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I1.3.1.4 Three-Dimensional Ray Tracing in the Atmosphere

1 Introduction

Ray tracing is a practical method for calculating the ray theory or WKB {Wentzel
1926: Kramers 1926; Brillouin 1926) approximation for the propagation of waves
in a specified medium (Sect. 8, below). Here we consider the propagation of
electromagnetic waves in the atmosphere, although nearly all of the results are
directly transferable to other kinds of waves propagating in other media. In three-
dimensional ray tracing, the medium varies in three dimensions, and therefore,
the wave will follow a three-dimensional path rather than being confined to a
plane.

Except for scintillations, the refraction of electromagnetic waves by the neu-
tral upper atmosphere is negligible. Because ray tracing is of limited use in
calculating scintillation, we restrict the discussion to the propagation of radio
waves in the ionized atmosphere {ionosphere).

The general problem of calculating radio wave propagation in the ionosphere
is as follows: we have a radio transmitter, either on the ground or elevated
(as in an airplane or satellite); emitting radio waves at some frequency, either
continuous waves {cw) or pulsed waves; and a receiver, either on the ground
or elevated. For given ionospheric conditions, represented by a refractive index
[Chap. 1I. 3.1.3 Eq. (4.8)] that varies with location and direction of the radio
wave, we would like to estimate the following quantities:

The signal strength at the receiver.

The phase of the radio wave at the receiver.

The travel time for a pulse to propagate from the transmitter to the receiver.
The direction(s) of arrival of the wave at the receiver.

The polarization of the wave at the transmitter and receiver.

The wave form (pulse shape) distortion by dispersion.

The statistical behavior (e.g. spatial and temporal coherence) of the signal if
the medium can be described usefully only in a statistical sense.

A e e

Usually, ray tracing is not useful for correctly dealing with the statistical na-
ture of the medium, but it can estimate the first six of the above seven quantities.
It is useful to divide the ray tracing method into ten steps:

1. Calculate all of the raypaths from the transmitter to the receiver.

2. Calculate the pulse travel time of the wave for propagation along each of
these raypaths.

3. Calculate the attenuation of the wave (absorption of energy by the medium)
for propagation along each of these raypaths.

4. Calculate the phase of the radio wave for propagation along each of these
raypaths.

5. Calculate the effect of focussing or defocussing (convergence or divergence
of adjacent rays) on the amplitude of the wave for each raypath (valid if the
receiver is not too near a caustic).
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6. Subtract 90° from the phase for each surface caustic through which the ray
has passed (valid if the receiver is not too near a caustic).

7. Adjust the amplitude and phase of the radio wave for each raypath according
to any ground reflections that may have occurred.

8. Calculate the coupling of the wave to the antenna at the transmitter and the
receiver, including the effects of the antenna pattern factor and polarization.

9. Combine the amplitudes of the radio waves for the various raypaths coherently
(1f the signals are correlated) or incoherently (if the signals are not correlated).
Thus, we have the possibility of phase interference between radio waves that
have traveled separate paths.

10. For pulse transmission, combine (coherently or incoherently the amplitudes of
the signals from the various paths only for pulses that overlap in time, and
then, as a function of time for the overlapping time period. (The pulse shape
can be calculated by a perturbation method, or by Fourier analyzing the shape
of the transmitted pulse, propagating each spectral component separately, and
combining the components.)

The first of the ten steps is the most difficult, and is the main task of ray
tracing. It 1s well known, that there is, in general, no closed-form solution to
the problem of finding all of the raypaths connecting a specified transmitter and
receiver, although there are a few simple cases (such as propagation in a homo-
geneous medium) where 1t can be done,

Although a raypath is not uniquely determined by specifying the transmitter
and receiver location, it is uniquely determined by the transmitter location and
the direction of transmission. Therefore, we divide the task of calculating the
raypaths that connect a specified transmitter and receiver into two parts.

First, we calculate a raypath for a specified transmitter location, launch di-
rection, and specified medium. Section 2 discusses how this is done with a ray
tracing computer programme. Central to such raypath calculations is the question
of how to specify the medium, which is discussed in Sect. 3.

Second, we find out which raypaths actually arrive at the receiver. (such
raypaths are sometimes called eigenrays.) Section 4 discusses how this process,
called eigenray determination, is done. (Of course, eigenray determination and
raypath calculation are approximate in any computer calculation. It is always
necessary to verify that the raypaths are determined sufficiently accurately for
the application.)

There is a variational method for calculating raypaths that is an alternative
to ray tracing (Chander 1975; Julian and Gubbins 1977; Cerveny and Hron 1980;
Pereyra et al 1980), but we do not deal with that method here.

Step 2 of the ray tracing method (calculation of pulse travel time) is already
taken care of if we use the four-dimensional form of Hamilton’s equations. That
is, a path in four dimensions already includes the beginning and ending time of
the path.

The amplitude and phase of the wave (step 3 and 4) must be calculated by
the ray tracing program for each raypath. Section 5 discusses this in detail.
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Steps 5-8 require making adjustments to the amplitude and phase of the wave
for propagation along each of the raypaths. Section 6 discusses these adjustments.

Steps 9 and 10 are concerned with combining the signals for the waves that
have propagated along the various raypaths, both for cw and pulse propagation,
Section 7 discusses how these signals should be combined.

Although the ray theory (WKB) approximation is not always valid, raypath
calculations with a ray tracing programme can nearly always give insight into
the propagation. Section 8 discusses the validity of ray theory.

Section 9 gives a short description of the characteristics of a ray tracing
programme as an example.

