERTED HERE \\
REAL KR,KTH, KPH \\
COMMON//R, TH, PH, KR, KTH , KPH, RKVARS (14) ,TPULSE, CSTEP, DRDT (20)
\end{tabular} & \[
\begin{aligned}
& \text { RKAM } \\
& \text { RKAM } \\
& \text { RKAM }
\end{aligned}
\] & \\
\hline C & COMMON DECK "WW" INSERTED HERE & CWW & 2 \\
\hline & PARAMETER (NWARSZ=1000) & CWW1 & 3 \\
\hline & COMMON/WW/ID (10), MAXW, W (NWARSZ) & CWW1 & 4 \\
\hline & REAL MAXSTP, MAXERR, INTYP, LLAT, LLON & CWW2 & 2 \\
\hline & EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)), (XMTRH,W(3)), (TLAT,W(4)), & CWW2 & 3 \\
\hline & 1 (TLON,W(5)), (OW,W(6)), (FBEG,W(7)), (FEND,W(8)), (FSTEP,W(9)), & CWW2 & \\
\hline & 2 (AZ1,W(10)), (AZBEG,W(11)), (AZEND,W(12)), (AZSTEP,W(13)), & CWW2 & 5 \\
\hline & 3 (BETA,W(14)),(ELBEG,W(15)), (ELEND,W(16)), (ELSTEP,W(17)), & CWW2 & 6 \\
\hline & 8 (RCVRH, \(W(20))\), & CWW2 & 7 \\
\hline & 4 (ONLY,W(21)), (HOP,W(22)), (MAXSTP,W(23)), (PLAT,W(24)), (PLON,W(25)) & CWW2 & 8 \\
\hline & 5, (HMAX,W(26)), (RAYFNC,W(29)), (EXTINC,W(33)), & CWW2 & 9 \\
\hline & 6 (HMIN,W(27)), (RGMAX,W(28)), & CWW2 & 10 \\
\hline & 8 (INTYP,W(41)), (MAXERR,W(42)), (ERATIO,W(43)), & CWW2 & 11 \\
\hline & 6 (STEPl,W(44)), (STPMAX,W(45)), (STPMIN,W(46)), (FACTR,W(47)), & CWW2 & 12 \\
\hline & 7 (SKIP,W(71)), (RAYSET,W(72)), (PRTSRP,W(74)), (HITLET,W(75)) & CWW2 & 13 \\
\hline & 9 , (BINRAY,W(76)), (PAGLN, W (77)), (PLT, W(81)) , (PFACTR,W(82)), & CWW2 & 14 \\
\hline & 1 (LLAT,W(83)), (LLON,W(84)), (RLAT,W(85)), (RLON,W(86)) & CWW2 & 15 \\
\hline & 2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96)) & CWW2 & 16 \\
\hline C & REAL MMODEL,MFORM, MID & CWW3 & 2 \\
\hline C & WIND 100-124 & CWW3 & 3 \\
\hline & EQUIVALENCE (W(100), UMODEL), (W (101) UFORM) (W (102) UTD) & CWW3 & 4 \\
\hline C & EQUIVALENCE (W (100), UMODEL), (W (101), UFORM), (W (102), UID) & CWW3 & 5 \\
\hline C & DELTA WIND 125 & CWW3 & 6 \\
\hline & EQUIVALENCE (W (125), DUMODEL), (W (126), DUFORM), (W (127) DUID) & CWW3 & 7 \\
\hline C & & CWW3 & 8 \\
\hline C & SOUND SPEED 150-174 & CWW3 & 9 \\
\hline & EQUIVALENCE (W(150), CMODEL), (W (151), CFORM), (W (152), C & CWW3 & 10 \\
\hline & & CWW3 & 11 \\
\hline C & & CWW3 & 12 \\
\hline C & DELTA SOUND SPEED 175-199 & CWW3 & 13 \\
\hline & EQUIVALENCE (W (175), DCMODEL), (W (176), DCFORM) , (W (177), DCID) & CWW3 & 14 \\
\hline C & & CWW3 & 16 \\
\hline C & TEMPERATURE 200-224 & CWW3 & 17 \\
\hline C & EQUIVALENCE (W (200), TMODEL) , (W (201), TFORM), (W (202), TID) & CWW3 & 18 \\
\hline C & DELTA TEMPERATURE 225-249 & CWW3 & 19 \\
\hline & EQUIVALENCE (W) 225), DTMODEL), (W(226), DTFORM) & CWW3 & 20 \\
\hline C & & CWW3 & 21 \\
\hline C & MOLECULAR 250-274 & CWW3 & 22 \\
\hline & EQUIVALENCE (W (250), MMODEL), (W (251), MFORM), (W (252), MID) & CWW3 & 23 \\
\hline C & (W) & CWW3 & 24 \\
\hline C & RECEIVER HEIGHT 275-299 & CWW3 & 25 \\
\hline & EQUIVALENCE (W (275), RMODEL), (W (276), RFORM), (W (277), RID) & CWW3 & 26 \\
\hline C & & CWW3 & 28 \\
\hline C & TOPOGRAPHY 300-324 & CWW3 & 29 \\
\hline & EQUIVALENCE (W (300), GMODEL), (W (301),GFORM), (W (302), GID) & CWW3 & 30 \\
\hline C & & CWW3 & 31 \\
\hline C & DELTA TOPOGRAPHY 325-349 & CWW3 & 32 \\
\hline & EQUIVALENCE (W (325), GUMODEL), (W (326), GUFORM), (W (327), GUID) & CWW3 & 33 \\
\hline C & UPPER SURFACE TOPOGRAPHY & CWW3 & 34 \\
\hline & UPPER SURFACE TOPOGRAPHY 350-374 & CWW3 & 35 \\
\hline
\end{tabular}
EQUIVALENCE (W(350),SMODEL), (W(351),SFORM), (W(352),SID) CWW3 36
PLOT ENHANCEMENTS CONTROL PARAMETERS CWW3 37
```CWW338
```

EQUIVALENCE (W(490), XFQMDL), (W(491), YFQMDL) CWW3

```EQUIVALENCE (W(500),AMODEL), (W(501), AFORM), (W(502),AID)CWW340
```

