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A B S T R A C T

There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric distur-
bances. Although the existence of earthquake precursors is controversial, one suggested method of detecting
possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves
generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a
general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be
used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity
waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can
radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to
the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding
particular cases. The work described here is the first step in achieving a generalized ray tracing program
permitting propagation studies of magneto-acoustic-gravity waves.

1. Introduction

Hines (1972) first suggested that atmospheric gravity waves
generated by tsunamis might produce identifiable ionospheric signa-
tures that could be used for tsunami warnings, and Peltier and Hines
(1976) concluded that such a system might be practical after determin-
ing that the various difficulties were of only marginal consequence.
Similarly, there have been a variety of earthquake-related infrasonic
signals documented by past researchers. For example, epicentral-
generated infrasound measured at long ranges (e.g. Young and
Greene, 1982; Mikumo, 1968) and infrasound measured by the local
passage of Rayleigh waves (e.g. Bedard, 1971; Cook, 1965; Liu et al.,
2011). Also, secondary radiation of infrasound from Rayleigh waves
interacting with complex terrain has been measured (e.g. Young and
Greene, 1982; Le Pichon et al., 2002).

The predictions of Hines (1972), and Peltier and Hines (1976) have
been verified by observations taken of ionospheric effects of tsunami-
generated atmospheric gravity waves during several recent major
earthquakes (for example Artru et al., 2005; Hickey, 2011; Mai and
Kiang, 2009; Liu et al., 2011; Makela et al., 2011).

Arai et al. (2011) have measured a Lamb wave radiated by a

tsunami epicentral ocean surface disturbance. They suggest that by
monitoring acoustic-gravity waves associated with undersea seismic
disturbances it may be possible to indicate the likelihood of tsunami
generation.

Other precursors have also been suggested (Varotsos et al., 1993,
2003; Freund, 2003; Geller, 1996). Finally, not only can infrasound be
generated directly by a tsunami, Le Pichon et al. (2005) documented
infrasound generated by the process of a tsunami interacting with a
shoreline.

If it were possible to detect earthquake precursors soon enough to
give warnings, lives could be saved. One suggested method of detecting
earthquake precursors is by observing possible effects on the iono-
sphere of atmospheric waves generated by earthquake precursors
(Blaunstein and Hayakawa, 2009; Heki, 2011), but that method is
controversial (Masci and Thomas, 2015).1 Testing the feasibility of
such a warning system requires being able to calculate the propagation
of such atmospheric waves from the ground to the ionosphere. Ray
tracing programs exist for calculating the propagation of acoustic-
gravity waves (e.g. Bedard and Jones, 2013; Jones and Bedard, 2015;
Jones et al., 1986a, 1986b; Georges et al., 1990),2 and estimates have
been made for the propagation of acoustic/magnetoacoustic waves
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1 Because seismic (Rayleigh) waves propagate much faster than sound, they are presently monitored in some locations as a precursor in early warning systems. There are also warning
systems based on monitoring the positions of strategically chosen points in an earthquake zone using GPS technology (e.g. Heki, 2011). Here, we consider the possibility of monitoring
the ionosphere as an alternative, additional warning system.

2 There are also programs for calculating the propagation of acoustic waves in the atmosphere that are not ray based.
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from the ground to the ionosphere (Ostrovsky, 2008). However, as far
as we know, no ray tracing program is now available to calculate the
propagation of magneto-acoustic-gravity waves or even just magnetoa-
coustic waves in the atmosphere. Here, we derive the appropriate
dispersion relations that could be used in a ray tracing program to
make such calculations.

Estimating the ionospheric effects of atmospheric waves began at
least by the 1960s (Georges, 1967; Yeh and Liu, 1972). Observation of
atmospheric motions due to infrasound generation by earthquakes
began as early as the 1960s. Due to the rapid decrease in gas density
with altitude, the corresponding velocities and displacements can reach
at least dozens of m/s and dozens of meters, respectively (Banister and
Hereford, 1991; Pulinets, 2004; Krasnov et al., 2011; Rapoport et al.,
2004; Heki, 2011, and the references therein). The role of magnetohy-
drodynamic effects in the evolution of infrasound entering the iono-
sphere from below had not been thoroughly studied until recently
(Pokhotelov et al., 1995; Koshevaya et al., 2001; Ostrovsky, 2008).
Ostrovsky (2008) analyzed the basic equations governing the propaga-
tion of sound from the ground to the ionosphere, and focused on
understanding the main changes in the linear and nonlinear dynamics
of an infrasonic wave propagating upward from the ground to iono-
spheric levels, where it transforms into the fast magnetic sound which
is the same wave mode as the non-magnetic infrasound excited at lower
altitudes. These calculations required some approximations, such as an
exponential variation of density with height, a constant background
magnetic field of the Earth, and making simple estimates for oblique
propagation.

Here, we begin to extend the previous research by developing a
general dispersion relation for magneto-acoustic-gravity waves, that
could be used in an atmospheric ray tracing program to calculate the
propagation of these waves from the ground up to the ionsophere. This
will allow the calculations for arbitrary background models of tem-
perature, density, pressure, winds, and the Earth's magnetic field, as
well as extending the propagation to oblique propagation.

Hickey and Cole (1987) consider ionospheric mechanisms in more
detail, including relative motion of ions and neutral molecules, as well
as the role of viscosity and diffusion. Here we limit our approach to a
simplified magnetohydrodynamic motion to apply to such sources as
earthquake-generated magnetic sound.

Section 2 discusses how dispersion relations are used to construct
WKB approximations following the method given by Weinberg (1962,
Section IV). Section 3 gives the basic equations governing the
propagation of magneto-acoustic-gravity waves. Section 4 linearizes
the basic equations. Section 5 defines some of the notation.

Section 6 gives the dispersion relation for magneto-acoustic-gravity
waves neglecting Coriolis force, vorticity, and rate-of-strain. This is
later applied to examine wave properties for specific conditions.

Section 7 gives Hamilton's equations for the refraction and
propagation of the rays that represent the waves determined by the
system of coupled equations in Section 4. It is pointed out that the
dispersion relation can be used for the Hamiltonian in Hamilton's
equations in a ray tracing program even if the dispersion relation is
given as the determinant of a matrix because Jacobi's formula can be
used for the derivative of a determinant.

Section 8 discusses growth and decay of the waves because it is
necessary when deriving a dispersion relation to distinguish between
actual growth or decay and apparent growth of the waves when
propagating to a region of low atmospheric density. We are reminded
that baroclinicity causes growth or decay of waves because buoyancy is
not a conservative force in a baroclinic fluid. However, growth or decay
of a wave caused by baroclinicity must result in energy exchange
between the wave and the mean flow if dissipation terms are neglected.

Section 9 considers the special case of a current-free region (that is,
a region in which there are no background currents). Eq. (37) gives the
magneto-acoustic-gravity-wave dispersion relation in a current-free
region, which results in significant simplification. The resulting dis-

persion relation is used in further approximations to examine wave
properties for specific conditions.

The barotropic approximation is often a good approximation for
acoustic-gravity-wave propagation in the atmosphere. Section 10
applies the barotropic approximation to the dispersion relation,
resulting in (38) for the more general case and (40) in a current-free
region.

Section 11 investigates the properties of the barotropic approxima-
tion to the magneto-acoustic-gravity-wave dispersion relation. A key
result is that the effect of the magnetic field increases with altitude as
the Alfvén speed increases due to the decrease in atmospheric density
with height.

Section 12 considers the special case of magnetoacoustic waves and
shows exact agreement with the dispersion relation given in previous
work (Ostrovsky, 2008). Section 13 considers Hamiltonian ray tracing
of magnetoacoustic waves and shows that a quartic equation must be
solved to give the magnitude of the wave vector to initialize the ray-
path calculation when specifying the frequency and wave-normal
direction.

Section 14 summarizes the main result, which is the derivation of
the magneto-acoustic-gravity-wave dispersion relation, which is a
generalization of the acoustic-gravity-wave dispersion relation to
include a magnetic field, or the generalization of the magnetoacous-
tic-wave dispersion relation to include gravity.

Appendix A presents the linearized coupled equations in matrix
form. The dissipation terms are neglected.

Appendix B gives the dispersion relation for magneto-acoustic-
gravity waves in terms of the determinant of the matrix that represents
the linearized coupled equations when the dissipation terms are
neglected.

2. WKB approximations

Jones (1996) reviews the practical aspects of ray tracing, the WKB
approximation, and the limits of geometrical optics to calculate wave
propagation in the atmosphere. Although the WKB approximation was
given its present name after 1926 (Wentzel, 1926; Kramers, 1926;
Brillouin, 1926), the method was discovered earlier (Liouville, 1836,
1837a, 1837b; Rayleigh (John William Strutt), 1912; Jeffreys, 1923).

