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Abstract

There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the
existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis
is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity
waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth’s magnetic field. This
dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-
gravity waves from the ground to the ionosphere. The presence of the Earth’s magnetic field in the ionosphere can radically change
the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for
magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step
in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.
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1. Introduction

Hines (1972) first suggested that atmospheric gravity waves
generated by tsunamis might produce identifiable ionospheric
signatures that could be used for tsunami warnings, and Peltier
and Hines (1976) concluded that such a system might be
practical after determining that the various difficulties were
of only marginal consequence. Similarly, there have been
a variety of earthquake-related infrasonic signals documented
by past researchers. For example, epicentral-generated infra-
sound measured at long ranges (e.g. Young and Greene, 1982;
Mikumo, 1968) and infrasound measured by the local passage
of Rayleigh waves (e.g. Bedard, 1971; Cook, 1965; Liu et al.,
2011). Also, secondary radiation of infrasound from Rayleigh
waves interacting with complex terrain has been measured (e.g.
Young and Greene, 1982; Le Pichon et al., 2002).

The predictions of Hines (1972), and Peltier and Hines
(1976) have been verified by observations taken of ionospheric
effects of tsunami-generated atmospheric gravity waves dur-
ing several recent major earthquakes (for example Artru et al.,
2005; Hickey, 2011; Mai and Kiang, 2009; Liu et al., 2011;
Makela et al., 2011).

Arai et al. (2011) have measured a Lamb wave radiated by
a tsunami epicentral ocean surface disturbance. They suggest
that by monitoring acoustic-gravity waves associated with un-
dersea seismic disturbances it may be possible to indicate the
likelihood of tsunami generation.

Other precursors have also been suggested (Varotsos et al.,
1993, 2003; Freund, 2003; Geller, 1996). Finally, not only can
infrasound be generated directly by a tsunami, Le Pichon et al.
(2005) documented infrasound generated by the process of a

tsunami interacting with a shoreline.
If it were possible to detect earthquake precursors soon

enough to give warnings, lives could be saved. One sug-
gested method of detecting earthquake precursors is by observ-
ing possible effects on the ionosphere of atmospheric waves
generated by earthquake precursors (Blaunstein and Hayakawa,
2009; Heki, 2011), but that method is controversial (Masci and
Thomas, 2015).1 Testing the feasibility of such a warning sys-
tem requires being able to calculate the propagation of such at-
mospheric waves from the ground to the ionosphere. Ray trac-
ing programs exist for calculating the propagation of acoustic-
gravity waves (e.g. Bedard and Jones, 2013; Jones and Bedard,
2015; Jones et al., 1986a,b; Georges et al., 1990),2 and esti-
mates have been made for the propagation of acoustic/magneto-
acoustic waves from the ground to the ionosphere (Ostrovsky,
2008). However, as far as we know, no ray tracing program is
now available to calculate the propagation of magneto-acoustic-
gravity waves or even just magnetoacoustic waves in the atmo-
sphere. Here, we derive the appropriate dispersion relations
that could be used in a ray tracing program to make such calcu-
lations.

Estimating the ionospheric effects of atmospheric waves be-
gan at least by the 1960s (Georges, 1967; Yeh and Liu, 1972).

1Because seismic (Rayleigh) waves propagate much faster than sound, they
are presently monitored in some locations as a precursor in early warning sys-
tems. There are also warning systems based on monitoring the positions of
strategically chosen points in an earthquake zone using GPS technology (e.g.
Heki, 2011). Here, we consider the possibility of monitoring the ionosphere as
an alternative, additional warning system.

2There are also programs for calculating the propagation of acoustic waves
in the atmosphere that are not ray based.
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Observation of atmospheric motions due to infrasound gener-
ation by earthquakes began as early as the 1960s. Due to the
rapid decrease in gas density with altitude, the correspond-
ing velocities and displacements can reach at least dozens of
m/s and dozens of meters, respectively (Banister and Hereford,
1991; Pulinets, 2004; Krasnov et al., 2011; Rapoport et al.,
2004; Heki, 2011, and the references therein). The role of mag-
netohydrodynamic effects in the evolution of infrasound enter-
ing the ionosphere from below had not been thoroughly studied
until recently (Pokhotelov et al., 1995; Koshevaya et al., 2001;
Ostrovsky, 2008). Ostrovsky (2008) analyzed the basic equa-
tions governing the propagation of sound from the ground to the
ionosphere, and focused on understanding the main changes in
the linear and nonlinear dynamics of an infrasonic wave prop-
agating upward from the ground to ionospheric levels, where
it transforms into the fast magnetic sound which is the same
wave mode as the non-magnetic infrasound excited at lower al-
titudes. These calculations required some approximations, such
as an exponential variation of density with height, a constant
background magnetic field of the Earth, and making simple es-
timates for oblique propagation.