CWW3 41
CWW3 42
DELTA ABSORPTION 525-549
CWW3 43
EQUIVALENCE (W(525), DAMODEL), (W(526), DAFORM), (W(527), DAID) CWW3 44
PRESSURE 550-574
CWW3 45

```EQUIVALENCE (W(550), PMODEL), (W(551), PFORM), (W(552), PID)
    EQUIVALENCE (W(575),DPMODEL),(W(576),DPFORM),(W(577),DPID) CWW3 50
C COMMON DECK "RR" INSERTED HERE
    REAL MODREC
    COMMON/RR/ MODREC(4)
    COMMON/RR/F,PFR, PFRR, PFRTH, PFRPH
    CWW3 46
    CWW3 47
    CWW3 48
    DELTA PRESSURE 575-599
    CWW3 49
    COMMON/RR/PFTH, PFPH , PFTHTH, PFPHPH , PFTHPH, FSELECT , FTIME
    COMMON DECK "GG" INSERTED HERE
    REAL MODG
    COMMON/GG/MODG (4)
    COMMON/GG/G, PGR, PGRR, PGRTH , PGRPH
    COMMON/GG/PGTH , PGPH, PGTHTH, PGPHPH, PGTHPH, GSELECT , GTIME
    COMMON DECK "B8" INSERTED HERE
    INTEGER RMX,RNTBL,RITBL,RFRMTBL,IDSR(10)
    COMMON/B8/RMX,RNTBL(10),RITBL(10) ,RFRMTBL(10),RGP(10)
    EQUIVALENCE (RGP,IDSR)
    DATA RMX/1/
    DATA RNTBL/1,11,8*0/
    DATA RITBL/1,9*0/
    DATA RFRMTBL/1,9*0/
    DATA RECORR/2.0/
C
C
    IF(RECORR .NE. RMODEL)
    l CALL RERROR('RECEIVR','WRNG MODEL',RECORR)
    MODREC(1)=5HRTERR
    MODREC (2)=RID
    RETURN
C
    ENTRY RECEVER
C GET CURRENT TERRAIN HEIGHT (MUST USE GETI TO AVOID RECURSION
C SINCE WE ARE PROBABLY BEING CALLED BY GET RIGHT NOW)
    F=GETI (G) -W (20)
    CALL RMOVE (PFR,PGR,9)
    END
```

```
SUBROUTINE RVERT
```

SUBROUTINE RVERT

COMMON DECK "RKAM" INSERTED HERE
REAL KR, KTH, KPHCOMMON//R,TH, PH, KR, KTH, KPH, RKVARS (14) ,TPULSE, CSTEP, DRDT (20)
COMMON DECK "RR" INSERTED HERE
REAL MODREC
COMMON/RR/ MODREC(4)
RVERT 8

A SPECIFIED ORIGIN.
A SPECIFIED ORIGIN.
COMMON/RR/F, PFR, PFRR, PFRTH, PFRPH4
COMMON/RR/PFTH, PFPH, PFTHTH, PFPHPH, PFTHPH, FSELECT, FTIME 6
COMMON DECK "B8" INSERTED HERE 7
INTEGER RMX,RNTBL,RITBL,RFRMTBL,IDSR(10)CB10 4
COMMON/B8/RMX,RNTBL(10),RITBL(10), RFRMTBL (10), RGP(10)EQUIVALENCE (RGP,IDSR)
COMMON DECK "GAMANG" INSERTED HERE
, COSPHD, SINTH, COSTHCOMMON/SPHGAM/GAMFUN, PGMTH, PGMPH, PGMTHTH, PGMPHPH, PGMTHPH
COMMON DECK "WW" INSERTED HERE
1000)COMMON/WW/ID(10), MAXW,W(NWARSZ)2
REAL MAXSTP, MAXERR, INTYP, LIAT, LLON 4
EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)),(XMTRH,W(3)),(TLAT,W(4)) 2
1 (TLON,W(5)), (OW,W(6)), (FBEG,W(7)), (FEND,W(8)),(FSTEP,W(9)). 4(AZ1,W(10)), (AZBEG,W(11)), (AZEND,W(12)),(AZSTEP,W(13)),
3 (BETA,W(14)),(ELBEG,W(15)), (ELEND,W(16)), (ELSTEP,W(17)), 5
8 (RCVRH,W(20)),
4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25)) CWW2 75, (HMAX,W(26)), (RAYFNC,W(29)), (EXTINC,W(33)),
6 (HMIN,W(27)), (RGMAX,W(28))
10
8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), 1 12
(SKIP W(71)) (RAYSET W(72)),(
(SKIP W(71)) (RAYSET W(72)),(7 (SKIP,W(71)), (RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75))
3
3
, (BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)) 4
1 (LLAT,W(83)),(LLON,W(84)), (RLAT,W(85)), (RLON,W(86)) 15
2, (TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96)) 16
REAL MMODEL,MFORM,MID
100-124 WINDEQUIVALENCE (W(100), UMODEL), (W(101), UFORM), (W(I02), UID)
5DELTA WIND 125-149
CWW3 7EQUIVALENCE (W(125), DUMODEL), (W(126), DUFORM), (W(127), DUID)
SOUND SPEED 150-174 CWW3 9
EQUIVALENCE (W(150),CMODEL), (W(151), CFORM),(W(152),CID) CWW 10
EQUIVALENCE (W(153), REFC)CWW3 12
DELTA SOUND SPEED 175-199 CWW3 13
EQUIVALENCE ($\mathrm{W}(175$), DCMODEL), ($\mathrm{W}(176), \mathrm{DCFORM}),(\mathrm{W}(177), \mathrm{DCID})$ CWW3 14
CWW3 15

```
C
    TEMPERATURE 200-224
                            EQUIVALENCE (W(200),TMODEL),(W(201),TFORM),(W(202),TID)
                            DELTA TEMPERATURE 225-249
                            EQUIVALENCE (W(225),DTMODEL),(W(226),DTFORM),(W(227),DTID)
    EQUIVALENCE (W(250),MMODEL),(W(251),MFORM),(W(252),MID)
    RECEIVER HEIGHT 275-299
    EQUIVALENCE (W(275),RMODEL),(W(276),RFORM),(W(277),RID)
    TOPOGRAPHY 300-324
        EQUIVALENCE (W(300),GMODEL),(W(301),GFORM),(W(302),GID)
        DELTA TOPOGRAPHY 325-349
        EQUIVALENCE (W(325),GUMODEL),(W(326),GUFORM),(W(327),GUID)
        UPPER SURFACE TOPOGRAPHY 350-374
        EQUIVALENCE (W(350),SMODEL),(W(351),SFORM),(W(352),SID)
        PLOT ENHANCEMENTS CONTROL PARAMETERS
    EQUIVALENCE (W(490),XFQMDL),(W(491),YFQMDL)
    ABSORPTION 500-524
    EQUIVALENCE (W(500),AMODEL),(W(501),AFORM),(W(502),AID)
    DELTA ABSORPTION 525-549
    EQUIVALENCE (W(525),DAMODEL),(W(526),DAFORM),(W(527),DAID)
    PRESSURE 550-574
    EQUIVALENCE (W(550),PMODEL),(W(551),PFORM),(W(552),PID)
    DELTA PRESSURE 575-599
    EQUIVALENCE (W(575),DPMODEL),(W(576),DPFORM),(W(577),DPID)
    EQUIVALENCE (RVALPHO,W(278)) ,(RVLAMZ,W(279)), (RVPHO,W(280))
    DATA RMX/l/
    DATA RNTBL/l,11,8*0/
    DATA RITBL/1,9*0/
    DATA RFRMTBL/1,9*0/
    DATA RECORR/I.O/
        3.0
    ENTRY IRECVR
    IF(RECORR .NE. RMODEL)
    1 CALL RERROR(7HRECEIVR ,IOHWRNG MODEL ,RECORR)
    MODREC(1)=7HRVERT
    MODREC(2)=RID
    SINLMZ=SIN(RVILAMZ)
    COSLMZ=COS (RVLAMZ)
    COSALP=COS (RVALPHO)
```