2 Method for Calculating Raypaths

For a specified medium, a raypath is determined by the transmitter location and
the direction of transmission. In regions where the refractive index of the medium
varies continuously with position and time, the ray evolves according to Hamil-
ton’s equations (e.g., Lighthill 1978, p. 319; Budden 1985, p. 404): [see Sect. 8
for the justification of Hamilton’s equations in terms of the WKB approximation
for calculating raypaths. Armold (1978) gives an intuitive argument in terms of
Huygens® principle. ]

dg;/dt = 0H(q;, pi)/0p; (i =0-3), (2.1a)
d pijdt = —0H (g, pfoq (i =0-3) (2.1b)

where g; are generalized coordinates, p; are generalized momenta canonical to the
coordinates, and H(g;, p;) is a Hamiltonian that depends on position and wave
direction, as expressed by the coordinates and momenta. Equation (2.1) expresses
how the position and wave direction change along a ray as it progresses. The
parameter T varies monotonically along the raypath. Its physical interpretation
depends on the form of the Hamiltonian.

Hamilton’s equations in Eq. (2.1) are four-dimensional, to include the effect
of a time-varying medium (Lighthill 1965). A Hamiltonian that depends on four
coordinates (including time) rather than three spatial coordinates only is referred
to by Misner et al. (1973) as a “super-Hamiltonian.” The main effect of including
the time coordinate in Hamilton’s equations is to add the calculation of the
frequency shift (Doppler shift) of the wave for propagation in a time-varying
medium. [See Bennett (1967) for an alternate derivation of the Doppler-shift
formula.] This can be seen more explicitly if we express Eq. (2.1) in Cartesian
coordinates (Weinberg 1962):

dtfdt = —0H(t, x;, w, ki)/0w , (2.2a)
dx;/dt = OH(t, x;, w, k)/0k; (i =1-3), (2.2b)
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dwfdt = ¢H (L, x;, w, k[0t , (2.2¢)
diifdv = —0H (L, x;, w, k:)/dx; (I =1-3), (2.2d)

where ¢ is the pulse travel time (group time), © is the wave frequency (which
can vary along the path if the medium varies with time), x; are the cartesian
coordinates of the ray point, k; are the cartesian components of the wave vector
k, and w is the wave frequency, which will vary along the raypath if the medium
is time varying. The direction of & is normal to the wave front, and the magnitude
of the wave vector is

k= J(k\*+k? + k) = wnjfe = 20/l (2.3)

where # is the refractive index, ¢ is the free-space speed of light, and 4 is the
radio wavelength. Notice that the four-dimensional form of Hamilton’s equations
automatically yields the pulse travel time through Eq. (2.2a), without having
to bring in the notion of group velocity, because it 1s equivalent to the travel
time given in the usual way by group velocity (Lighthill 1965, 1978). The four-
dimensional form of Hamilton’s equations also automatically gives the frequency
shift of the wave [Eq. (2.2¢)] for propagation through a time-varying medium.
The Hamiltonian can take various forms. One form is

H{t, xi, o, ki) = f[c*k? — w?n(1, x5, 0, kD] (2.4)

where f is any reasonable function, » is the refractive index, and ¢ is the free-
space speed of light. Section 3 considers other forms for the Hamiltonian.

The refractive index depends only on the direction of k, and not on it’s
magnitude, as is generally apparent in the explicit functional dependence of n on
k [Chap. 1I. 3.1.3 Eq. (4.8)]. However, when taking derivatives of n with respect
to one of the components of k in Hamilton’s equations (2.1) or (2.2), one must be
careful to use the constraint that the other two components of k remain constant
rather than the constraint that the magnitude of & remain constant. It is usually
easier to avoid errors in calculating the formulae for these derivatives if n is
written explicitly in terms of the components of k rather than in terms of the
components of a unit vector in the k direction or in terms of the direction of k.

Notice that if f is a homogeneous function, then

H(Is Xiy 0, kt) == f{czkz o wznz(ta Xi, W, kf )] =0 (25)

is an expression of the dispersion relation for the wave.

Generally, the system of equations (2.2) can be integrated by standard com-
puter numerical integration algorithms. For the partial derivatives of the Hamilto-
nian to be numerically well defined, the Hamiltonian (and therefore the refractive
index) must be a continuous function of its arguments. For that integration to be
efficient, the derivatives must also be continuous functions of the arguments (e.g.
the gradient of refractive index must be a continuous function of position).

Examples of Hamiltonian ray tracing programmes are described by Georges
(1971), Jones and Stephenson (1975), and Jones et al. (1982, 1986a, b). Examples
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of the applications of these ray tracing programmes are given by Georges and
Stephenson (1968), Georges (1970, 1972), Jones et al. (1984), and Georges ct
al. (1986).

At an interface where the refractive index changes discontinuously, Hamil-
ton’s equations cannot be used fo calculate the amount of bending at the interface,
but snell’s law,

ny sin ©y = ny sin &, , (2.6)

must be used instead. In Eq. (2.6), n and ny are the refractive indexes in the
medium of the incident wave and transmitted wave, and &, and ©, are the
angle of incidence and the angle of transmission into the second medium. In an
anisotropic medium (such as the ionosphere), where the refractive index depends
not only on position but also on direction of the wave, Snell’s law [Eq. (2.6)]
must be solved iteratively with the dispersion relation (2.5) for ©;, the angle
of transmission into the second medium, and for n,, the refractive index of the
second medium.
Snell’s law (2.6) is equivalent to

ky = ky2 (2.7)

where kyj; and kj; are the components of the wave vector parallel to the interface
of discontinuity of refractive index. The normal component of the wave vector,,
k12, is found from the dispersion relation [Eq. (2.5)].