There are several possibilities for calculating a dispersion relation
for the waves associated with a system of differential equations.
Sometimes it is possible to eliminate all of the dependent variables
but one to get a single differential equation for one dependent variable.
Alternatively, it is possible to use for the dispersion relation the
determinant of a matrix based on the system of equations (e.g.
Weinberg, 1962, Section IV), which is what we shall do here.

In either case, it is necessary to replace differential operators by
frequencies or wavenumbers to get a dispersion relation. Although the
choice of method leads to slightly different dispersion relations
(Einaudi and Hines, 1970), resulting in slightly different ray paths,
the resulting WKB approximations differ from one another by less than
the error in the WKB approximation. There may be some controversy
about whether a dispersion relation is unique (Einaudi and Hines,
1970; Godin, 2015; Weinberg, 1962; Jones, 2006).

The linearized momentum Eq. (9) in Section 4 contains velocity
shear terms that end up in the corresponding dispersion relation for
the Eikonal method. Olbers (1981) reasons that in a WKB concept only
the local fields are retained in the dispersion relation and gradients
(such as shear terms) enter only the propagation and refraction
equations. However, that restriction cannot apply when trying to
construct approximate solutions to a differential equation that already
contains gradient terms. He further reasons that keeping the shear
terms in the dispersion relation would be inconsistent if those terms
were smaller than some of the terms that are neglected in the WKB
approximation. Although that reasoning is persuasive, a counter view-
point is also persuasive. Namely, that to remove any of those shear
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terms from the differential equation or from the dispersion relation
would lead to a WKB approximation for a different differential equation
from the one intended. In that case, such a WKB approximation would
not agree with the solution of the intended equation within the error in
the WKB approximation.

Although the above consideration is sufficient to justify keeping all
of the terms in the dispersion relation, there are some practical reasons
for keeping the terms as well. It is sometimes necessary to keep some
terms that may be small in some cases, but significant in other cases.
Finally, even if some terms were always small, keeping all of the terms
allows the dispersion relation to be written in a more compact form,
and allows the dispersion relation to be more easily manipulated.

It is necessary to scale the dependent variables by factors of ρ 1/2±

(Gossard and Hooke, 1975, p. 77) to avoid the appearance of
extraneous growth or decay of the wave. This practice is supported
by general physical reasoning based on ρ u v w( + + )2 2 2 being propor-
tional to kinetic energy density, reasoning that applies equally to
barotropic and baroclinic flow. The components of the perturbation
of the Earth's magnetic field are scaled by the background values in
addition, for the same reason.

3. Basic equations

We use a pure magneto-hydrodynamic approximation, i.e. the
plasma is locally neutral with infinite conductivity, and we do not
consider separation between ions and neutral molecules. A more
detailed analysis of the broad scope of problems related to the relative
dynamics of ions and neutral components as well as dissipative
processes in the ionosphere is beyond the framework of this paper,
although it may be necessary to include them in the future for specific
situations in the upper ionosphere.

The equations of magnetohydrodynamics result from combining
the Navier-Stokes equations with Maxwell's equations and the Lorentz
force equation, while taking the electric conductivity to be infinite and
the magnetic permeability to be that of free space and assuming that
the ions move with the neutral molecules3 (Landau et al., 1984, Section
65).

Application of the equations of magnetohydrodynamics to the
ionosphere, including the Earth's magnetic field gives the starting
point for our development (Ostrovsky, 2008):

⎛
⎝⎜

⎞
⎠⎟t ρ p H

π πρ
U U U H H g L∂
∂ + ( ·∇) + 1∇ + 8 − 1

4 ( ·∇) − =
2

1
(1)

are the momentum equations, where U is the fluid velocity, ρ is the
density, p is the pressure, H is the Earth's magnetic field, g is the vector
gravitational field, and L1 is a dissipation term due to viscosity.

Dρ
Dt ρ U+ (∇· ) = 0

(2)

is the continuity equation, where the intrinsic derivative is defined by

D
Dt t U≡ ∂

∂ + ·∇.
(3)

Dρ
Dt = 0
∼
pot

(4)

is the requirement that the fluid behaves adiabatically, where ρ∼pot is the
local potential density, defined by (Jones, 2001, 2005, 2006)

ρ ρ c p∇ = ∇ − ∇ ,∼
spot
−2

(5)

where cs is the adiabatic sound speed, defined by (Yeh and Liu, 1972,

Eq. (8.1.16), p. 406), (Weinberg, 1972, Eq. (15.8.17), p. 566)

⎛
⎝⎜

⎞
⎠⎟c p

ρ= ∂
∂ ,s

2
(6)

and the partial derivative is for constant entropy and constant chemical
composition.

t
H U H H U H U L∂
∂ + ( ·∇) − ( ·∇) + (∇· ) = 2 (7)

and

H(∇· ) = 0 (8)

give the behavior of the Earth's magnetic field, where L2 is a dissipation
term due to electrical conductivity.

4. Linearization

Our linearization of the equations mostly follows that of Landau
et al. (1984, Section 69) and Ostrovsky (2008): We perturb the
equations by letting U U u= +0 , H H h= +0 , ρ ρ δρ= +0 ,
p p δp= +0 , and ρ ρ δρ= +∼ ∼ ∼

pot pot 0 pot.
A linearization of (1) is

⎛
⎝⎜

⎞
⎠⎟

D
Dt ρ δp π πρ πρ

δρ
ρ δ

u u U H h H h h H

g L

+ ( ·∇) + 1 ∇ + ·
4 − 1

4 ( ·∇) − 1
4 ( ·∇)

− = ,∼

0
0

0

0

0
0

0
0

0
1

(9)

where

D
Dt t U≡ ∂

∂ + ·∇,0
0 (10)

and

⎛
⎝⎜⎜

⎞
⎠⎟⎟

D
Dt ρ p H

π πρ
p

ρ πρ

g g U H H

H H

≡ − = 1 ∇ + 8 − 1
4 ( ·∇)

=
∇

+ 1
4 × (∇ × )

∼ 0 0

0
0

0
2

0
0 0

0

0 0
0 0

(11)

is the effective gravitational field, including (minus) the background
acceleration of the fluid.

A linearization of (2) is

D δρ
Dt ρ δρ

ρ
D ρ
Dt ρu u+ (∇· ) − + ( ·∇) = 0.0

0
0

0 0
0

(12)

A linearization of (4) is (Jones, 2001, 2005, 2006)

D δρ
Dt ρu+ ·∇ = 0.
∼

∼0 pot
pot0 (13)

A linearization of (7) is

D
Dt δh u H H u h U H u h U L+ ( ·∇) − ( ·∇) − ( ·∇) + (∇· ) + (∇· ) = .0

0 0 0 0 0 2 (14)

In what follows, we neglect dissipative terms. This is justified in
many cases for the upward propagating waves. For a brief discussion of
the role of dissipation with the corresponding references, see Ostrovsky
(2008). However, there may be situations where the dissipation terms
are significant (e.g. Hickey and Cole, 1987). For relatively short-period
infrasound, a radical increase in dissipation can be due to the
nonlinearity which increases with height due to the decrease in air
density and results in shock waves forming (Ostrovsky and Rubakha,
1972). However, we neglect nonlinear effects here.

Appendix A presents the linearized coupled equations in matrix
form. Appendix B gives the dispersion relation for magneto-acoustic-
gravity waves in terms of the determinant of the matrix that represents
the linearized coupled equations following the method given by
Weinberg (1962, Section IV). Eq. (B.2) gives the magneto-acoustic-

3 The assumption that ions move with the neutral molecules will usually be true if the
wavelength and wave period are much greater respectively than the mean free path and
mean time between collisions. However, the development could be generalized by
including ion-drag terms (Hickey and Cole, 1987).
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gravity-wave dispersion relation including Coriolis force, vorticity, and
rate-of-strain. In the absence of the magnetic field, the dispersion
relation reduces to that for acoustic-gravity waves (Jones, 2001, 2005,
2006).

From here on, we drop zero subscripts for compactness. All
quantities without subscript from here on are background quantities.

5. Notation

We define several quantities that will be used later.

p ρcΓ k≡ − ∇ /( )A s
2 (15)

is the vector generalization (Jones, 2001) of Eckart's coefficient
(Gossard and Hooke, 1975, p. 90) and

cΓ k g≡ − / ,∼∼
A s

2 (16)

where ρ ρk ≡ ∇ /(2 )A .
The buoyancy frequency for a fluid that does not have an imposed

magnetic field is the Brunt-Väisälä frequency, whose square is

N ρ p ρ p ρk= ∇ ·∇ / = ·∇ / ,∼
B

2
pot

2
(17)

where ρ ρk ≡ ∇ /∼
B pot . The buoyancy frequency N͠ for a fluid that has an

imposed magnetic field is given by

N ρ ρg k g= ∇ · / = · ,∼ ∼∼͠ B
2

pot (18)

where g∼ is given by (11), and includes some force terms from the
magnetic field in addition to the gradient of pressure.