 CWW3
 CWW3 18
 CWW 3
 CWW3 20
 CWW3 21

```C
RETURN

RVERT 35ENTRY RECEVER

RVERT 36
RVERT 37
RVERT 38
RVERT 39
RVERT 40
RVERT 41
RVERT 42
RVERT 43
RVERT 44
RVERT 45
RVERT 46
RVERT 47
RVERT 48
RVERT 49
RVERT 50

SUBROUTINE SMPANN SMPANN 9
ANNOTATION MODEL FOR MINIMUM GRAPHICS SUPPORT SMPANN10
CHARACTER* (*)
SMPANN12
SMPANN13
INITIALIZES PLOT IN DRAFT MODE(DOES NOT REQUIRE DISSPLA) SMPANN14
COMMON DECK "WWR" TNSERTED HERE SMPANN15
PARAMETER (NWARSZ=1000)
COMMON/WW/ID (10) MAYW W (NWARSZ)
REAI MAXSTP MAXERR MNTYP CWW1 4
EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)),(XMTRH,W(3)),(TLAT,W(4)), CWW2 2
1 (TLON,W(5)), (OW,W(6)), (FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)), CWW2 4
2 (AZ1,W(10)),(AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)), CWW2 5
3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), CWW2 6
```

8 (RCVRH,W(20)),
CWW2 7

```

4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))CWW2 8
5, (HMAX,W(26)),(RAYFNC,W(29)),(EXTINC,W(33)), CWW2 9
6 (HMIN,W(27)),(RGMAX,W(28)), CWW2 10
8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 11
6 (STEPI,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 12
7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75)) CWW2 13
9 , (BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 14
1 (LLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86)) CWW2 15
2,(TIC,W(87)),(HB,W(88)),(HT,W(89)),(TICV,W(96)) CWW2 16
\(\begin{array}{ll}\text { COMMON DECK "ANNOT" INSERTED HERE } & \text { ANNOT } 2 \\ \text { CHARACTER*IO ANOTES, HNOTES }\end{array}\)
CHARACTER* IO ANOTES,HNOTES \(\quad\) ANNOT 4
COMMON/ANNCTL/LENA (4) , LENHA (3) ANNOT 5
COMMON/ANNCTC/ANOTES \((2,4), \operatorname{HNOTES}(4,3) \quad\) ANNOT 6
DATA LENA,ANOTES
SMPANN18
\(1 / 2 * 1,2 * 2,{ }^{\prime} \mathrm{DEPTH}(\mathrm{M})^{\prime}, ' \quad\) ', 'DEPTH (KM)',' ', SANNBL 3
2 'HEIGHT (M)',' ', HEIGHT (KM',')'/ SANNBL 4
SANNBL 5
```

 DATA LENHA,HNOTES SANNBL 6
 l /3,2,3, 'RANGE AT S','EA LEVEL (','KM)',' ' SANNBL 7
 2 ,'RANGE (DEG',')',2*' ' SANNBL 8
 3 ,'CROSS RANG','E AT SEA L','EVEL (KM)',' '/
 ENTRY SETANN
 RETURN
 ENTRY ANNFIL(S,C)
 CALI SFILTR(S,C,'#!')
 END
 SANNBL 9
SMPANN21
SMPANN22
SMPANN23
SMPANN24
SMPANN25
SMPANN26
SMPANN27
SMPANN28

```
SUBROUTINE FULANN

FULANN 9
```