A discontinuity in refractive index also causes partial reflection of the wave.
In an anisotropic medium (such as the ionosphere), the angle of reflection does
not equal the angle of incidence. Instead, Snell’s law again applies, either in
the form of Eq. (2.6) or Eq. (2.7), where for reflection, the subscripts 1 and 2
refer to incident and reflected. The refractive indexes n; and n; are unequal for
the same medium, because the wave directions are different for the incident and
reflected wave.

For practical calculations of radio wave propagation in the ionosphere, how-
ever, the only discontinuity in refractive index is at the ground, where the re-
fractive index is isotropic, and therefore the angle of reflection equals the angle
of incidence. Also, we can usually neglect any part of the radio wave that is
transmitted into the ground (unless there is a radio receiver underground, but
very close to the surface).

Therefore, in practice, we can neglect the complications of Snell’s law for
radio wave propagation in the ionosphere. However, there are some ray tracing
programmes that approximate the continuous variation of the ionospheric refrac-
tive index by using homogeneous slabs, and apply Snell’s law at the boundaries.
This can be practical when the anisotropy of the ionosphere can be neglected
(Croft and Gregory 1963).

Earth-centred spherical-polar coordinates are more practical than cartestan
coordinates for calculating long-distance radio wave propagation. Jones and
Stephenson (1975) give Hamilton’s equations in spherical-polar coordinates.
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3 Representation of the Propagation Medium

There are two main issues with regard to how to represent the propagation
medium. The first is whether to represent it as a continuously varying medium in
regions where 1t is truly continuous and as discontinuous only where it is truly
discontinuous or to approximate the medium by a set of homogeneous regions.
The second s how to express the Hamiltonian.

If the medium is approximated by a set of homogeneous regions, then the
raypath must be calculated using Snell’s law rather than Hamilton’s equations.
Usually, Snell’s law calculations are practical only when the anisotropy can be
neglected and when the raypath is confined to two dimensions. If the medium is
anisotropic, applying Snell’s law requires iteration because the refractive index
depends not only on position, but also on the wave direction. (Thus, for an
anisotropic medium, the “homogeneous” regions will be homogeneous only for
a single ray direction.) Further, applying Snell’s law in three dimensions could
be tedious. See Croft and Gregory (1963) for an example of a Snell’s law ray
tracing progiam in two dimensions that neglects the anisotropy of the ionosphere.

Equation (2.4) gives onc class of Hamiltonians that are expressed in terms
of refractive index. One example is for

fx)=x. (3.1)
That gives
H(L Xiy Wy kl) - C2k2 - wznz(t: Xiy 00, kl) (32)

for the Hamiltonian, and because Eq. (3.1) is a homogeneous function,
Ht, xi, o, k) = Pk* — o®n® (1, x;, o, k) = 0 (3.3)

for the dispersion relation.

Usually, the refractive index is a complex function, with the real part giv-
ing the refractive properties of the medium, and the imaginary part giving the
dissipation of the wave due to energy being absorbed by the medium. For HF (3—
30 MHz) and higher frequencies, we can usually neglect the effect of dissipation
on the refraction of the radio waves. In that case, we can use

J(x) = Re (x} (3.4)

in Eq. (2.4) to define a Hamiltonian. However, Section 8 considers those cases
where the dissipation significantly affects refraction.
There are possibilities for the Hamiltonian other than Eq. (2.4). For example,

we could use

H{t, xi, 0, k) = [1[1 —onlt, xi, , k)/(ck)] . (3.5)
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Using
f1(x) = Re(x) (3.6)

would be equivalent to the Hamiltonian used by Haselgrove (1954) except for
numerical integration errors and the value of the independent variable. The Hamil-
tonian she actually used is

fi{x)y=1/[1 —Re{x)] ~ 1. (3.7)
Another possibility for the Hamiltonian based on the refractive index is
H(t, x, @, ki) = f2[PkP o’ = n* (1, x;, @, k)] - (3.8)

The ray tracing programme by Jones and Stephenson (1975) uses Eq. (3.8)
for a Hamiltonian, with

Sa(x) = Re(x)/2. (3.9)

Two common formulae express the refractive index as a function of the
electron density, the Earth’s magnetic field and the collision frequency, for use
in the above equations; the magnetoionic formula for constant collision frequency
and the Sen-Wyller formula (which allows for collisions of electrons with neutral
molecules that have a distribution of kinetic energy). These are discussed in Chap.
I1. 3.1.3.

The magnetoionic formula for constant collision frequency has been known
for many years as the Appleton-Hartree formula (Budden 1961, 1985) or by the
Appleton formula (Davies 1965, 1969). Ratcliffe (1959) refers to it as “Apple-
ton’s equations.” The formula was first published by Lassen (1927). Goldstein
(1928) published a version without damping. Appleton (1928) first presented the
formula (also without damping) at a 1927 URSI conference, and later (Appleton
1932) published it with damping. Hartree (1931) included a Lorentz polarization
term with the formula for refractive index. Appleton (1932) gave the formula
both with and without the Lorentz polarization term. It is generally accepted
now that the Lorentz polarization term should not be included (Budden 1961,
1985; Davies 1965, 1969; Ratcliffe 1959; Rawer and Suchy 1976). The name
“Appleton—Lassen formula” seems to be coming into increasing use (Rawer and
Suchy 1976; Budden 1985, p. 75). Wilhelm Altar derived the formula, but hic
derivation has only recently been published (Gillmor 1982). See the paper by
Sen and Wyller (1960) and Chapter II. 3.1.3 for additional discussion of their
formula. Here, we use “magnetoionic formula” to refer to both the version with
constant collision frequency or to the Sen—Wyller formula whenever there is no
need to make a distinction.