The acoustic cutoff frequency ωa for a fluid that does not have an
imposed magnetic field is given by

ω c N cΓ k= + = .a s s A
2 2 2 2 2 2 (19)

The corresponding frequency ω∼a for a fluid that has an imposed
magnetic field is given by

ω c NΓ Γ= · + .∼ ͠∼
a s
2 2 2

(20)

6. Magneto-acoustic-gravity waves

For this development of magneto-acoustic-gravity waves, we ne-
glect Coriolis force, vorticity, and rate-of-strain. That is, we take

M M M M M= + + +1 2 3 6 (21)

as defined in (A.3)–(A.5), and (A.8) in Appendix A, and

M M M M M= + + +1 2 3 6 (22)

as defined in (B.4)–(B.6), and (A.8) in the appendices. Multiplying the
determinant of (22) by c H H H πρ ω/((4 ) )s x y z

2 2 2 2 3 2 and setting it to zero gives4

ω ω c i i πρ H k πρ
H k ω πρ c ω i
c ω i k πρ
c k πρ
ω k πρ
k πρ c ω
ω c H
c
c
c πρ

k Γ k Γ k g H k
H k k iΓ k k Γ g
k iΓ k Γ k H k iΓ H k iΓ H

k H k iΓ H k iΓ H
k g k H H k H g

k H H k H g k H Γ k H Γ
k H k k H g k Γ k k Γ g
k H k k iΓ k H k iΓ g
k H H k iΓ k k k iΓ g
k H k iΓ k k iΓ g

[ − ( + )·( − ) − · −( · ) /(4 ) − /(4 )]
+ ( · ) /(4 ) + [( + ) × ]·[( − ) × ]
+ [+( + )·( − )( · ) + ( + )· ( − )· ]/(4 )
− ( · ) [( + )· ( − )· ]/(4 )
+ [+( · )( · ) + ( · )( · )]/(4 )
− ( · ) ( · )( · )/(4 ) + [ ( · × )( · × )
+ ( · × )( · × ) − ( · × )( · × )
+ ( · )( ·( + ) × )( ·( − ) × )
+ ( · )( ·( + ) × )( ·( − ) × )
− ( · ) (( + ) × )·(( − ) × )]/(4 ) = 0.

∼
∼

∼ ∼
∼

∼ ∼
∼
∼

∼

∼
∼

∼ ∼
∼

∼
∼

∼
∼

∼

s B

s

s

s

B

s

s

s

s

s

B

B

B

B B

B

B

B

4 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2

2 2 2 2

2 2 2

2 2 2 2 2

2 2 2

2

2

2 2

(23)

We can partially factor (23) to give

⎡
⎣⎢

⎤
⎦⎥ω πρ ω ω c i i H k πρ

c i c k
πρ k πρ c ω
ω c H
c

c πρ

H k k Γ k Γ k g

k iΓ k k Γ g k iΓ H k iΓ H
H k H g k H Γ k H Γ

k H k k H g k Γ k k Γ g
k H k k iΓ k H k iΓ g

k H H k iΓ k k k iΓ g

− ( · )
4 { [ − ( + )·( − ) − · − /(4 )]

+ [( + ) × ]·[( − ) × ] + [ ( + )· ( − )· ]
/(4 )+[ ( · )( · )]/(4 )} + [ ( · × )( · × )
+ ( · × )( · × ) − ( · × )( · × )
+ ( · )( ·( + ) × )( ·( − ) × )
+ ( · )( ·( + ) × )( ·( − ) × )]/(4 ) = 0.

∼

∼
∼

∼ ∼
∼
∼

∼

∼ ∼
∼

∼
∼
∼

s B

s s

s

s

s

s

B

B

B B

B

B

2
2

2 2 2 2 2

2 2 2

2 2 2

2 2 2

2

2 (24)

We use

p ρc cΓ k k B× = × ∇ /(2 ) = /(2 )B B s s
2 2 (25)

and

Γ g k g B× = × = /2∼ ∼∼ ∼
A 2 (26)

in (24) to give

⎡
⎣⎢

⎤
⎦⎥ω πρ ω ω c k ω i p ρ H k πρ

c k N c i c
c k πρ k πρ
c ω ω

c H c ic i c
ic i c πρ

H k k g

k k k g B B k B k B g
k iΓ H k iΓ H H k H g
k H Γ k H Γ k H k k H g

k B k B k H k B H k g B
k H H k k B k B

− ( · )
4 { [ − − − ·( − ∇ / )− /(4 )]

+ [ − · · + · /(4 )+ ·( × − × / )/2]
+ [ ( + )· ( − )· ]/(4 )+[ ( · )( · )]/(4 )}
+ [ ( · × )( · × ) + ( · × )( · × )
− ( · )( · )/(4 ) + ( · )( · )( ·( × − /2))/(2 )
− ( · )( ·( × + /(2 )))( · )/2]/(4 ) = 0

∼

∼ ∼
∼

∼
∼

͠
∼
∼

∼ ∼

∼ ∼
∼

∼
s a

s B s B s

s

s

s s s s

s B s

B

B

2
2

2 2 2 2 2 2 2

2 2 2
2

2
2

2

2 2 2

2 2 2

2 2
2

2 2
2

2

2 2
2 (27)

for the dispersion relation, where the baroclinic vectors B and B∼2 are
defined in (34) and (36) in Section 8.

Setting the magnetic field to zero in (27) agrees with the usual
dispersion relation for acoustic-gravity waves in a baroclinic fluid
(Jones, 2005, Eq. (11)) and (Jones, 2006, Eq. (5)) when the effects
of vorticity, rotation of the Earth, and rate-of-strain are neglected.

We shall consider in Section 11 how the details of (27) can give us
insight into the propagation of magneto-acoustic-gravity waves.

7. Hamiltonian ray tracing

In Hamiltonian ray tracing, the ray paths are determined by
Hamilton's equations.

dx
dτ

H t x σ k
k= ∂ ( , , , )
∂ ,i i i

i (28)

dk
dτ

H t x σ k
x= − ∂ ( , , , )
∂ ,i i i

i (29)

dt
dτ

H t x σ k
σ= − ∂ ( , , , )
∂ ,i i

(30)

and

dσ
dτ

H t x σ k
t= ∂ ( , , , )
∂ ,i i

(31)

where i varies from 1 to 3, τ is an independent variable whose
significance depends on the choice of Hamiltonian, H t x σ k( , , , )i i , and
these equations are integrated numerically along the ray path. Eq. (28)
gives the progression of the ray, (29) gives the refraction of the wave
normal, (30) gives the travel time of the time-maximum of a wave
packet (Hines, 1951a, 1951b), and (31) gives the frequency shift of the
wave if the medium is changing with time.

(Misner et al., 1973, p. 488) refer to the Hamiltonian in (28)
through (31) as a super-Hamiltonian. The difference is that a normal
Hamiltonian is three-dimensional, represents energy, and varies along
the path, whereas a super-Hamiltonian is four-dimensional and is a
constant (equal to zero) along the path.4 as verified by an algebraic manipulation program (Mathematica).
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Because it is necessary to choose for the Hamiltonian something
that should be constant along the ray path, it is usual to choose some
form of the dispersion relation for a Hamiltonian. Here, is is useful to
take

H t x σ k c H H H πρ ωM( , , , ) = /((4 ) ) = 0i i s x y z
2 2 2 2 3 2

(32)

for the Hamiltonian, where the matrix M is defined in (22). There will
be no confusion between the Hamiltonian H t x σ k( , , , )i i and the Earth's
magnetic field H.

Unless attenuation of a wave is a significant cause of refraction (as it
is for low-frequency radio waves in the ionospheric D region (Jones,
1970)), the imaginary part of the Hamiltonian can be neglected for
calculating ray paths, and used only for calculating attenuation of the
wave (or amplification of the wave when there is transfer of energy
from the mean flow to the wave).

Although the determinant defining the Hamiltonian in (32) could
be expanded out to give a more explicit form for the Hamiltonian, it
would be tedious for an 8×8 determinant, and is not necessary because
the derivatives of a determinant necessary to calculate Hamilton's
equations can be expressed explicitly in terms of the trace of derivatives
of the elements of the corresponding matrix times the inverse of the
matrix using Jacobi's formula (e.g. Magnus and Neudecker, 1988, Part
3, Section 8.3, p. 149).

An appropriate computer program to calculate ray paths using the
dispersion relation in (32) is the general three-dimensional ray tracing
program for calculating acoustic-gravity waves in the atmosphere
(described in Bedard and Jones (2013) and Jones and Bedard
(2015)) based on an earlier program for calculating the propagation
of acoustic waves (Jones et al., 1986a, 1986b; Georges et al., 1990). In
addition to adding to that ray tracing program the dispersion relation
defined by the Hamiltonian in (32), it would be necessary to add a
model for the Earth's magnetic field.