C ANNOTATION MODEL SUITED FOR PUBLICATION QUALITY LETTERING
FULANN10
FULANN11
CHARACTER* (*) S,C
C
INITIALIZES PLOT IN PUBLICATION-QUALITY MODE (REQUIRES DISSPLA)
COMMON DECK "WWR" INSERTED HERE
FULANN12
FULANN13
FULANN14
FULANN15
PARAMETER (NWARSZ 1000)
CWWI 3
COMMON/WW/ID(10),MAXW,W(NWARSZ) CWWI
REAL MAXSTP, MAXERR, INTYP, LLAT,LLON CWW2
EQUIVALENCE (EARTHR,W(1)), (RAY,W(2)),(XMTRH,W(3)),(TLAT,W(4)), CWW2 3
1 (TLON,W(5)),(OW,W(6)),(FBEG,W(7)),(FEND,W(8)),(FSTEP,W(9)), CWW2 4
2 (AZ1,W(10)), (AZBEG,W(11)),(AZEND,W(12)),(AZSTEP,W(13)), CWW2 5
3 (BETA,W(14)),(ELBEG,W(15)),(ELEND,W(16)),(ELSTEP,W(17)), CWW2 6
8 (RCVRH, W(20)), CWW2 7
4 (ONLY,W(21)),(HOP,W(22)),(MAXSTP,W(23)),(PLAT,W(24)),(PLON,W(25))CWW2 8
5, (HMAX,W(26)), (RAYFNC,W(29)),(EXTINC,W(33)), CWW2 9
6 (HMIN,W(27)), (RGMAX,W(28)), CWW2 10
8 (INTYP,W(41)),(MAXERR,W(42)),(ERATIO,W(43)), CWW2 11
6 (STEPI,W(44)),(STPMAX,W(45)),(STPMIN,W(46)),(FACTR,W(47)), CWW2 12
7 (SKIP,W(71)),(RAYSET,W(72)),(PRTSRP,W(74)),(HITLET,W(75)) CWW2 13
9 , (BINRAY,W(76)),(PAGLN,W(77)),(PLT,W(81)),(PFACTR,W(82)), CWW2 14
1 (LLAT,W(83)),(LLON,W(84)),(RLAT,W(85)),(RLON,W(86)) CWW2 15
$2,(T I C, W(87)),(H B, W(88)),(H T, W(89)),(T I C V, W(96)) \quad$ CWW2 16
C COMMON DECK "ANNOT" INSERTED HERE ANNOT 2
CHARACTER* 10 ANOTES, HNOTES ANNOT
COMMON/ANNCTL/LENA (4) , LENHA (3)
COMMON/ANNCTC/ANOTES $(2,4), \operatorname{HNOTES}(4,3)$
C
DATA LENA, ANOTES
$1 / 4$ * $^{\prime}$, 'DEPTH (\#M!', ')','DEPTH (\#KM', '!)',
2'HEIGHT (\#M', '!)','HEIGHT (\#K', 'M!)'/
DATA LENHA, HNOTES
$1 / 3,2,4$, 'RANGE AT $S^{\prime}, ' E A \operatorname{LEVEL}(1, \quad \# K M!) ', '$,
,'RANGE (\#DE','G!)',2*'
,'CROSS RANG','E AT SEA L','EVEL (\#KM!',')'/
ENTRY SETANN
ANNOT 5
ANNOT 6
FULANN18
FANNBL 2
FANNBL 3
FANNBL 4
FANNBL 5
FANNBL 6
FANNBL 7
FANNBL 8
FULANN21

```

\section*{ENTRY ANNFIL(S, C) \\ \(C=S\)}

FULANN28

END FULANN29 FULANN30 FULANN31 FULANN32 FULANN33
```

 DDSPLA -- Programs for reading Graphics Output File
 (Tape File 6)
 PROGRAM DDSPLA(TAPE5,INPUT,OUTPUT,TAPE9) DDSPLA 3
 COMMON/DD/IN,IOR,IT,IS,IC,ICC,IX,IY DDSPLA 4
 COMMON/SUPNEG/IDEL,NMBS
 C
PARAMETER (LIMPTS=700)
REAL XV (LIMPTS),YV(LIMPTS)
INTEGER A(4),C(4),E(4)
LOGICAL COMPCL
CHARACTER LINE*72,TEXT*80,S*10
EQUIVALENCE (IX,XXX),(IY,YYY)
DATA COMPCL/.TRUE./
DATA KNT/O/
C
10 READ(5,END=100,ERR=100) IT,IX,IY
C IF(IT.GT.29) PRINT *,IT,IX,IY,XXX,YYY
IF(IT.GT.20) THEN
IF (COMPCL) THEN
WRITE (IINE,'(A, 3(I4,1X), 2GI3.6)')
'NO CALL TO ''COMPRS'' BEFORE---',IT,IX,IY,XXX,YYY
CALI SYSTEM(52,LINE)
ENDIF
ENDIF
IF(IT.IT.-2 .OR. IT.GT.38) STOP 'CODE>38'
KNT=KNT+1
IF(IT.EQ.-1) THEN
CALL DDEND
ELSEIF(IT.EQ.-2) THEN
CALL DDFR
ELSEIF(IT.EQ.O) THEN
READ (5) N,M, (TEXT (I:I),I=1,M)
CALL DDINIT(N,TEXT)
ELSEIF(IT.EQ.1) THEN
CALL DDBP
ELSEIF(IT.EQ.2) THEN
CALL DDVC
ELSEIF(IT.EQ.IO) THEN
CALL SCMPLX
ELSEIF(IT.EQ.11) THEN
CALL MXIALF(IX,IY)
ELSEIF(IT.EQ.12) THEN
CALL MX2ALF(IX,IY)
ELSEIF(IT.EQ.13) THEN
IF(XXX.LE.0.0) THEN
PRINT *,'HEIGHT OF ZERO!!'
XXX=. 15
ENDIF
CALL HEIGHT (XXX) DDSPLA50
ELSEIF(IT.EQ.20) THEN
COMPCL=.FALSE.
COMPCL=.FALSE. . D DDSPLA53
ELSEIF(IT.EQ.2I) THEN
CALL GRACE (IX,IY)
CALL GRACE(IX,IY)
DDSPLA 5
1
REWIND 5
DDSPLA }
DDSPLA }
DDSPLA 8
DDSPLA }
DDSPLAlO
DDSPLAll
DDSPLAl2
DDSPLA13
DDSPLAl4
DDSPLA15
DDSPLA16
DDSPLA17
DDSPLA18
DDSPLA19
DDSPLA20
DDSPLA21
DDSPLA22
DDSPLA23
DDSPLA24
DDSPLA25
DDSPLA26
DDSPLA27
DDSPLA28
DDSPLA29
DDSPLA30
DDSPLA31
DDSPLA32
DDSPLA33
DDSPLA34
DDSPLA35
DDSPLA36
DDSPLA37
DDSPLA38
DDSPLA39
DDSPLA40
DDSPLA41
DDSPLA42
DDSPLA43
CALL MX2ALF(IX,IY)
DDSPLA45
DDSPLA46
DDSPLA44
DDSPLA48
C

```
```ELSEIF (IT.EQ.-2) THENCALL DDFRELSEIF (IT.EQ.O) THENDDSPLA29
ELSEIF(IT.EQ.10) THEN
ELSETF(TT FQ 1) THEN DDSPLA40
DDSPLA49
ODSPLA50
DDSPLA51
 COMPCL=.FALSE. DDSPLA52
DDSPIA54
DDSPLA55
DDSPLA56
DDSPLA57
```