There is one situation for radio wave propagation in the ionosphere in which
it is not appropriate to express the Hamiltonian in terms of the refractive index
because the refractive index depends not only on the local values of electron
density, magnetic field, collision frequency, and wave direction, but also on the
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immediately preceding history of the radio wave. This occurs at a Spitze (defined
by Poeverlein 1949, 1950; Davies 1965, pp. 202-204, 1969, pp. 183-187). For
that situation, it is more appropriate to use for the Hamiltonian the quadratic equa-
tion in #* whose solution is the magnetoinoic formula for refractive index [Chap.
I1. 3.1.3 Eq. (4.4)). One can also derive that quadratic equation by specializing
the Booker quartic (Booker 1949) to vertical-incidence propagation.

The propagation medium is characterized not only by its refractive index, but
also by certain polarization relations that give more detailed information about the
local properties of the wave beyond energy flux and the wave front. In the case
of electromagnetic waves, the polarization relations give the ratios of components
of the electric field of the wave. The polarization relations are characteristic of
each magnetoionic component (ordinary and extraordinary). See Chapter II. 3.1.3
[Eq. (4.7)] and Budden (1961, pp. 48-54; 1985, p. 70) for more details.

4 Eigenrays: the Raypaths that Connect a Specified Transmitter
and Receiver

Two methods are used to find the rays that arrive at the receiver. (These rays
are sometimes called eigenrays.) First is the homing method, in which the launch
direction is varied (in both azimuth and elevation) until the ray arrives at the
receiver. This method has the advantage of being direct but the disadvantage of
not guaranteeing that all of the eigenrays have been found.

In the second method, a fan of rays (in both azimuth and elevation angles) is
transmitted, and interpolation between rays that surround the receiver is used to
find the eigenrays. Usually, the angle increment in the fan of rays is determined
by the required accuracy and the amount of small-scale structure in the iono-
spheric model. This method has the advantage of giving information about all
of the rays that leave the transmitter, in addition to the eigenrays. It has the
further advantage that eigenrays for a different receiver location can be found
without having to calculate any new raypaths. Stephenson and Georges (1969)
describe a programme that uses this method.

Although there are advocates of both methods, I have always favored the
latter method. In either method, it is necessary to have a criterion to estimate
‘he amount by which the ray has missed the receiver. This could be done by
estimating the distance of the raypath to the receiver at its closest approach. In
practice, however; it is usually easier to specify a surface (horizontal or vertical,
for example) in which the receiver lies, and then find all of the intersections
of a raypath with that surface. The amount by which the ray misses the re-
ceiver is measured as a distance on this surface. For the latter eigenray-finding
method, the calculated raypaths can be used to find eigenrays for all receivers
that lie on the surface specified for the raypath calculation.

Once an eigenray connecting the transmitter with the receiver has been found,
it is possible to calculate most of the needed information about the signal at
the receiver. Once the raypath is known, the k vector at the receiver gives the
direction of the normal to the wave front there.
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5 Amplitude and Phase Calculation

To calculate useful estimates of the signal at the receiver, it i1s necessary 10
calculate amplitude and phase.
The signal at the receiver for propagation along one raypath is proportional

to

exp (id) , (5.1)
where

¢ = /p,-dq,- (i is summed from 0 to 3) (5.2)

is the phase integral (Eckersley 1932; Budden 1961, 1985; Wait 1962), and
gives the phase of the wave in radians. The integral is along the raypath from
the transmitter to the receiver. In general, the path of integration for the phase
integral can allow the coordinates of the path to take on complex values. Section 8
discusses this more fully. Here, we consider that the raypath has real coordinates.

The g; are the generalized coordinates in Hamilton’s equations, and the p; are
the canonical momenta (e.g. Lighthill 1978, p. 319; Budden 1985, p. 404). The
raypath is four-dimensional, because it includes the possibility of a time-varying
medium.

As is well known, a raypath has the property that the action or phase inte-
gral; [Eq. (5.2)] is stationary with respect to variation of the path, keeping the
endpoints fixed. That is,

o0p=90. (5.3)
We can write Eq. (5.2) in differential form as
do/dt =3 p; dgi/dt (i summed from 0 to 3). (5.4)

Substituting Hamilton’s equation (2.1a) into (5.4) gives
djdt = Zp,- 0H(q;, p))/0p; (isummed from O to 3}. (5.5)

We can see the time dependence more explicitly if we write Eqs. (5.4) and
(5.5) in cartesian coordinates:

djdt = —w dtfdt + >k dx;/dt, (5.6a)

d¢/df =W aH(f, Xiy O, k,) /a(}) -+ Z k,' oH ([, Xi, (O, k,)/ak; (56b)

(i summed from 1 to 3).

Either form of Eq. (5.6) can be used to calculate the propagation contribution
to the phase of the wave for a single raypath. The phase in Eq. (5.6) includes
the time contribution in a way that shows the symmetry between space and time.
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For propagation through a time-independent medium, the time contribution to the
phase is often left implicit.