Here, we begin to extend the previous research by develop-
ing a general dispersion relation for magneto-acoustic-gravity
waves, that could be used in an atmospheric ray tracing program
to calculate the propagation of these waves from the ground up
to the ionsophere. This will allow the calculations for arbitrary
background models of temperature, density, pressure, winds,
and the Earth’s magnetic field, as well as extending the propa-
gation to oblique propagation.

Hickey and Cole (1987) consider ionospheric mechanisms
in more detail, including relative motion of ions and neutral
molecules, as well as the role of viscosity and diffusion. Here
we limit our approach to a simplified magnetohydrodynamic
motion to apply to such sources as earthquake-generated mag-
netic sound.

Section 2 discusses how dispersion relations are used to con-
struct WKB approximations following the method given by
Weinberg (1962, Section IV). Section 3 gives the basic equa-
tions governing the propagation of magneto-acoustic-gravity
waves. Section 4 linearizes the basic equations. Section 5 de-
fines some of the notation.

Section 6 gives the dispersion relation for magneto-acoustic-
gravity waves neglecting Coriolis force, vorticity, and rate-of-
strain. This is later applied to examine wave properties for spe-
cific conditions.

Section 7 gives Hamilton’s equations for the refraction and
propagation of the rays that represent the waves determined by
the system of coupled equations in section 4. It is pointed out
that the dispersion relation can be used for the Hamiltonian in
Hamilton’s equations in a ray tracing program even if the dis-
persion relation is given as the determinant of a matrix because
Jacobi’s formula can be used for the derivative of a determinant.

Section 8 discusses growth and decay of the waves because it
is necessary when deriving a dispersion relation to distinguish
between actual growth or decay and apparent growth of the
waves when propagating to a region of low atmospheric den-
sity. We are reminded that baroclinicity causes growth or de-

cay of waves because buoyancy is not a conservative force in a
baroclinic fluid. However, growth or decay of a wave caused by
baroclinicity must result in energy exchange between the wave
and the mean flow if dissipation terms are neglected.

Section 9 considers the special case of a current-free region
(that is, a region in which there are no background currents).
Equation (37) gives the magneto-acoustic-gravity-wave disper-
sion relation in a current-free region, which results in signifi-
cant simplification. The resulting dispersion relation is used in
further approximations to examine wave properties for specific
conditions.

The barotropic approximation is often a good approximation
for acoustic-gravity-wave propagation in the atmosphere. Sec-
tion 10 applies the barotropic approximation to the dispersion
relation, resulting in (38) for the more general case and (40) in
a current-free region.

Section 11 investigates the properties of the barotropic ap-
proximation to the magneto-acoustic-gravity-wave dispersion
relation. A key result is that the effect of the magnetic field
increases with altitude as the Alfvén speed increases due to the
decrease in atmospheric density with height.

Section 12 considers the special case of magnetoacoustic
waves and shows exact agreement with the dispersion relation
given in previous work (Ostrovsky, 2008). Section 13 considers
Hamiltonian ray tracing of magnetoacoustic waves and shows
that a quartic equation must be solved to give the magnitude
of the wave vector to initialize the ray-path calculation when
specifying the frequency and wave-normal direction.

Section 14 summarizes the main result, which is the deriva-
tion of the magneto-acoustic-gravity-wave dispersion relation,
which is a generalization of the acoustic-gravity-wave disper-
sion relation to include a magnetic field, or the generalization of
the magnetoacoustic-wave dispersion relation to include grav-
ity.

Appendix A presents the linearized coupled equations in ma-
trix form. The dissipation terms are neglected.

Appendix B gives the dispersion relation for magneto-
acoustic-gravity waves in terms of the determinant of the matrix
that represents the linearized coupled equations when the dissi-
pation terms are neglected.

2. WKB approximations

Jones (1996) reviews the practical aspects of ray tracing,
the WKB approximation, and the limits of geometrical op-
tics to calculate wave propagation in the atmosphere. Al-
though the WKB approximation was given its present name
after 1926 (Wentzel, 1926; Kramers, 1926; Brillouin, 1926),
the method was discovered earlier (Liouville, 1836, 1837a,b;
Rayleigh (John William Strutt), 1912; Jeffreys, 1923).

There are several possibilities for calculating a dispersion
relation for the waves associated with a system of differential
equations. Sometimes it is possible to eliminate all of the de-
pendent variables but one to get a single differential equation
for one dependent variable. Alternatively, it is possible to use
for the dispersion relation the determinant of a matrix based
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on the system of equations (e.g. Weinberg, 1962, Section IV),
which is what we shall do here.