```
 CALI PHYSOR(IX,IY) DDSPLA58
 ELSEIF(IT.EQ.23) THEN DDSPLA59
 CALL PAGE (IX,IY) DDSPLA60
 ELSEIF(IT.EQ.24) THEN DDSPLA61
 CALL SCLPIC(IX)
 ELSEIF(IT.EQ.25) THEN
 IF(IX.NE.O .OR. IY.NE.O) STOP 'ERROR 1'
 READ(5) A,B,C,D,E,F,XAXIS,YAXIS
 CALL XREVTK
 CALL YREVTK
 CALL INTAXS
 CALL TITLE(A,B,C,D,E,F,XAXIS,YAXIS)
 ELSEIF(IT.EQ.26) THEN
 CALL FRAME
 ELSEIF(IT.EQ.27) THEN
 READ(5) W,X,Y,Z
 CALL GRAFB(IX,IY,W,X,Y,Z,XAXIS,YAXIS)
 ELSEIF(IT.EQ.28) THEN
 CALL MARKER(IX)
 ELSEIF(IT.EQ.29) THEN
 IF(IX.GT.LIMPTS) CALL SYSTEM(52,'N>LIMPTS')
 READ (5) (XV (I),I=1,IX), (YV (I),I=1,IX)
 CALL CURVE(XV,YV,IX,IY)
 ELSEIF(IT.EQ.30) THEN
 CALL ENDPL(IX)
 ELSEIF(IT.EQ.3I) THEN
 CALL DONEPL
 ELSEIF(IT.EQ.32) THEN
 CALL XTICKS (IX)
 ELSEIF(IT.EQ.33) THEN
 CALL YTICKS(IX)
 ELSEIF(IT.EQ.34) THEN
 CALL MYJACT(IX)
 ELSEIF(IT.EQ.35) THEN
 CALL MYJACT('NUMBERS')
 IDEL=IX
 NMBS=IY
 ELSEIF(IT.EQ.36) THEN
 CALL NOBRDR
 ELSEIF(IT.EQ.37) THEN
 CALL DASH
 ELSEIF(IT.EQ.38) THEN
 READ(5) S
 CALL RESET(S) DDSPLI00
 ENDIF
 ENDIF
C
 IF(IT.NE.3) GO TO 10
 READ (5) IOR,N,M,(TEXT(I:I),I=1,M)
 CALL DDTEXT(N,TEXT)
 PRINT 20,(TEXT(I),I=1,N)
 FORMAT (8A10)
 GO TO 10
C
 PRINT *,'NUMBER OF VECTORS=',KNT,IT
100
DDSPLIl2
```

```
 STOP
 DDSPL113
 END
 DDSPL114
```

SUBROUTINE MYJSUB(IPAR,ITY,IMYJ) DDSPLI15
COMMON/SUPNEG/IDEL, NMBS ..... DDSPLI16
DATA IDEL,NMBS/0,100000/

```DDSPLI17
```

c

```C WE ARE INTERESTED ONLY IN NUMERICAL VALUES CAUSED BYC A CALL MYJACT ('NUMBERS') (IMYJ=5)DDSPLIl8IF (ITY.GE. O .OR. IMYJ.NE.5) RETURNDDSPL121
IF (IDEL.GT.0) IDEL=IDEL-1
IF (IDEL.LE. O.AND.NMBS.GT.0) THEN DDSPL123

\section*{NMBS \(=\) NMBS -1}
```

$I P A R=I A B S$ (IPAR) DDSPL124 DDSPL125 DDSPL126

```
```ENDIFDDSPL127
```

```ENDPLl28DDSPL130
SUBROUTINE DDINIT (N,TEXT)
```DDSPLI31
```

COMMON/PLOTCN/NPLOT, INABLE , FX, FY, OFFX, OFFY ..... DDSPL132
DATA OFFX,OFFY/0.0,0.0/

```CPLOT 2
```

DDSPL134

```DATA NPLOT,INABLE,PLOTSZ,XAXIS,YAXIS/0,0,7.5,11.,8.5/
```

DDSPLI35

```DDSPLI36
```

C NO RE-INITIALIZATIONS BEFORE ENDPL'S

```DDSPL137
```

IF (INABLE.GT.O) RETURN
DDSPL138
IF (NPLOT.GT.O) GO TO 10

```DDSPL139
```

DDSPL140
CALL COMPRS

```DDSPL141
```

FY=PLOTSZ/1024. ..... DDSPL142
$F X=F Y$ ..... DDSPL143
DDSPL144
NPLOT=NPLOT+1
DDSPL145
INABLE=1

```DDSPLI46
```

CALL NOBRDR

```DDSPL147
```

CALL PAGE (XAXIS, YAXIS) ..... DDSPL148
CALL PHYSOR (0.0,0.0) ..... DDSPL149
CALL AREA2D (XAXIS,YAXIS) ..... DDSPL150
CALL GRACE (0.0) ..... DDSPL151
RETURN

```DDSPL152
```

END ..... DDSPL153

```DDSPL154
```

SUBROUTINE DDBP DDSPL155
COMMON/PLOTCN/NPLOT, INABLE , FX, FY, OFFX, OFFY ..... CPLOT
COMMON/DD/IN,IOR,IT,IS,IC,ICC,IX,IY ..... CDDCOM 2 DDSPL158
"DDPLOT" DOES NOT REQUIRE RE-INITIALIZATION AFTER EACH FRAME BUT "DISPIA" DOES SO WE USE MHE ..... DDSPL159
WHERE WE ARE. DDSPL160
IF (INABLE.EQ.0) CALL DDINIT ( $-1,0$ )
DDSPL161
CALL STRTPT (OFFX+IX*FX,OFFY+IY*FY)DDSPLI62DDSPL163DDSPLI 64
ENDDDSPL165
SUBROUTINE DDVC DDSPL166
COMMON/PLOTCN/NPLOT, INABLE , FX, FY, OFFX, OFFYCOMMON/DD/IN,IOR,IT,IS,IC,ICC,IX,IY
CPLOT 2
CDDCOM 2
DDSPL169
DODBP FOR THE REASON FOR THIS TEST.IF (INABLE.EQ.0) CALL DDINIT (-1,0)DDSPL170
DDSPLI71CALL CONNPT (OFFX+IX*FX,OFFY+IY*FY)
RETURNENDDDSPLI73DDSPLI74
SUBROUTINE DDEND
COMMON/PLOTCN/NPLOT, INABLE , FX, FY, OFFX, OFFY
DDSPLI75
CHECK SYNCH, DDFR SHOULD HAVE BEEN CALLED BY NOW CPLOT ..... DDSPL177 IF (INABLE.GT.O) CALL ENDPL(0)
CALL DONEPL
INABLE=0
DDSPL178
DDSPL179 ..... DDSPL180 ..... DDSPL181
END ..... DDSPL183 ..... DDSPL184

SUBROUTINE DDTEXT (N,TEXT)

SUBROUTINE DDTEXT (N,TEXT)  DDSPL185  DDSPL185

COMMON/DD/IN,IOR,IT,IS,IC,ICC,IX,IY

COMMON/DD/IN,IOR,IT,IS,IC,ICC,IX,IY .....  ..... CPLOT 2 .....  ..... CPLOT 2

IF (INABLE.EQ.0) CALL DDINIT ( $-1,0$ )

IF (INABLE.EQ.0) CALL DDINIT ( $-1,0$ ) .....  ..... DDSPL188 .....  ..... DDSPL188

IF (IOR.EQ.0) CALL ANGLE (0.0)

IF (IOR.EQ.0) CALL ANGLE (0.0) .....  ..... DDSPLI89 .....  ..... DDSPLI89

DDSPL190

DDSPL190

CALL MESSAG (TEXT,N*10,OFFX+IX*FX,OFFY+IY*FY)

CALL MESSAG (TEXT,N*10,OFFX+IX*FX,OFFY+IY*FY) .....  ..... DDSPL191 .....  ..... DDSPL191
C
C
DDSPL192
DDSPL192