Dissipation of the wave through absorption of energy by the medium can
be taken into account by adding an imaginary part to the refractive index. (For
some media, dissipation and refraction are so strongly connected that a complex
refractive index results automatically from the physics of propagation, as in the
case of the magnetoionic formula (see Chap. 11. 3.1.3): In most cases, the effect
of dissipation on the raypath can be neglected, although Section 8 discusses
situations where dissipation significantly alters the raypath.

Thus, dissipation can be taken into account by first adding the appropriate
imaginary part to the refractive index, and then using Eq. (2.3) to calculate the
corresponding imaginary part of k. Substituting a complex k into Eq. (5.6) gives
a complex ¢, whose imaginary part gives the attenuation in nepers. An equivalent
formula for attenuation is

dAnepers/dT = |kr'may/krealid(/)/d7 = 1”l'r:z(fgf/nreal|d¢/df C (5.7)

The attenuation in decibels is Davies 1969, p. 144; Jones and Stephenson 1975,
p. 8)

dAygldt = 20 logge|kimag/krearidP/dT . (5.8)

Usually, the imaginary part of k¥ is much smaller than the real part, so Eq. (5.8)
can be approximated by

dAap/dt = 10 1oggelka, ke |dd/dT . (5.9)

6 Adjustments to the Amplitude and Phase

As adjacent rays converge or diverge, the amplitude of the wave will increase or
decrease because the energy of the wave is concentrated in some regions while
it is diminished at others. There is no exchange of energy between the wave
and the medium, but energy of the wave is simply distributed from one place to
another.

Lighthill (1978, Sect. 4.5) gives the general formulae. If the medium does
not absorb energy from the wave, then conservation of energy implies that the
cnergy density W and the energy flux I = WU satisfy the continuity equation

dW/iot+V - I=10, (6.1)
where
U= ow/ok (6.2)

is the group velocity. For cw propagation in a time-independent medium, the
energy density of the wave may vary with position, but it is independent of time,
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so the first term of Eq. (6.1) is zero. In that case, the second term in Eq. (6.1)
is required to be also zero. That is, there are no sources or sinks of energy flux;
therefore the flux transmitted in some solid angle bounded by a narrow bundle
of rays remains bounded by those same rays. The intensity of the wave is then
inversely proportional to the cross-sectional area bounded by those rays. That is,

IAy = WUA, = constant along a ray tube , (6.3)

where A4, is the cross-sectional area of the ray tube.

These formulae can also be justified directly from the WKB approximation
or from an asymptotic series approximation to solutions of the wave equation
(Weinberg 1962; Felsen and Marcuvitz 1973).

There are two methods for calculating the cross-sectional area of the flux
tube. The simplest is to calculate four neighbouring raypaths (usually using two
different azimuth angles of transmission and two different elevation angles of
transmission), and estimate the cross-sectional area bounded by the rays. If the
rays are close enough together, the cross-sectional area can be accurately esti-
mated, and will give a good estimate of the effect of focussing.

The other method calculates differential rates of divergence or convergence of
rays along a single ray. This method is in principle more accurate, but in practice
more complicated and more difficult to use. For a medium that varies arbitrarily
three dimensions, this calculation requires adding six more differential equations
to Hamilton’s equations, and requires the refractive index models to be continuous
through second derivatives rather than just through first derivatives. The necessary
equations were derived by C. C. Harvey in 1968, then at Cambridge University,
but were never published.

For the special case in which the medium varies in only two dimensions
(in height and in horizontal range from the transmitter), the focussing equations
are quite simple. In that case, the ratio of the wave intensity (square of the
amplitude) at the receiver to that at a small distance ry from the transmitter is

Uprd cosa /(Ur sin f dr/du) (6.4)

where « is the elevation angle of transmission, » is the horizontal distance from
the transmitter to the receiver, f§ is the elevation angle of arrival at the receiver,
dr/do gives the rate of change of range with elevation angle of transmission, U
is the magnitude of the group velocity at the transmitter, and {/ is the magnitude
of the group velocity at the receiver. The quantity dr/do can be estimated by
taking the ratio of the change in range to the difference in elevation angle of
transmission for two closely spaced rays.

For the more general case, in which the medium can be time varying and
the transmitted wave can also be time varying, the general formula (6.1) must be
used. In that case, the calculation can be done using four-dimensional flux tubes
in space~time by an appropriate generalization of Eq. (6.3).
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The formulas for focussing predict an infinite signal amplitude whenever
adjacent rays cross, because the cross-sectional area of adjacent rays will be zero
there. For example, at the skip distance for radio waves, dr/da will be zero, and
therefore Eq. (6.4) diverges. Such places are called caustics. Ray theory (WKB
approximation) breaks down at caustics, and ray theory does not give an accurate
estimate of the wave amplitude in a region around caustics. Nevertheless, raypaths
can be accurately computed through caustics.

Furthermore, ray theory can be extended to give an accurate estimate of the
signal strength in the region around caustics in terms of Airy functions (Budden
1961; Ludwig 1966; Kravtsov 1964ab; White and Pedersen 1981). One result
of this extension shows that there is a 90° phase retardation each time a wave
passes through a surface caustic. (That is, 90° must be subtracted from the phase
fag that is being accumulated along the ray.)

Usually, there is a surface caustic at each ionospheric reflection point for
low-angle rays (those rays for which range decreases as the elevation angle of
transmission 1s increased), but not for high-angle rays. Thus, low-angle rays usu-
ally need phase correction for caustics, but not high-angle rays.

Each time the ray reflects from the ground, there will be a loss in amplitude,
and a phase shift. These can be expressed by a ground reflection coefficient.
In general, the ground reflection coeflicient may depend on the frequency of
the radio wave, the properties of the ground, and the angle of incidence on the
ground. Of course, the ground properties may vary with location.