Although dissipation is neglected here, there can be growth or decay
of the wave because of energy exchange between the wave and the
mean flow. This is shown by the complex dispersion relation, which
leads to a complex phase refractive index, a complex group refractive
index, and a complex group velocity. Although the significance of a
complex phase refractive index is well known, the significance of a
complex group refractive index and a complex group velocity are less
well known. The group refractive index n′ can be defined as

n c
ω k′ = ∂ /∂ ,ref

(33)

where cref is an arbitrary reference speed, and ω k∂ /∂ is group velocity.
Hines (1951a,1951b) showed that the speed of the time-maximum

of a pulse was equal to the reference speed divided by the real part of
the group refractive index. That is, the travel time of the time-
maximum of a pulse is proportional to the integral along the ray path
of the real part of the group refractive index.

The significance of the imaginary part of the complex group
refractive index is less well known. The group refractive index will be
complex if the wave growth or decay depends on frequency. A pulse
propagating through a medium that has a complex group refractive
index will have its frequency shifted by an amount that is proportional
to the imaginary part of the group refractive index (Jones, 1981)

8. Energy exchange between the waves and the mean flow

Usually, imaginary terms in a dispersion relation represent growth
or decay of the wave. Sometimes those imaginary terms are extraneous,
caused by not correctly scaling some of the variables. For example, not
scaling some variables by the square root of the density can cause
extraneous growth or decay of the wave.

Without extraneous growth or decay, imaginary terms in the
dispersion relation are due to either dissipation, or energy exchange
between the wave and the background flow. Because dissipation has

been neglected here, growth or attenuation of the wave must be
associated with energy exchange between the wave and the background
flow. There is then the question of whether we are violating the non-
acceleration theorem, which we now address.

The non-acceleration theorem states that steady, non-dissipated,
long, quasi-static, stationary waves have no effect on the mean (zonally
averaged) flow (Eliassen and Palm, 1960; Andrews, 2009). Or, in a
related statement (Charney and Drazin, 1961) “However, when the
wave disturbance is a small stationary perturbation on a zonal flow that
varies vertically but not horizontally, the second-order effect of the
eddies on the zonal flow is zero.” It seems clear from the above
statements, that although the non-acceleration theorem is important
and has wide applicability, it does not prohibit coupling between the
wave and the mean flow in all cases. In particular, Jones (2001,
Sections IV and V) presents a parcel explanation to show that buoyancy
is a non-conservative force in a baroclinic fluid, which implies energy
exchange between a wave and the mean flow. In addition, Jones (2001,
Sections IV and V) uses the vorticity equation to show that baroclinicity
contributes to a time variation of vorticity, and estimates the time-rate-
of-change of the action to show why we should expect energy exchange
between the wave and the background flow in a baroclinic fluid. The
generalized Eliassen-Palm and Charney-Drazin theorems (Andrews
and McIntyre, 1976, 1978) also do not prohibit coupling between the
wave and the mean flow in all cases.

If the matrix M in (A.2) is Hermitian (that is, if the real part of the
matrix is symmetric and the imaginary part is antisymmetric), then the
waves will propagate without growth or attenuation. Because M1, M2,
and M3 are symmetric, M will be Hermitian if all of the other matrices
(which are all imaginary) are antisymmetric.

For a fluid that does not have an imposed magnetic field, the fluid is
barotropic if p∇ is in the same direction as ρ∇ . On the other hand, the
fluid is baroclinic if the gradients of pressure and density are inclined to
each other. Specifically, the baroclinic vector is defined as

ρ p ρ ρ p ρ p ρ p ρB k k≡ ∇ × ∇ / = ∇ × ∇ / = 2 × ∇ / = × ∇ / .∼
A B

2
pot

2
(34)

For a fluid that has an imposed magnetic field, there is more than
one way that the fluid can be baroclinic because the direction of the
magnetic field and its gradient give additional independent vectors that
might or might not be in the same direction as the gradients of pressure
or density. There are, in that general case, three independent vectors,
and three independent pairs of those vectors, that leads to three
independent baroclinic vectors. Specifically, in addition to the baro-
clinic vector defined in (34), we also have another baroclinic vector B∼1
defined by

ρ ρB g k g≡ ∇ × / = × ,∼ ∼∼∼
B1 pot (35)

and another baroclinic vector B∼2 defined by

ρ ρB g k g≡ ∇ × / = 2 × ,∼ ∼∼
A2 (36)

both of which differ from the baroclinic vector defined in (34) when the
curl of the magnetic field is non-zero, as can be seen from (11).

The matrix M6 in (A.8) would be antisymmetric if the flow were
barotropic (B, B∼1, and B∼2 all equal to zero) and if Γ Γ=∼

. The matrix M6
in (A.8) will have a symmetric component if the wave is baroclinic (any
of B, B∼1, or B∼2 being non-zero) or if Γ Γ≠∼

.
Because M4 and M8 in (A.7) and (A.11) are antisymmetric, they will

not contribute to energy exchange between the wave and the mean
flow. Because M5 and M12 in (A.7) and (A.15) are symmetric, they could
contribute to energy exchange between the wave and the mean flow,
but that would require magnetic monopoles and the creation of matter
in the atmosphere.

That the symmetric rate of strain tensor (A.10) in the matrix M7 in
(A.9) can contribute to energy exchange between the wave and the
background flow follows from the relationship among Reynolds stress,
eddy viscosity, and the symmetric rate of strain tensor (Monin and
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Yaglom, 1987, Section 6.3, p. 389). The rest of the matrix M7 in (A.9) is
antisymmetric, so it will not contribute to energy exchange between the
wave and the mean flow.

Because M9 and M11 in (A.12) and (A.14) have symmetric compo-
nents, they can contribute to energy exchange between the wave and
the mean flow. The matrix M10 in (A.13) can contribute to energy
exchange between the wave and the mean flow unless the curl of the
Earth's magnetic field is zero. However, Maxwell's equations would
then require there to be electric currents or a time-varying electric field,
which would explain why such a term might lead to energy exchange
between the wave and the background.

9. Current-free background

The contribution of the background magnetic field to the effective
background gravitational field g∼ in (11) is proportional to the curl of
the magnetic field. However, one of Maxwell's equations tells us that
the curl of the magnetic field is zero in any region that is free of electric
currents if the electric field is not changing with time. For the case of a
current-free background, the contribution of the magnetic field to the
effective gravitational field g∼ in (11) is also zero.

In that case, we get p ρg = ∇ /∼ , which gives Γ Γ=∼
, N N=͠ , ω ω=∼

a a,
and B B B= =∼ ∼

1 2 , which results in a great deal of simplification in the
dispersion relation in (27). This gives

⎡
⎣⎢

⎤
⎦⎥ω πρ ω ω c k ω H k πρ

c k N c i c
c k πρ k πρ
c ω ω c H c

ic i c
ic i c πρ

H k

k k k g B B k B k B g
k iΓ H k iΓ H H k H g
k H Γ k H k k H g k B

k H k B H k g B
k H H k k B k B

− ( · )
4 { [ − − − /(4 )]

+ [ − · · + · /(4 )+ ·( × − × / )/2]
+ [ ( + )· ( − )· ]/(4 )+[ ( · )( · )]/(4 )}
+ [ ( · × ) + ( · × )( · × ) − ( · ) /(4 )
+ ( · )( · )( ·( × − /2))/(2 )
− ( · )( ·( × + /(2 )))( · )/2]/(4 ) = 0

∼ ∼
∼

∼
∼

s a

s B s B s

s

s s s

s s

s B s

B

B

2
2

2 2 2 2 2 2 2

2 2 2 2 2

2 2 2

2 2 2 2 2 2 2 2

2 2

2 2 (37)

for the dispersion relation.

10. Barotropic approximation

The barotropic approximation is usually valid for acoustic-gravity
waves whenever Coriolis effects can be neglected. It is likely that the
barotropic approximation is also valid for magneto-acoustic-gravity
waves whenever Coriolis effects can be neglected. We make the
barotropic approximation by neglecting the baroclinic vectors B and
B∼2 in (27). This gives

⎡
⎣⎢

⎤
⎦⎥ω πρ ω ω c k ω i p ρ H k πρ

c k N c k πρ
k πρ c ω
ω πρ

H k k g

k k k g k iΓ H k iΓ H
H k H g k H Γ k H Γ
k H k k H g

− ( · )
4 { [ − − − ·( − ∇ / )− /(4 )]

+ [ − · · ] + [ ( + )· ( − )· ]/(4 )
+[ ( · )( · )]/(4 )} + [ ( · × )( · × )
+ ( · × )( · × )]/(4 ) = 0.

∼

∼
∼

∼

͠ ∼
∼

∼
s a

s B s

sB

B

2
2

2 2 2 2 2 2 2

2 2 2 2 2

2 2 2

2 (38)

The barotropic approximation for the dispersion relation for a
current-free background, from (37), is

⎡
⎣⎢

⎤
⎦⎥ω πρ ω ω c k ω H k πρ c k N

c k πρ k πρ
c ω ω πρ

H k k k k g

k iΓ H k iΓ H H k H g
k H Γ k H k k H g

− ( · )
4 { [ − − − /(4 )] + [ − · · ]

+ [ ( + )· ( − )· ]/(4 )+[ ( · )( · )]/(4 )}
+ [ ( · × ) + ( · × )( · × )]/(4 ) = 0.