```RETURN
```

DDSPL193
DDSP END ..... DDSPL194
SUBROUTINE DDTAB ..... DDSPL195
RETURN ..... DDSPL196
END ..... DDSPL197
SUBROUTINE DDFR
COMMON/PLOTCN/NPLOT, INABLE , FX, FY, OFFX, OFFY
DDSPL198
IF(INABLE.GT.O) CALL ENDPL(O) CPLOT ..... 2
RETURN ..... DDSPL200
END ..... DDSPL202 ..... DDSPL203
C SETS RASTOR RANGE TO: -IXF TO 1023-IXF ..... DDSPL204
C AND -IYF TO 1023-IYF. COMMON/PLOTCN/NPLOT, INABLE , FX, FY, OFFX, OFFY OFFX=IXF*FX ..... DSPI206
OFFY=IYF*FY ..... DDSPL208 ..... DDSPL209 ..... DDSPL210
SUBROUTINE GRAFB(XORIG, XSTP, XMAX,YORIG, YSTP, YMAX,XAXIS, YAXIS)DDSPL2 11
CALL GRAF (XORIG, XSTP, XMAX, YORIG, YSTP, YMAX) ..... DDSPL212
CALL XNONUM ..... DDSPL213
CALL YNONUM ..... DDSPL214
CALL XGRAXS (XORIG,XSTP,XMAX,XAXIS,' 1,-1,0.0,YAXIS) ..... DDSPL215
XR=XMAX-XORIG
XAX=AINT (XR/XSTP) *XSTP* (XAXIS/XR)
DDSPL216
PRINT *,XORIG,XMAX,XSTP,XAXIS,XAXCALL YGRAXS (YORIG,YSTP,YMAX,YAXIS,' 1,-1,XAX, 0.0)CALI RESET ('XNONUM')
CALL RESET ('YNONUM')DDSPL217SUBROUTINE TITLEW (A, B, C, D, E, F, G, H)DDSPL224
C DUMMY ROUTINE ALLOWING SUBSTITUTION OF ALTERNATE TITLE PROGRAMS DDSPL225CALL TITLE (A, B, C, D, E, F, G, H)DDSPL226
ENDDDSPL2 27
DDALT -- Skeleton routines for reading Graphics Output File (Tape File 7)
PROGRAM DDALT (TAPE5,OUTPUT) ..... DDALT
COMMON/DD/IN,IOR,IT,IS,IC,ICC,IX,IY ..... DDALT
COMMON/SUPNEG/IDEL, NMBS ..... DDALT
PARAMETER (LIMPTS=700) ..... DDALT
REAL XV (LIMPTS), YV (LIMPTS) ..... DDALT
INTEGER A(4),C(4),E(4) ..... DDALT
LOGICAL COMPCL
CHARACTER LINE*72,TEXT*80 ..... DDALTDDALT
EQUIVALENCE (IX,XXX), (IY,YYY) ..... DDALT
DATA COMPCL/.TRUE./ ..... DDALTDATA KNT/O/C
DDALT
REWIND 5
10 READ (5, END=100, ERR=100) IT,IX,IY ..... DDALT
DDALTIF (IT.LT.-2. OR. IT.GT.24) STOP 'PLOTTING CODE>24'$\mathrm{KNT}=\mathrm{KNT}+1$IF (IT.EQ.-1) THENDDALT
CALL DDEND
DDALT
ELSEIF(IT.EQ.-2) THEN ..... DDALT
CALL DDFR DDALT
ELSEIF (IT.EQ.0) THENDDALT
$\operatorname{READ}(5) \mathrm{N}, \mathrm{M},(\operatorname{TEXT}(\mathrm{I}: I), \mathrm{I}=1, \mathrm{M})$ ..... DDALT
CALL DDINIT(N,TEXT) ..... DDALT
ELSEIF(IT.EQ.1) THEN ..... DDALT
DDALTCALL DDBP
DDALT
ELSEIF(IT.EQ.2) THEN
DDALT
DDALT
CALL DDVC ..... DDALT
ELSEIF(IT.EQ.3) THEN ..... DDALT
READ (5) IOR,N,M, (TEXT (I:I), I=1,M)
DDALT
DDALT
PRINT *,N,M,' 1,TEXT(:M) ..... DDALT
CALL DDTEXT (N,TEXT) ..... DDALT
ENDIF
DDALTGO TO 10
C10
100 PRINT *,'NUMBER OF VECTORS=',KNT,IT
STOP ..... DDALT
END ..... DDALT
SUBROUTINE DDINIT(N,ID) ..... DDALT
C INSERT YOUR OWN ROUTINE TO INITIALIZE PLOTTING PROCESS ..... DDALT
CGETTING THE PLOT, PHONE NUMBER, ETC. ..... DDALT
CN IS THE NUMBER OF CHARACTERS IN THE STRING "ID" ..... DDALT ..... DDALT
END ..... DDALT
SUBROUTINE DDBP ..... DDALT
COMMON/DD/IN, IOR,IT,IS,IC,ICC,IX,IY ..... DDALT
C INSERT YOUR OWN ROUTINE TO DEFINE A VECTOR ORIGIN AT IX,IY ..... DDALT
RETURN ..... DDALT
END ..... DDALT
SUBROUTINE DDVC DDALT
COMMON/DD/IN,IOR,IT,IS,IC,ICC,IX,IY ..... DDALT
CINSERT YOUR OWN ROUTINE TO PLOT A STRAIGHT LINE WITH INTENSITY ..... DDALT C"IN" FROM THE ORIGIN TO THE END POSITION IX,IY. A SINGLE CALL ..... DDALT CPLOTS CONNECTED VECTORS. ..... DDALT
RETURN ..... DDALT
SUBROUTINE DDEND
DDALT
DDALT
C CHECK SYNCH, DDFR SHOULD HAVE BEEN CALLED BY NOW ..... DDALT
CINSERT YOUR OWN ROUTINE TO EMPTY THE PLOT BUFFER AND RELEASE ..... DDALT
CTHE PLOTTING COMMAND FILE TO YOUR PLOTTING DEVICE. ..... DDALT
RETURN ..... DDALT
END ..... DDALT
SUBROUTINE DDTEXT (N,NT) DDALT
COMMON/DD/IN, IOR,IT,IS,IC,ICC, IX, IY ..... DDALT
CINSERT YOUR OWN ROUTINE TO PLOT A GIVEN ARRAY IN A TABULAR MODE ..... DDALT
CAFTER INITIALIZING TABULAR PLOTTING WITH DDTAB. NT IS AN ARRAY OF ..... DDALT
CLENGTH N, CONTAINING "TEXT" FOR TABULAR PLOTTING. SEE APPENDIX C. ..... DDALT
RETURN ..... DDALT
END ..... DDALT
SUBROUTINE DDTAB ..... DDALT
COMMON/DD/IN,IOR,IT,IS,IC,ICC,IX,IY ..... DDALT
CINSERT YOUR OWN ROUTINE TO INITIALIZE TABULAR TEXT PLOTTING ..... DDALT
C SPECIFY IOR,IS,IX,IY. TEXT WILL BEGIN AT IX,IY. ..... DDALT
RETURN ..... DDALT
END ..... DDALT
SUBROUTINE DDFR
CINSERT YOUR OWN ROUTINE TO ADVANCE ONE PLOTTING FRAME, WHEN ..... DDALTCPLOTTING IS COMPLETED.RETURNDDALT
END ..... DDALT

## APPENDIX E. ERRATA FOR NOAA TECH. MEMO. ERL-WPL 103