The effect of ground reflections can be taken into account after the raypaths
have been calculated if the location of each ground reflection and the associated
angle of incidence on the ground is saved along with the raypath calculations.

The amplitude and phase of the wave at the receiver are also affected by
how the wave couples to the antenna at the transmitter and receiver. There are
two aspects to this coupling.

First is the pattern factors of each antenna, that is, the effectiveness of the
transmitting antenna in radiating in the direction of the wave normal at the trans-
mitter, and the effectiveness of the receiving antenna in receiving a wave from
the direction of the wave normal at the receiver.

Second 1s polarization coupling. Each raypath that connects the transmitter
and receiver 1s for a single magnetoionic component (ordinary or extraordinary)
that has a characteristic elliptical polarization at each point along the path (al-
though the two components are degenerate for the part of the path in free space
below or above the ionosphere). Ratcliffe (1959) and Budden (1961, 1985) give
formulae for the characteristic polarizations of the two magnetoionic components
from the magnetolonic formula [see Chap. II. 3.1.3, Eq. (4.7)]. (For example,
the characteristic polarizations are circular for propagation parallel to the Earth’s
magnetic field, and linear for propagation perpendicular to the Earth’s magnetic
fleld.) As the wave leaves the tonosphere on one of these raypaths, it will keep
the same polarization, so it will still have the characteristic polarization that was
determined at the exit from the tonosphere when it arrives at the receiving an-
tenna. The receiving antenna can receive only a particular polarization from each
direction (usually linear, rotated at some angle). Therefore, the antenna receives
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only part of the signal from the arriving wave, corresponding to one component
of the characteristic polarization of the arriving wave. A similar effect occurs at
the transmitter, so some signal is lost because of polarization coupling at both
the transmitter and the receiver. Polarization coupling coeflicients can often be
complex, to give a phase shift associated with the coupling.

7 Combining Signals that Propagate Along Separate Raypaths

Once we find all of the raypaths that conncct the transmitter and receiver, and
calculate the amplitude and phase associated with each one, we can combine them
to give the total signal at the receiver. If the signals from the various raypaths
are coherent with one another, then we can combine them coherently, allowing
the possibility of phase interference. When we combine the signals coherently,
the signal for each raypath is represented by a complex number in which the
magnitude of the complex number equals the amplitude, and the phase angle
of the complex number equals the phase of the signal. Adding the complex
numbers gives a single complex number whose magnitude equals the amplitude
of the combined signal, and whose phase angle cquals the phase of the signal.

If the signals from the various raypaths are really coherent, and if the ac-
curacy of the calculations (including the representation of the medium and the
ray theory approximations) is good enough, the resulting calculation, including
interference eflfects, will be an accurate representation of the measured signal
strength.

On the other hand, it may not be appropriate to combine the signals co-
herently, cither because the calculations are not accurate enough (especially the
phase calculations), or because the multipath signals themselves are inherently
not coherent with one another. In practice, it is often difficult to distinguish these
two cases, and the criteria for determining whether the signals from the various
paths are correlated is beyond the scope of this treatment.

The standard method for combining signals that are incoherent is to add the
squares of the amplitudes, ignoring the phases, and to take the square root of
the sum as an estimate of the total amplitude, with an undetermined phase. This
procedure really gives an estimate of the root-mean-square (rms) average of an
ensemble of cases, rather than a quantity that could be realistically compared
with a single measurement.

Between these two extreme cases are situations where the signals from var-
ious raypaths are partially coherent. Such cases are beyond the scope of the
present treatment, but are discussed by Beran and Parrent (1964).

The discussion so far in this section applies mainly to cw (continuous wave)
propagation but can be easily extended to pulse propagation. For pulse propaga-
tion, the signals from the various raypaths are combined coherently or incoher-
ently, as appropriate, in the same way as for cw propagation, but as a function of
time. Pulses that do not overlap in time arrive separately, so there is no possibility
for phase interference.
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8 Ray Theory

Ray theory is equivalent to the WKB approximation (Budden 1961, 1985; Wait
1962) to the wave equation. Although the method was given its present name after
1926 (Wentzel 1926; Kramers 1926, Brillouin 1926), the method was discovered
earhier (Liouville 1836, 1837a.b; Rayleigh 1912; Jeffreys 1923). The method for
constructing WKB solutions is sometimes referred to as the phase integral method
(Eckersley 1932), the eiconal method (Felsen and Marcuvitz 1973), or the eikonal
method (Weinberg 1962).

The following formulation is from Weinberg (1962). In general, we want to
find a solution to the system of »n coupled linear homogeneous equations:

M(C];', —15/59.)lﬁ(%) =0, (81)

where M 1s a symmetric » x n matrix, and ¥ is an n x n column vector. The
WKB approximation consists in looking for a solution of the form

W(gi) = Yolg:) exp [iS(gi)] , (8.2)

in which most of the time and spatial dependence of the solution is in the expo-
nential function of §. S is sometimes called the phase integral or the eiconal (or
eikonal) function. If we assume, as a first approximation, that all of the space
and time dependence is in 8, then substituting Eq. (8.2) into Eq. (8.1) gives

M(q;, piYo =0, (8.3)
where
pi = 0S/dq; . (8.4)

For Eq. (8.3) to have non-zero solutions requires that
H{qi, pi) = det[M(g;, pi)] = 0. (8.5)

The solution to Eq. (8.4) for S, with the condition (8.5), is given by the
phase integral [Eq. (5.2)]. The ¢; and the p; are determined by a ray tracing
programme using Hamilton’s equations (2.1} with the Hamiltonian (8.5). Hamil-
ton’s equations guarantee that if Eq. (8.5) is satisfied at the start of the ray, it
will be satisfied thercafter.