∼

∼
∼

s a s B

s

s

B

B

2
2

2 2 2 2 2 2 2 2 2 2

2 2 2

2 2 2 2 (39)

Rearranging terms and making appropriate substitutions in (39)
gives

ω c k ω ω ω c k c N k k ω k
c k ω H H H c k k c ω ω H H H

( − )[( − )( − ) + ( ( + ) − )
+ ( − ( + )/ + )] + ( + )/ = 0,

A H a A s x y

A a x y s H A a x y

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2
⊥
2 2 2 2 2 2 2

(40)

where kH is the component of k in the direction of H, Hx and Hy are the
components of H perpendicular to kB and g∼, kx and ky are the
components of k perpendicular to kB and g∼, k⊥ is the component of k
perpendicular to both kB (and g∼) and H, and

πρ
c H=

4A
(41)

is the Alfvén velocity.
Notice that the dispersion relation for the Alfvén wave factors out

only if the wave vector k is in the plane of kB (and g∼) and H (making the
last term zero). Setting cA to zero in (40) gives the usual barotropic
acoustic-gravity-wave dispersion relation (e.g. Eckart, 1960; Gossard
and Hooke, 1975; Jones, 2001, 2005, 2006). Setting both N and ωa to
zero in (40) gives the dispersion relation for magnetoacoustic waves
and Alfvén waves (61).

Ordinary sound transforms to magnetic sound smoothly with no
discontinuities. Gravity waves do not couple with acoustic waves
because there is a frequency gap between the Brunt-Väisälä frequency
and the acoustic-cutoff frequency. However, there is not always a
frequency gap between magnetogravity waves and magnetoacoustic
waves under some circumstances.

11. Properties of the magneto-acoustic-gravity wave
dispersion relation

Now we consider more specific dispersion properties of magneto-
acoustic-gravity waves in several quantitative examples. Here we
neglect Coriolis force and concentrate on three factors which are
characteristic of the relatively short-period waves excited by the ground
and water motions affecting the ionosphere, namely the compressi-
bility, magnetic field, and gravity.

To determine the properties of the magneto-acoustic-gravity wave
dispersion relation, it is useful to choose a coordinate system in which
the magnetic field is in the x z− frame. Then, we can write (40) as

ω c k ω ω ω k N c ω c c c ω ϕ c c k
k N c ω c c c ω ϕ c c k

k ω c c c ω ϕ c c k k c ω ω ϕ

[ − ]{( − ) + [ − ( + ) + cos + ]
+ [ − ( + ) + cos + ]
+ [− ( + ) + cos + )]} + sin = 0,

A H a x s s A A a A s H

y s s A A a A s H

z s A A a A s H y A a

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

(42)

where ϕ is the angle between the magnetic field and the z axis, and

k k ϕ k k ϕ ϕ k ϕ= sin + 2 sin cos + cos .H x x z z
2 2 2 2 2

(43)

A symmetric form, equivalent to (42), that we shall use later to
explain some of the figures is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝⎜⎜

⎞
⎠⎟⎟

⎛
⎝⎜⎜

⎞
⎠⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

k k
ω

k ϕ
ω

k k N
ω c c

k
ω

k ϕ
ω

c
k
ω

k ϕ
ω c

k
ω

k ϕ
ω

k k N
ω

k
ω

k ϕ
ω c k

− + sin −
( + ) 1 + 1 − − cos

− 1 − − cos 1 − + sin −
( + )

+ sin
−

= 0.

H A x y

s A

H A

s

H A

A

H A x y

y A

A H

2 2

2

2 2

2

2 2 2

4 2 2

2

2

2 2

2

2

2

2

2 2

2 2

2

2

2 2

2

2 2 2

4

2

2

2 2

2 2 2 (44)

11.1. In the k k−x z plane
For propagation in the k k−x z plane, the last term in (42) is zero. In

that case, the rest of (42) factors. The second factor is

ω ω ω N c ω c c c ω ϕ c c k k
ω c c c ω ϕ c c k k

[ − ] + [ − ( + ) + cos + ]
+ [− ( + ) + cos + ] = 0.

a s s A A a A s H x

s A A a A s H z

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2
(45)

Eq. (45) can tell us under what conditions waves are propagating or
evanescent. If the coefficients (the factors in brackets) of all three terms
in (45) are the same sign, then the waves will be evanescent because
that would require at least one of ω2, kx

2, or kz
2 to be negative. For very
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large frequency, the first coefficient will be positive and the other two
coefficients will be negative, to give a propagating acoustic wave or
magnetoacoustic wave depending on other conditions. As the fre-
quency is lowered, one or more of the coefficients will eventually
change sign. If the first coefficient changes sign first (which it will when
cA is small enough), then the wave will become evanescent, and the
wave will remain evanescent until the frequency is lowered enough that
one of the other coefficients changes sign, which usually occurs at the
Brunt-Väisälä frequency, N, when cA is small enough. When cA is
larger, there might not be any frequencies for which all three
coefficients are the same sign, and therefore no frequencies for which
the wave is evanescent. However, even then, gravity would still have a
significant effect on the propagation at some frequencies through the N
and ωa terms.

We present here a set of figures to illustrate the effects of the
magnetic field on acoustic-gravity-wave propagation. Since the Alfvén
speed cA varies approximately exponentially with height (because it is
proportional to the reciprocal of the square root of density), its height
variation will dominate the height variation of the dispersion relation.
To illustrate that dependence, we have chosen values of cA that
represent its value at various heights in the atmosphere. The first two
figures show the dispersion relation for gravity waves at heights of
about 95 km and 115 km to show how the effect of the magnetic field
on gravity waves increases with height. The next four figures show the
dispersion relation for normal sound and magnetic sound just below
and just above the height (about 155 km) where normal sound couples
to magnetic sound because cA is equal to cs, the sound speed there.

One way to look at the dispersion relation is to consider frequency
to be a function of the components of the wavenumber. For that, we
write (45) as

ω ω ω c c k k k N c c ω ϕ c c k
k c ω ϕ c c k

− [ + ( + )( + )] + [ + cos + ]
+ [ cos + ] = 0.

a s A x z x s A a A s H

z A a A s H

4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2
(46)

Eq. (46) can be solved as a quadratic equation for ω2 as a function of kx
and kz. The results are shown as three-dimensional surface plots in
Fig. 1 through Fig. 4 for various values of the parameters. In addition,
the intersections of those surfaces with a horizontal plane for a specific
frequency is shown.

Figs. 1 and 2 show the intersection of the dispersion-relation
surface with a plane that corresponds to an intrinsic frequency below
the acoustic cutoff frequency, while Figs. 3 and 4 show a similar
intersection for an intrinsic frequency above the acoustic cutoff
frequency. Note that in the low-frequency case only one propagating
wave mode exists, whereas at higher frequencies and larger cA there are
two propagating modes. Fig. 5 shows both these modes (intersections)
in the form of the dispersion curves relating kx and kz for a frequency of
0.01 Hz. For all of these figures, the sound speed, cs=0.3 km s−1, the
Brunt-Väisälä frequency, N=0.01 s−1, ϕcos = 0.52 , kA=0.035 km−1, and
the acoustic cutoff frequency, ω = 0.0105a rad s−1.

The cases in Figs. 1 and 2 can be interpreted as a mixture of
magnetogravity waves and magnetoacoustic waves. Near the origin, we
see the dispersion relation for magneto-gravity waves, which resembles
that for non-magnetic gravity waves. However, the magneto-gravity
waves switch to magneto-acoustic waves away from the origin.

The case in Fig. 2 is the same as that in Fig. 1 except that the Alfvén
speed is larger in Fig. 2, leading to a larger effect from the magnetic
field. Generally, the effect of the magnetic field increases with height in
the atmosphere as the Alfvén speed increases because it is inversely
proportional to the square root of density.

Fig. 3 shows the dispersion relation for the slow magneto-acoustic
wave. The direction of the magnetic field is approximately perpendi-
cular to the two nearly parallel lines. It would be exactly perpendicular
if there were no effect of the gravitational field.

Fig. 4 shows the dispersion relation for the fast magnetoacoustic
wave. The radius of the small “circle” is approximately

Fig. 1. Dispersion relation for a magneto-acoustic-gravity wave for propagation in the
same vertical plane as the Earth's magnetic field. The surface gives the intrinsic frequency
in rad s−1 as a function of kx and kz in km−1. Also shown is the intersection of the surface
with a horizontal plane for an intrinsic frequency of 0.001 Hz, which is below the acoustic
cutoff frequency for this case. The sound speed, cs=0.3 km s−1. The acoustic cut-off
frequency ω = 0.0105a radians s−1. The Brunt-Väisälä frequency, N=0.01 s−1. The angle

between the magnetic field and vertical, ϕ = 45°. The Alfvén speed, cA=0.01 km s−1. The
effect of the magnetic field is smaller here than it is in Fig. 2 because of the smaller Alfvén
speed here. Generally, the effect of the magnetic field increases with height in the
atmosphere as the Alfvén speed increases because it is inversely proportional the the
square root of density. The value of cA in this figure corresponds to a height of about
95 km if we use a value of 8.5 km as the density scale height (Ostrovsky, 2008).