```
A versatile three-dimensional Hamiltonian ray-tracing computer program foracoustic waves in the atmosphere.
by R. M. Jones, J. P. Riley, and T. M. Georges
NOAA Tech. Memo. ERL WPL-103
On page 9 , the term \(k_{\phi} r\) sin \(d \phi / d P^{\prime}\) in equation (3.17) should read \(k_{\phi} r \sin \theta d \phi / d P^{\prime}\).
On page 10, the denominator in the last fraction in equation (3.18) should be \(C_{\text {ref }} \partial H / \partial \omega\) instead of \(C \partial H / \partial \omega\).
On page \(16, \partial \omega / \partial r\) in (4.27) should be \(\partial \Omega / \partial r\).
On page 45 , the last line in the caption for Figure 9 should read: ****See Table 29 for details.
```

ANSI standard, 51, 227
ANWNL, 60, 101
ANWWL, 55, 101, 105
AWWNL, 101, 103
AWWWL, 55, 101, 105
Absorption models, 124
Absorption, 44, 80, 92, 105
Accuracy, 9, 99
Adams-Moulton integration, 93 ff
Amplitude, 11
Angle, unit conversion, 76
Annotation models, 124,225
Apogee plots, 81
Atmospheric ID, 59
Atmospheric model, sample case, 15 ff
Atmospheric models, $57 \mathrm{ff}, 123 \mathrm{ff}$, 201 ff
Azimuth angle stepping, 79
Azimuth deviation, 43
BACKUP, flow chart
BLOCK DATA modules, 52, 227
Background models, 55, 57, 60 ff
Binary raypath data, 47
Boundary conditions, 12
CBLOB2 model, 25, 58, 209
CPU time, 41
CRAY computer, 53
CSTANH model, 58, 208
CYBER computers, 51
Cards, punched, 56, 71
Caustics, 6, 7
Characteristics, method of, 5, 8
Comment field, input data, 77
Common block parameters, 69, 141 ff
Common block structure, 138
Common block usage, 140
Common blocks, model input, 61, 62
Common blocks, model output, 61, 63
Common, blank, lol, 137 ff
Computational coordinates, 79, 117
Conductivity, thermal, 105
DDALT, 53
DFCNST, 52
DFSYS, 52
DISSPLA, 53, 223 ff
Derivatives, model, 61
Diagnostic printout, 44
Diffraction, 6, 11
Discontinuities, refractive index, 11
Disk files, 56, 60
Dispersion relations, acoustic, 102 ff
Dispersion-relation subroutines, 54, 101, 122
Distribution tape, 51, 54, 227
Doppler shift, 5, 80, 91

Earth radius, 78
Eigenrays, 12
Eikonal equation, 5,9
Elevation angle stepping, 79
Elevation angle, 43
Entry points, model, 63, 67
Error Checking, 80, 98, 102
Error column, printout, 42, 102
Error, integration, 33
Event column, printout, 42
Execution time, 99
Extinction, 80
FORTRAN 77 compatibility, 51, 227
Fermat's principle, 8
Flow charts, 129 ff
Format, input data, 75
Format, tabular input data, 87
Frequency shift, 80,91
Frequency stepping, 79
Frequency, acoustic, 79
GAMRTDM model, 19, 58, 99, 207
GLORENZ model, $30,59,60,218$
GTANH model, 59, 219
Geometrical acoustics, 5
Gradients, model, 61, 100
Gradients, refractive-index, 3, 4, 11
Graphics metafile, 53
Graphics, 53, 223 ff
Graphics-write routines, 122
Ground reflection, 11
Group path, 91
HARPO, 4, 99
Hamilton's equations, 7, 8, 89 ff
Hamiltonian, 8, 9, 90 ff
Height, max/min, 80
History, program development, 12
Hop, 79
Initialization, input data, 77
Input Data File, $15 \mathrm{ff}, 36 \mathrm{ff}, 55,57$,
71 ff
Input Parameter Forms, 59, 197 ff
Input data format code, 60
Input data parameters, 78 ff
Integration error, 32, 52
Integration type, 80
Ionospheric radio waves, 12
Irregular terrain, 106 ff
Job-control statements, 54
Losses, 44, 80, 92,105
MCONST model, $20,58,214$
MUARDC model, 28, 59, 215
Machine-dependent code, 52
Machine-readable output, 47
Model check number, 60

Molecular weight, sample-case model, 16, 20
NPABS model, 59
NPPRES model, 59
NPSPEED, 55, 60
NPTERR, 55, 60
NPWIND, 55, 60
NTEMP model, 58
Numerical integration, 93
Ocean acoustics, 13
Order forms, $15 \mathrm{ff}, 197 \mathrm{ff}$
Organization diagrams, 124 ff
Organization of HARPA, 14
PEXP model, 29, 59, 216
PUNCH file, 47
Partial reflections, 11
Path length, $42,44,81,93$
Path-integral method, 8
Perturbation models, 55, 57, 60 ff
Phase path, 92
Phase time, 42, 44, 80
Plot annotations, 124, 225
Plot limits, 81
Plot projections, 32, 45, 46, 200
plot ticks, 81, 82
Plotting routines, 121
Precision, 52, 53
Printout, $10,41 \mathrm{ff}, 177 \mathrm{ff}$
Procedure (batch) programs, 56
Pulse time, 42, 43
RAYTRC, flow chart, 129 ff
RHORIZ model, 59, 220
RKAM, 93
RKAM1, 93
RTERR model, 33, 59, 221
RVERT model, 59, 222
Range, maximum, 80
Ray-tracing core, 54, 60, 119 ff
Ray-tracing equations, 89 ff
Rayplots, 32, 45, 46, 200