The solutions of Eq. (8.3) represent waves that are nearly uncoupled, but are
coupled shghtly. The WKB approximation arises from substituting Eq. (8.2) into
Eqg. (8.1), and making an approximation that uncouples these waves. The result
(Weinberg 1962) is a transport equation {Felsen and Marcuvitz 1973),

Wi(4;6/8q; + Chpro =0, (8.6)
where /] is the transpose of g,

A = aMJop: (8.7)
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¢ = (5)@Mop2n) @pifoar) (8.8)

repeated indices are summed from 0 to 3, and we have assumed that M(g;, p:)
is a symmetric matrix.

Equation (8.3) determines the eigenvectors for the WKB solution but not the
magnitudes. The usual way to obtain the magnitudes is to let

Yolgi) = fo(q:) @olgi) (8.9)

where @o{g;) is a solution of Eq. (8.3), and fo(gs) is a scalar function. Substi-
tuting Eq. (8.9) into Eq. (8.6) gives (Weinberg 1962)

(d/dt)In fo = —(95¢0) " @i (4:0/0g; + C)o (8.10)

where ¢ is the transpose of ¢g. (For alternate representations, see Schiff 1955;
Budden 1961, 1972, 1985; Budden and Smith 1976; Felsen and Marcuvitz 1973.)
The WKB approximation can be considered the first term in an asymptotic
series expansion for the solution to the wave equation. Felsen and Marcuvitz
(1973) give the formulae for the asymptotic series.
We can express Eq. (8.1) through Egs. (8.5) and (8.9) in cartesian coordi-
nates to show the time dependence explicitly:

M, x,10/dw, ~iT W1, x) = 0, (8.11)
W(r, x) = Yolt, x)exp [iS(t, x)], (8.12)
Mt x, w, ko =0, . (8.13)
w = —aS/at, (8.14a)
k=vS, (8.14b)
H(t, x, w, k) = det [M(1, x, 0, k)] = 0, (8.15)
Wolt, x) = folt, x}polt, x) . (8.16)

The corresponding specialization to cartesian coordinates of Eq. (8.6) through
Egs. (8.8) and (8.10) is straightforward, although the notation becomes tedious
and is therefore omitted.

The solution [Eq. (8.10)] is equivalent to the focussing calculation in Section
6. The WKB approximation gives the mathematical justification for the focussing
calculation.

An alternative method for deriving the WKB approximation comes from
the path integral approach for solving the wave equation (Feynman and Hibbs
1965). In the path integral approach, the solution for the field at the recetver is
written as an integral over all paths in space—time (not just raypaths) that connect
the transmitter and the receiver. Although the path integral method is rigorous,
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it rarely gives a practical method for solving the wave equation. Its main use is
in deriving approximate solutions such as the WKB approximation.

The idea of the path integral formulation is that all paths that connect the
transmitter and receiver contribute to the total field, but some paths contribute
much more than others. If we make the saddlepoint approximation (Budden 1961,
1985; Felsen and Marcuvitz 1973; Wait 1962} to evaluate the path integral (not
really a single integral, but an infinite number of integrals), then we restrict con-
sideration to only those paths that contribute the most to the signal at the receiver.
In this case, the saddlepoint approximation chooses those paths for which the ac-
tion [proportional to the phase integral, Eq. (5.2)] is stationary for infinitesimal
variations of the path, keeping the endpoints fixed. This is equivalent to Hamil-
ton’s principle of least action, which is called Fermat’s principle when applied
to wave propagation. These paths are found by using Hamilton's equations. See
Feynman and Hibbs (1965) for details. The results are the same as those given
above.

If we start with a system of equations such as Eq. (8.1), and make a change
of variable (either to a dependent or to an independent variable), we will obtain
a different set of equations that are equivalent to the original. Although the so-
lutions to the new set of equations will be different (because the variables are
different), using the variable conversion to find the original set of variables from
the solutions for the new variables gives the same solutions that would have been
obtained from the original set of equations, so there is no contradiction.

The difficulty is that the transformed equations will give a different Hamil-
tonian, a different raypath, and a different WKB approximation, even for the same
variables than were obtained from the original equations. The two WKB ap-
proximations agree within the error of the WKB approximation, however. Pierce
(1965), Einaudi and Hines (1970), Budden and Smith (1976) and Jones (1983)
discuss this interesting phenomenon.

For propagation in dissipative media, the wave equation (8.1), the disper-
sion relation and the Hamiltonian will be complex. Hamilton’s equations then
lead to raypaths that have complex coordinates. Through analytic continuation
into the complex plane for all of the variables involved, all of the calculations
including the WKB approximation will also be valid (Budden and Jull 1964).
Jones (1970) and Budden and Terry (1971) show applications of these kinds of
calculations using ray tracing in complex space. Usually, ray tracing in complex
space is needed whenever the gradient in conductivity is significant in refracting
the wave such as for the propagation of LF (30-300 kHz) radio waves in the D
region of the ionosphere (Jones 1970). See also Felsen and Marcuvitz (1973),
Suchy (1972a,b) and White and Pedersen (1981} for discussions of ray tracing
in complex space. Propagation in a dissipative medium can cause a frequency
shift of a pulse, even for a time—independent medium (Jones 1981).