Fig. 2. Dispersion relation for a magneto-acoustic-gravity wave for propagation in the
same vertical plane as the Earth's magnetic field. The surface gives the intrinsic frequency
in rad s−1 as a function of kx and kz in km−1. Also shown is the intersection of the surface
with a horizontal plane for an intrinsic frequency of 0.001 Hz, which is below the acoustic
cutoff frequency for this case. The Alfvén speed, cA=0.03 km s−1. Otherwise, conditions as
in Fig. 1. The effect of the magnetic field is larger here than it is in Fig. 1 because of the
larger Alfvén speed here. Generally, the effect of the magnetic field increases with height
in the atmosphere as the Alfvén speed increases because it is inversely proportional the
the square root of density. The part of the dispersion relation near the origin corresponds
to a gravity wave. The part away from the origin corresponds to a magnetoacoustic wave.
Where they join gives the possibility of coupling between the two kinds of waves. The
value of cA in this figure corresponds to a height of about 115 km if we use a value of
8.5 km as the density scale height (Ostrovsky, 2008).
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ω c k ϕ/ − coss A
2 2 2 2 ( ω c≈ / s for the values in Fig. 4) parallel to the

magnetic field, but the radius is approximately ω c c/ +s A
2 2 normal to

the magnetic field (when the effect of gravity can be neglected). The fast
magnetoacoustic wave becomes an ordinary acoustic wave as c → 0A .
Because the magnitude of the wavenumber k in Fig. 4 is smaller than
that in Fig. 3, the phase speed ω k/ will be larger in Fig. 4 than in Fig. 3.

Therefore, the wave in Fig. 4 is called the fast wave.
To consider the relation between kx and kz for a fixed frequency, we

write (45) as

ϕk ϕk k k ϕ ω c c k ϕ
k ϕ k k ϕk k ϕ

ω c c k ϕ N c k ϕ k
ω ω ω c c

cos + sin2 + [2 cos − ( + ) + cos
− cos2 ] + sin2 + cos
+ [− ( + ) + cos + − cos2 ]
+ ( − ) /( ) = 0.

z x z x s A A

x z x z x

s A A A x x

a A s

2 4 3 2 2 2 −2 −2 2 2

2 2 3 4 2

2 −2 −2 2 2 2 −2 2 2

2 2 2 2 2 (47)

Eq. (47) can be solved as a quartic equation in kz as a function of kx.
The result is shown in Fig. 5, which shows the dispersion relation
relating kx and kz for a frequency of 0.01 Hz. The second factor in (44)
shows that the approximate formula for the nearly straight lines that
describe the slow magneto-acoustic wave in Figs. 3, 5, and 6 is

k k ϕ k ϕ ω c c k ϕ= ( cos + sin ) ≈ (1/ + 1/ ) − cos .H z x A s A
2 2 2 2 2 2 2

(48)

However, the dispersion relation for the slow magnetoacoustic wave
deviates more noticeably from a straight line as cA increases.

Fig. 6 shows the corresponding case for cA=0.35 km s−1. In this
case, with c c>A s, the center portion is magnetic sound. As (41) shows,
the Alfvén speed is proportional the the magnetic field and inversely
proportional to the square root of the density. Therefor, cA will grow
approximately exponentially with height because the approximately
exponential decay of density with height dominates the height varia-
tion.

We can use (44) and ((65) in Section 12) to analyze Fig. 3 through
Fig. 6. Looking at (44), we see that the gravity terms that contain kA
and N are small for the values in Fig. 3 through Fig. 6, so that (44)
reduces to (65) for the ky=0 case. We use (65) for the main analysis, but
sometimes refer to (44) to see how gravity alters the main effects.

To orient ourselves, the magnetic field is in the kx-kz plane, at a 45 °
angle with the kz axis, pointing roughly perpendicular to the two nearly
straight lines in Figs. 3, 5, and 6. The component of k in the direction of
the magnetic field is kH. The square of the component of k in the
direction normal to the magnetic field is k k− H

2 2 .
From (65), we see that the magnitude of the component of k normal

Fig. 3. Dispersion relation for a slow magneto-acoustic-gravity wave for propagation in
the same vertical plane as the Earth's magnetic field. The surface gives the intrinsic
frequency in rad s−1 as a function of kx and kz in km−1. This is a slow magnetoacoustic
wave. Also shown is the intersection of the surface with a horizontal plane for an intrinsic
frequency of 0.01 Hz, which is above the acoustic cutoff frequency for this case. The
Alfvén speed, cA=0.25 km s−1. Otherwise, conditions as in Fig. 1. The conditions in this
figure represent the case where the Alfvén speed cA is slightly smaller than the sound
speed cs, which would occur at a height of about 152 km in the atmosphere if we use a
value of 8.5 km as the density scale height (Ostrovsky, 2008).

Fig. 4. Dispersion relation for a fast magneto-acoustic-gravity wave for propagation in
the same vertical plane as the Earth's magnetic field. The surface gives the intrinsic
frequency in rad s−1 as a function of kx and kz in km−1. This is a fast magnetoacoustic
wave. Also shown is the intersection of the surface with a horizontal plane for an intrinsic
frequency of 0.01 Hz, which is above the acoustic cutoff frequency for this case. The
Alfvén speed, cA=0.25 km s−1. Otherwise, conditions as in Fig. 1. The conditions in this
figure represent the case where the Alfvén speed cA is slightly smaller than the sound
speed cs, which would occur at a height of about 152 km in the atmosphere if we use a
value of 8.5 km as the density scale height (Ostrovsky, 2008).

Fig. 5. Dispersion relation for magneto-acoustic-gravity waves for propagation in the
same vertical plane as the Earth's magnetic field for an intrinsic frequency (0.01 Hz)
above the acoustic cutoff frequency. The vertical axis is kz in km s−1. The horizontal axis is
kx in km s−1. The Alfvén speed, cA=0.25 km s−1. Otherwise, conditions as in Fig. 1. The
center part is a fast magnetoacoustic wave. The outer portion is a slow magnetoacoustic
wave. From the lower left to the upper right, the distances from the origin are
approximately: ω c/ A, ω c/ s, ω c/ s, and ω c/ A. Because of the effect of gravity, the distances

are only approximate. The conditions in this figure represent the case where the Alfvén
speed cA is slightly smaller than the sound speed cs, which would occur at a height of
about 152 km in the atmosphere if we use a value of 8.5 km as the density scale height
(Ostrovsky, 2008). If the Alfvén speed cA and the sound speed cs were equal, the two
branches of the dispersion relation would touch, and there would be coupling between
the acoustic waves and the magnetic sound waves. This would occur at a height of about
155 km in the atmosphere because of the exponential growth of CA with height
(Ostrovsky, 2008).
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to the magnetic field will be zero when the component of k along the
magnetic field is ω c/ s or ω c/ A. That gives four intersections of the
dispersion relation function with a line through the origin that is in the
direction of the magnetic field. Figs. 3 and 4 each show two of those
intersections, and Figs. 5 and 6 each show all four intersections.
Because c c<A s in Figs. 3–5, ω c/ s will give the intersections closer to the
origin in Fig. 5, and the only intersections in Fig. 4. ω c/ A will give the
intersections farther from the origin in Fig. 5, and the only intersec-
tions in Fig. 3. Similarly, because c c>A s in Fig. 6, ω c/ A will give the
intersections closer to the origin in Fig. 6 and ω c/ s will give the
intersections farther from the origin in Fig. 6. Eq. (44) can be used
to show that gravitational effects alter these calculations slightly.

From (65), we see that component of k normal to the magnetic field
is infinite when the denominator on the right-hand side of (65) is zero.
That allows us to calculate the asymptotic values of the nearly straight
lines in Figs. 3, 5, and 6 as giving k ω c ω c= / + /H s A

2 2 2 2 2. Eq. (44) can be
used to show that gravitational effects alter these calculations slightly.

Setting kH to zero in (65) shows that the “radius” of the small
“circle” in the direction normal to the magnetic field in Figs. 4–6 is
approximately ω c c/ +s A

2 2 . Eq. (44) can be used to show that gravita-
tional effects alter these calculations slightly.

11.2. In the k k−y z plane
For propagation in the k k−y z plane, the dispersion relation

becomes

ω c k ϕ ω ω ω k N c ω c c c ω ϕ
c c k ϕ k ω c c c ω ϕ c c k ϕ
k c ω ω ϕ

[ − cos ]{( − ) + [ − ( + ) + cos
+ cos ]+ [− ( + ) + cos + cos ]}
+ sin = 0.