Raysets, $12,32,47$ ff, 81,194 ff
Receiver surface crossings, flow chart, 133
Receiver surface, 108 ff
Receiver-surface models, 124, 220 ff
Reference speed, 91
References, 171 ff
Reflection coefficient, ground, 12
Reflection, ground, 113 ff
Run module, $54,55,60,71$
Run set, 37, 71
Run time, 99
Runge-Kutta integration, 93 ff
Sample run, $15 \mathrm{ff}, 177 \mathrm{ff}$
Single-step error, 43

Sound speed, sample-case model, 16, 19
Sound-speed contours, 26
Sound-speed model, 99
Sound-speed profile, 22
Source code listings, 227 ff
Special events, printout, 41, 44
speed, execution, 53
Steps, maximum, 79
Supplementary programs, 13, 14, 83
TAPE5 file, 53
TAPE6 file, 47
TBLOB2 model, $24,58,213$
TLINEAR model, 58, 210
TRACE, flow chart, 132 ff
TTABLE model, 58, 212
TTANH5 model, 21, 58, $61 \mathrm{ff}, 211$
Tabular input, model, 67 ff, 84
Tape files, 54
Temperature profile, 22
Temperature, sample-case model, 21, 22
Termination, ray, 41
Terrain models, 68 , 123,217 ff
Terrain, irregular, 106 ff
Terrain, reflections from, 45
Tick/annotation routines, 121, 225
ULOGZ2 model, 18, 58, 204
Unit conversion, $37,75 \mathrm{ff}, 86$
Units, standard, 41
VVORTX3 model, 58, 205
Viscosity, atmospheric, 105
W-array, 36 ff, 75 ff
WGAUSS2 model, 58, 206
WKB method, 5, 6
WLINEAR model, 58
WTIDE model, 58, 203
Wave number, 90
Wind profile, 22
Wind, sample-case model, 16,18
Winds, effects of, 9, 45
Word length, 52


[^0]:    * Setting $W_{Z}, W_{\theta}$, or $W_{\phi}=$ zero results in no space variation in that direction.

    Figure 2.7. Sample of completed form to specify input data for atmospheric temperature perturbation model TBLOB2.

[^1]:    * Setting $W_{Z}, W_{\theta}$, or $W_{\phi}=$ zero results in no space variation in that direction.

    Figure 2.8. Sample of completed form to specify input data for sound-speed perturbation model CBLOB2.

[^2]:    The values of the first 31 elements in /B5/ define the block structure for the array TGP, and they are defined in the atmospheric models and used in the data read-in routines READW and READW1. The common blocks /B1/, /B2/, /B3/, /B4/, /B6/, and /B7/ have the same structure as /B5/, but have different names for the variables.
    ** Only two data blocks are now available to use; however, the beginning location of the first data block not used must be specified to indicate the length of the last data block used.
    *** Format type 1 implies format number 1 (see Table 5.3).
    Format type 2 implies format numbers 2, 3, or 4 (see Table 5.3).

[^3]:    * DISSPLA is the proprietary product of ISSCO, Inc.

[^4]:    Figure 7.1. Block diagram (not a flow chart) of the ray-tracing program showing the relation (hierarchy, what calls what) of the main program to other subroutines during the initialization stage (immediately after new input data are read in).

    * ANWNL (Acoustic, No Winds, No Losses), AWWNL, With Winds, No Losses), ANWWL, and AWWWL are the names of the versions of the dispersionrelation subroutine available.
    ** Figure 7.2 shows the continuation of this block diagram.

[^5]:    * These parameters are used for communication between subroutines TRACE and BACKUP.

[^6]:    * The parameters are used to communicate between various subroutines.

[^7]:    * These parameters are used for communication between subroutine RAYPLT and subroutine PLOT.

[^8]:    REV. 2-10-86
    HARPA DOCUMENTATION
    NUMBER OF INTEGRATION STEPS PER PRINT
    OUTPUT RAYSETS ( $1=Y E S ; \theta=$ NO $)$
    DIAGNOSTIC PRINTOUT $(1=Y E S ; \theta=$ NO $)$
    
    PLOT-EXPANSION FACTOR
    $* * * * * * * * ~ E N D ~ O F ~ R U N ~ S E T ~ N U M B E R ~$
    ON ( $1=$ =VERT; $2=$ HORIZ) PLANE
    ACTOR
    OF RUN SET NUMBER 2 *****
    END OF RUN SET NUMBER 2 ********** S03-2 SAMPLE CASE FOR

[^9]:    
    苑
    

[^10]:    * Setting $W_{2}, W_{\theta}$, or $W_{\phi}=$ zero results in no space variation in that direction.

[^11]:    * Setting $W_{z}, W_{\theta}$, or $W_{\phi}=$ zero results in no space variation in that direction.

[^12]:    *DISSPLA is the proprietary product of ISSCO, Inc.

[^13]:    WARNING: THIS LISTING IS PROVIDED FOR INPORMATION PURPOSES ONLY. THOSE WHO WANT TO USE THE PROGRAM MUST OBTAIN THE SOURCE CODE ON MAGNETIC TAPE FROM THE AUTHORS (SEE SECTION 3.1). COPYING THE CODE LISTED HERE WILL NOT PRODUCE A USABLE PROGRAM.