Whenever the gradient in conductivity has negligible effect in refracting the
wave (e.g. only the gradient in the dielectric constant is significant in refracting
the wave), ray tracing in complex space is not required. In that case, it is sufficient
to define a real Hamiltonian that approximates the complex dispersion relation
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and to use ordinary ray tracing to calculate the WKB approximation, even for
propagation in dissipative media.

There are well-known limitations to ray theory, that is, situations where the
WKB approximation is not valid. The most common is at a caustic, where ray
theory predicts an infinite signal strength. (This is discussed in Sect. 6).

There is a general criterion for the validity of the WKB approximation 1n
terms of Fresnel zones. Each raypath can be considered to be surrounded by a
region called the first Fresnel zone, which consists of all paths connecting the
transmitter and receiver, whose phase differs from that along the raypath by less
than 180°. Although, strictly speaking, the Fresnel zone is not a region of space,
but a set of paths, we may often refer to the region of space containing those
paths as the Fresnel zone.

In general, the WKB approximation breaks down if (1) the medium changes
too quickly within the first Fresnel zone, or (2) the first Fresnel zones from two
raypaths overlap.

In the first case, diffraction is significant; in the second, the receiver 1S too
close to a caustic. In an alternative terminology, the receiver is said to be in
the Airy region of the caustic in the second case (Budden 1961, 1985). In st
different terminology, both of the above cases result when the saddlepoint in
the path integral is not an isolated saddlepoint (Budden 1961, 1985; Felsen and
Marcuvitz 1973).

9 A Ray Tracing Programme as an Example

The three-dimensional ray tracing programme for radio waves in the ionosphere
(Jones and Stephenson 1975) gives an example of a ray tracing programme. This
programme has the following properties:

e It integrates Hamilton's equations in four dimensions (including time for a
time-dependent medium), but ignores the effect of the frequency shift on the
propagation, and assumes that the time rate of change of the medium does not
change during the time of propagation from the transmitter to the receiver.

e It uses Hamilton’s equations in Earth-centered spherical polar coordinates.

e Equations (3.8) and (3.9) give the Hamiltonian used. However, there is an
option to switch to a different Hamiltonian near a Spitze (Poeverlein 1949,
1950; Davies 1965, 1969).

e It provides six choices for the refractive index formula:

1. Magnetoionic formula for constant collision frequency, including the effects
of the Earth’s magnetic field and collisions between electrons and neutral
molecules.

2. Magnetoionic formula, neglecting collisions.

3. Magnetoionic formula for constant collision frequency, neglecting the
Earth’s magnetic field.
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4. Magnetoionic formula, neglecting both the Earth’s magnetic field and col-
lisions.

5. Sen-Wyller formula, including the Earth’s magnetic field and collisions.

6. Sen-Wyller formula, including collisions but neglecting the Earth’s mag-
netic field.

e In addition to the raypath (including pulse travel time), the programme cal-
culates, optionally, phase, dissipation, frequency shift due to a time-dependent
medium, and geometrical path length.

e The approximation (5.9) is used to calculate dissipation.

o Models of electron density, the Earth’s magnetic field, and collision frequency
are expressed in Earth-centered spherical polar coordinates (essentially n terms
of height, longitude and latitude). Thus, refractive index is specified relative
to the Earth, not relative to the transmitter location.

e Several of each of the three kinds of models are furnished with the programme,
but the usér can add new models by writing new subroutines.

e The transmitter can be located at any height, longitude and latitude.

e The radio frequency, azimuth launch angle, and elevation launch angle can be
swept in ranges and increments specified by the user.

e The receiver can be specified at any height.

¢ Computer-readable output is optionally generated at cach ground reflection and
cach time the ray crosses the receiver height. This output is read by separate
programs that use interpolation to find eigenrays that connect the transmitter
with a specified receiver.

e A detailed printout of the raypath is optionally available.

e Plots of the raypath are available, showing the projection of the raypath on
any vertical or horizontal plane specified.

e The numerical integration algorithm uses an Adams-Moulton predictor-
corrector method with a Runge—Kutta starter. The user can specify the maxi-
mum allowable single-step error.

e A sample case is included to illustrate and test the programme on the user’s
computer.

e The programme is written in FORTRAN, and is easy to alter for specific needs
because of its modular organization into subroutines.
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11.3.2 Radio Frequencies

11.3.2.1 Observations of the Middle Atmosphere
and Lower Thermosphere by Radars

1 Introduction

Radars operating in the frequency ranges from MF (medium frequency) to UHF
(ultra-high frequency) are used to investigate the structure and dynamics of the
troposphere, stratosphere, mesosphere and thermosphere. In Table 1 the different

Table 1. Radar methods for investigations of the middle atmosphere and the
lower thermosphere

Typical operation parameters (approximate}

Method Frequency Wavelength Average  Antenna Height

range / [m] power dimension region

_ kW] 4

MF radar MF-HF 150-50 0.01- 1.0 2- 10 M, LT
Meteor radar HF-VHF 10— 6 0.1- 10 2- 10 M, LT
MST radar  VHF 6 7 1-100 550 M5 T
ST radar UHF-SHF  0.7- 0.10 50-500  10-500 S, T
Incoherent

scatter radar VHF-UHF 1.4- 0.25 100-300  100-300 M, LT

MF = 0.3-3.0 MHz M = Mesosphere

HF = 3.0-30 MHz S = Stratosphere

VHF = 30-300 MHz T = Troposphere .

UHF = 30-3000 MHz LT = Lower Thermosphere
SHF = 3-30 GHz