A z a y s s A A a

A s z z s A A a A s z

y A a

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2
(49)

Factoring out the Alfvén wave gives

ω ω ω k N c ω c c c ω f c c k ϕ
k ω c c c ω ϕ c c k ϕ

( − ) + [ − ( + ) + + cos ]
+ [− ( + ) + cos + cos ] = 0,

a y s s A A a A s z

z s A A a A s z

2 2 2 2 2 2 2 2 2 2 2
1

2 2 2 2

2 2 2 2 2 2 2 2 2 2 2
(50)

where

f ω c k ϕ
ω c k ϕ

≡ − cos
− cos

.A z

A z
1

2 2 2 4

2 2 2 2
(51)

The dispersion-relation curve in the k k−y z plane intersects the ky
axis in two places, which are

k ω ω ω
N c ω c c c ω

= ( − )
− ( + ) +

.y
a

s s A A a

2
2 2 2

2 2 2 2 2 2 2 (52)

The dispersion relation in the k k−y z plane is more complicated
because of the possible coupling with the Alfvén wave.

11.3. In an arbitrary vertical plane

For propagation in an arbitrary vertical plane that makes an angle θ
with the vertical plane containing the magnetic field, the dispersion
relation is

ω ω ω k N c ω c c c ω f c c k
k ω c c c ω ϕ c c k

( − ) + [ − ( + ) + + ]
+ [− ( + ) + cos + ] = 0,

a h s s A A a A s H

z s A A a A s H

2 2 2 2 2 2 2 2 2 2 2
2

2 2 2

2 2 2 2 2 2 2 2 2 2
(53)

where the horizontal component of the wave vector is kh,

f ϕ ϕ θ ω c k ϕ
ω c k

≡ (cos + sin sin ) − cos
−

,A H

A H
2

2 2 2 2 2 2 2

2 2 2 (54)

and

k k θ ϕ k k θ ϕ ϕ k ϕ= cos sin + 2 cos sin cos + cos .H h h z z
2 2 2 2 2 2

(55)

Eq. (53) can be written as

c c k k k ω c c c ω ϕ ω ω ω N c k

k ϕ c ω ω
ω c k

+ [− ( + ) + cos ] + ( − ) +

+ sin
−

= 0.

A s H s A A a a s h

y
A a

A H

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2
2 2 2

2 2 2 (56)

Or,

c c ϕk k ω c c c ω ϕ c c k k θ ϕ ϕ
k ϕ θ ϕ ω ω ω N c k

k ϕ c ω ω
ω c k

cos + [− ( + ) + cos + (2 cos sin cos
+ (sin cos − cos ))] + ( − ) +

+ sin
−

= 0.

A s s A A a A s h z

h a s h

y
A a

A H

2 2 2 4 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2
2 2 2

2 2 2 (57)

It can be seen from Fig. 2, that magnetoacoustic waves are not
restricted to be above the acoustic-cutoff frequency because Fig. 2
(which contains both magnetoacoustic and magnetogravity waves) is
for a frequency below the acoustic cutoff frequency.

Reflection of magnetogravity waves at ionospheric heights is
controlled by the rapid increase of cA

2 with height as the density of
the atmosphere decreases as seen in (41). Looking at (53), we see that
as cA

2 increases in the second term in the coefficient of kh
2, there will be

a height where the kh
2 term no longer dominates the ω ω ω( − )a

2 2 2 term.
At that point, kz

2 will be zero, and would be negative above that height,
indicating an evanescent region. Reflection occurs at that height.

12. Magnetoacoustic waves

To compare with previous results in the special case of a pure
magnetoacoustic wave (Ostrovsky, 2008) (also called a magnetosonic
wave (Landau et al., 1984)) without losses, we neglect all but the first
three matrices in M as given by (A.2) and in M as given by (B.3). That
is, we take

M M M M= + +1 2 3 (58)

and

M M M M= + + .1 2 3 (59)

Multiplying the determinant of (59) by c H H H πρ ω/((4 ) )s x y z
2 2 2 2 3 2 and setting

it to zero gives5

Fig. 6. Dispersion relation for magneto-acoustic-gravity waves for propagation in the
same vertical plane as the Earth's magnetic field for an intrinsic frequency (0.01 Hz)
above the acoustic cutoff frequency. The vertical axis is kz in km s−1. The horizontal axis is
kx in km s−1. The Alfvén speed, cA=0.35 km s−1. Otherwise, conditions as in Fig. 1. The
center part is a fast magnetoacoustic wave. The outer portion is a slow magnetoacoustic
wave. From the lower left to the upper right, the distances from the origin are
approximately: ω c/ s, ω c/ A, ω c/ A, and ω c/ s. Because of the effect of gravity, the distances

are only approximate. The conditions in this figure represent the case where the Alfvén
speed cA is slightly greater than the sound speed cs, which would occur at a height of
about 158 km in the atmosphere if we use a value of 8.5 km as the density scale height
(Ostrovsky, 2008). If the Alfvén speed cA and the sound speed cs were equal, the two
branches of the dispersion relation would touch, and there would be coupling between
the acoustic waves and the magnetic sound waves. This would occur at a height of about
155 km in the atmosphere because of the exponential growth of CA with height
(Ostrovsky, 2008).
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⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

ω ω c k H k
πρ

H k ω
πρ

c k
πρ ω πρ

H k H k

H k H k

− − ( · ) +
4 + ( · )

(4 )

+ ( · )
4 2 − ( · )

4 = 0

s

s

4 2 2 2
2 2 2 2 2 2 2

2

2 2 2
2

2

(60)

for the dispersion relation. Notice that in the absence of the Earth's
magnetic field, the dispersion relation reduces to the standard disper-
sion relation for an acoustic wave. We can factor (60) to give

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ω πρ ω c H

πρ k ω c k
πρ

H k H k− ( · )
4 − + 4 + ( · )

4 = 0s
s2

2
4 2

2
2 2

2 2 2

(61)

for the dispersion relation. The first factor in (61),

ω πρ
H k− ( · )
4 = 0,2

2

(62)

gives the dispersion relation for an Alfvén wave, where the group
velocity is parallel to the background magnetic field and has a speed
equal to the Alfvén speed, and for an arbitrary direction of the wave
normal, the trace speed in the direction of the background magnetic
field is also equal to the Alfvén speed.

The second factor in (61),

⎛
⎝⎜

⎞
⎠⎟ω c H

πρ k ω c k
πρ

H k− + 4 + ( · )
4 = 0,s

s4 2
2

2 2
2 2 2

(63)

is one form of the dispersion relation for the two magnetoacoustic
waves (Ostrovsky, 2008, Eq. (3)). Another form for the dispersion
relation is

⎛
⎝⎜

⎞
⎠⎟ω c H

πρ k ω c H k k
πρ− + 4 + 4 = 0,s

s H4 2
2

2 2
2 2 2 2

(64)

where kH is the component of k parallel to H. A symmetric form of the
dispersion relation that is a special case of (44) is

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟k k

ω
− =

− −

+ −
.H c

k
ω c

k
ω

c c
k
ω

2 2

2

1 1

1 1

s
H

A
H

s A
H

2
2
2 2

2
2

2 2
2
2 (65)

Ostrovsky and Rubakha (1972) calculated the nonlinear effects of the
propagation of a magnetoacoustic wave in the vertical direction,
including the effects of the magnetic field.

13. Hamiltonian ray tracing for Magnetoacoustic waves

As mentioned above, an appropriate computer program to calculate
ray paths using the dispersion relation in (64) is the general three-
dimensional ray tracing program for calculating acoustic-gravity waves
in the atmosphere (described in Bedard and Jones (2013) and Jones
and Bedard (2015)).

In that case, we would use

⎛
⎝⎜

⎞
⎠⎟H t x σ k ω c H

πρ k ω c H k k
πρ( , , , ) = − + 4 + 4i i s

s H4 2
2

2 2
2 2 2 2

(66)

for the Hamiltonian. To initialize a ray-path calculation, one chooses
the frequency and the wave-normal direction (that is, the direction of
k). To determine all of the components of k, it is necessary calculate the
magnitude of k from the dispersion relation. If there were no back-
ground wind, then ω in (66) would equal the wave frequency and we
could use the following form of the dispersion relation

⎛
⎝⎜

⎞
⎠⎟ω c H

πρ k ω c H k
πρ− + 4 + 4 = 0s

s k4 2
2

2 2
2 2 4

(67)

to determine the magnitude of k, where Hk is the component of H
parallel to k. If, however, there is a background wind U, then we must
use (B.1) for the intrinsic frequency in (67). That gives

⎛
⎝⎜

⎞
⎠⎟σ c H

πρ k σ c H k
πρk U k U( − · ) − + 4 ( − · ) + 4 = 0,s

s k4 2
2

2 2
2 2 4

(68)

which will give a quartic equation to determine k.

14. Concluding remarks

Eq. (B.2) gives the general magneto-acoustic-gravity-wave disper-
sion relation neglecting dissipation and nonlinear effects. Eq. (27) gives
the dispersion relation in the special case where we neglect Coriolis
force, vorticity, and symmetric rate-of-strain. Eq. (37) gives the
dispersion relation in a current-free region. The barotropic approxima-
tion to the dispersion relation is in (38), or for a current-free region, in
(40) and (42). Eq. (65) gives the special case of the dispersion relation
for magnetoacoustic-waves. In the absence of the magnetic field, the
dispersion relation in each of the above cases reduces to that of the
corresponding case for acoustic-gravity waves (Jones, 2001, 2005,
2006).

These dispersion relations can be used as a Hamiltonian to
calculate ray paths in a general atmospheric ray tracing program (e.g.
Bedard and Jones, 2013; Jones and Bedard, 2015; Jones et al., 1986a,
1986b; Georges et al., 1990). Keeping all terms in the determinant-
form of the dispersion relation in (B.2) will permit quantitatively
assessing the significance of all of the terms,6 as well as insuring that
application of the WKB approximation will be to the correct set of
equations and not to an approximate set of equations.

Generalizing the dispersion relation in raytracing to include mag-
neto-acoustic-gravity waves is useful, but using gravity waves from the
ground to the ionosphere as a practical method of earthquake warning
depends on having early precursors (Blaunstein and Hayakawa, 2009)
because the travel time of gravity waves from the Earth surface to the
ionosphere varies from hours to days (Jones and Bedard, 2016). The
travel-time calculations could be tested using the full magneto-acous-
tic-gravity wave dispersion relation.

The dispersion relation for the special case of magnetoacoustic
waves in (64) or (65) could also be used as a Hamiltonian in a ray
tracing program. Because propagation of acoustic waves is so much
faster than gravity waves, ray tracing of magnetoacoustic waves could
provide a practical method for testing the possibility of detecting
earthquake precursors by monitoring the ionosphere.

The following reference validations were done in developing these
dispersion relations:

• When the effects of vorticity, rotation of the Earth, and rate of strain
are neglected and the magnetic field is set to zero, the expression for
magneto-acoustic-gravity waves agrees with the usual dispersion
relation for acoustic-gravity waves in a baroclinic fluid.

• Magnetoacoustic wave dispersion relation - In the absence of the
Earth's magnetic field, the dispersion relation reduces to the
standard dispersion relation for acoustic waves.

• Magneto-acoustic-gravity wave dispersion relation - In the absence
of the Earth's magnetic field, this reduces to the dispersion relation
for acoustic-gravity waves.

In addition, it is of general theoretical interest to understand the
propagation processes for how earthquake ground motion affects the
ionosphere. Knowing the dispersion relation for magneto-acoustic-
gravity waves will help in understanding how earthquake ground
motion affects the ionosphere.

5 as verified by an algebraic manipulation program (Mathematica).

6 by using the determinant as the Hamiltonian in a ray-tracing program, and
comparing ray-path calculations with and without various terms.
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There is a challenge in evaluating the relative importance of various
terms, but the dispersion relations presented here will make that easier
to do.

There are a wealth of wave complexities and situations that can be
explained using the magneto-acoustic-gravity-wave dispersion rela-
tions under varying conditions (e.g. wind profiles and temperature
profiles). The dispersion relation presented here should find valuable

applications.

Acknowledgments

We thank the anonymous reviewer for many useful comments and
suggestions.

Appendix A. Matrix representation

We can compactly write (9), (12), (13), and (14) as a single matrix equation as

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

ρ u
ρ v
ρ w

ρ δρ
ρ δp

πρ h H
πρ h H
πρ h H

iρ

δL
δL
δL

δL H
δL H
δL H

M

4 /
4 /
4 /

= − 0
0
/
/
/

.
∼
pot

x x

y y

z z

x

y

z

x x

y y

z z

0
1/2

0
1/2

0
1/2

0
−1/2

0
−1/2

0
1/2

0

0
1/2

0

0
1/2

0

0
1/2

1

1

1

2 0

2 0

2 0

(A.1)

From here on, we neglect the dissipation terms, L1 and L2, but there may be situations where the dissipation terms are significant (e.g. Hickey and
Cole, 1987).

The first three rows in (A.1) are the components of the linearized momentum Eq. (9). The fourth row is the linearized adiabatic condition (13).
The fifth row is the difference between the linearized continuity Eq. (12) and the linearized adiabatic condition (13). The last three rows are the
linearized equations for the Earth's magnetic field (14). The matrix M is the 8×8 matrix given by

∑ ∑M M M= + + ,
i

i
i

i
=1

3

=4

12

(A.2)

and the various matrices above are defined as follows.

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

ωM = −

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

,c
πρ

H
πρ

H
πρ

H

1

1

4

4

4

s

x

y

z

2

2

2

2 (A.3)

where ω iD Dt i t iU≡ / = ∂/∂ + ·∇00 , and zero subscripts have been dropped from the matrices for compactness. All quantities within matrices (except
the differential operators ω and k) are background quantities.

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

k k k k
k k k k
k k k k

k k k
k k k
k k k
k k k

M =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

,

x x x x

y y y y

z z z z

x y z

x y z

x y z

x y z

2

(A.4)

ik ≡ − ∇,

R.M. Jones et al. Journal of Atmospheric and Solar–Terrestrial Physics 159 (2017) 7–22

17



⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

M H k= −

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

· ,

H

H

H

H

H

H

3

1

1

1

1

1

1

x

y

z

x

y

z (A.5)

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

iΩ iΩ
iΩ iΩ

iΩ iΩ
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−2 0 2 0 0 0 0 0
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

,

͠ ͠
͠ ͠
͠ ͠

z y

z x

y x
4

(A.6)

where ζΩ ≡ /4͠ , and ζ U≡ ∇ × is the vorticity. However, if we had included Coriolis force due to the rotation of the Earth in the momentum Eq. (1),
then we would have ζΩ Ω≡ + /4͠ , where Ω is the Earth's angular velocity.

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎛
⎝⎜
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0 0 0 0 0 0 0 0
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i

iρ
c

ρ c
ρ

sS

5

2

2

2

2

∂
∂s

s1/2
4

1/2 2

(A.7)

where the partial derivative in (A.7) is with holding the entropy and the chemical composition constant,

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞
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(A.8)

ρ ρk ≡ ∇ /(2 )A , ρ ρk ≡ ∇ /∼
B pot ,
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∂ (A.9)

and e is the matrix representing the symmetric rate-of-strain tensor (Aris, 1962, p. 89), (Cole, 1962, p. 228), (Monin and Yaglom, 1987), whose
components are

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟e U

x
U
x≡ 1

2
∂
∂ +

∂
∂ ,ij

i

j

j

i (A.10)
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⎛

⎝
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i ρ
ρM H= ·∇

2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

− 0 0 0 0 0 0 0

0 − 0 0 0 0 0 0

0 0 − 0 0 0 0 0

,

H

H

H

H

H

H

8

1

1

1

1

1

1

x

y

z

x

y

z (A.11)
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where we have used the continuity Eq. (2), and

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

M ≡

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

.
H

H

H

13 1

1

1

x

y

z

2

2

2 (A.16)

That the matrices containing differential operators, M1, M2, and M3, in (A.3), (A.4), (A.5), are symmetric exhibits explicitly that the Eqs. (A.1) are
symmetric hyperbolic, which implies that Cauchy data will be propagated causally (Courant and Hilbert, 1962; Garabedian, 1964).
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Appendix B. Dispersion relation

The dispersion relation corresponding to the differential Eq. (A.1) is found by following the procedure in the eikonal method (Weinberg, 1962),
in which we replace the differential operator ω by the intrinsic frequency

ω σ k U= − · 0 (B.1)

(where σ is the wave frequency), replace the differential operator k by the wavenumber k, and set the determinant of M (possibly with some useful
factors) to zero.

For the situation here, to avoid extraneous factors of density, frequency, sound speed, and components of the magnetic field, it is useful to use

c H H H πρ ωM /((4 ) ) = 0s x y z
2 2 2 2 3 2

(B.2)

for the dispersion relation, where
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and
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The dispersion relation in (B.2) can be considered to be the general dispersion relation for a magneto-acoustic-gravity wave. In the absence of
the magnetic field, the dispersion relation reduces to that for acoustic-gravity waves (Jones, 2001, 2005, 2006).

The magnetic field terms in the matrices M8, M9, M10, M11, and M12 are not usually kept in the dispersion relation for magnetoacoustic waves, but
we keep those terms here in the general dispersion relation in (B.2) so that their effect can be tested by using the general dispersion relation as the
Hamiltonian in a ray-tracing program, and comparing ray-path calculations with and without various terms. Similarly, the atmospheric terms in the
matrix M5 are not usually kept in the dispersion relation for acoustic-gravity waves, but we keep those terms here in the general dispersion relation
in (B.2) so that their effect can be tested.
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