In either case, it is necessary to replace differential operators
by frequencies or wavenumbers to get a dispersion relation. Al-
though the choice of method leads to slightly different disper-
sion relations (Einaudi and Hines, 1970), resulting in slightly
different ray paths, the resulting WKB approximations differ
from one another by less than the error in the WKB approxima-
tion. There may be some controversy about whether a disper-
sion relation is unique (Einaudi and Hines, 1970; Godin, 2015;
Weinberg, 1962; Jones, 2006).

The linearized momentum equation (9) in section 4 contains
velocity shear terms that end up in the corresponding dispersion
relation for the Eikonal method. Olbers (1981) reasons that in
a WKB concept only the local fields are retained in the disper-
sion relation and gradients (such as shear terms) enter only the
propagation and refraction equations. However, that restriction
cannot apply when trying to construct approximate solutions to
a differential equation that already contains gradient terms. He
further reasons that keeping the shear terms in the dispersion
relation would be inconsistent if those terms were smaller than
some of the terms that are neglected in the WKB approxima-
tion. Although that reasoning is persuasive, a counter viewpoint
is also persuasive. Namely, that to remove any of those shear
terms from the differential equation or from the dispersion re-
lation would lead to a WKB approximation for a different dif-
ferential equation from the one intended. In that case, such a
WKB approximation would not agree with the solution of the
intended equation within the error in the WKB approximation.

Although the above consideration is sufficient to justify keep-
ing all of the terms in the dispersion relation, there are some
practical reasons for keeping the terms as well. It is sometimes
necessary to keep some terms that may be small in some cases,
but significant in other cases. Finally, even if some terms were
always small, keeping all of the terms allows the dispersion re-
lation to be written in a more compact form, and allows the
dispersion relation to be more easily manipulated.

It is necessary to scale the dependent variables by factors of
ρ±1/2 (Gossard and Hooke, 1975, p. 77) to avoid the appearance
of extraneous growth or decay of the wave. This practice is sup-
ported by general physical reasoning based on ρ(u2 + v2 + w2)
being proportional to kinetic energy density, reasoning that ap-
plies equally to barotropic and baroclinic flow. The components
of the perturbation of the Earth’s magnetic field are scaled by
the background values in addition, for the same reason.

3. Basic equations

We use a pure magneto-hydrodynamic approximation, i.e.
the plasma is locally neutral with infinite conductivity, and we
do not consider separation between ions and neutral molecules.
A more detailed analysis of the broad scope of problems related
to the relative dynamics of ions and neutral components as well
as dissipative processes in the ionosphere is beyond the frame-
work of this paper, although it may be necessary to include them
in the future for specific situations in the upper ionosphere.

The equations of magnetohydrodynamics result from com-
bining the Navier-Stokes equations with Maxwell’s equations
and the Lorentz force equation, while taking the electric con-
ductivity to be infinite and the magnetic permeability to be that
of free space and assuming that the ions move with the neutral
molecules3 (Landau et al., 1984, Section 65).

Application of the equations of magnetohydrodynamics to
the ionosphere, including the Earth’s magnetic field gives the
starting point for our development (Ostrovsky, 2008):

∂U
∂t

+ (U · ∇)U +
1
ρ
∇

(
p +

H2

8π

)
−

1
4πρ

(H · ∇)H − g = L1 (1)

are the momentum equations, where U is the fluid velocity, ρ is
the density, p is the pressure, H is the Earth’s magnetic field, g
is the vector gravitational field, and L1 is a dissipation term due
to viscosity.

Dρ
Dt

+ ρ(∇ · U) = 0 (2)

is the continuity equation, where the intrinsic derivative is de-
fined by

D
Dt
≡
∂

∂t
+ U · ∇ . (3)

Dρ̃pot
Dt

= 0 (4)

is the requirement that the fluid behaves adiabatically, where
ρ̃pot is the local potential density, defined by (Jones, 2001,
2005, 2006)

∇ρ̃pot = ∇ρ − c−2
s ∇p , (5)

where cs is the adiabatic sound speed, defined by (Yeh and Liu,
1972, eq. (8.1.16), p. 406), (Weinberg, 1972, eq. (15.8.17), p.
566)

c2
s =

(
∂p
∂ρ

)
, (6)

and the partial derivative is for constant entropy and constant
chemical composition.

∂H
∂t

+ (U · ∇)H − (H · ∇)U + H(∇ · U) = L2 (7)

and

(∇ ·H) = 0 (8)

give the behavior of the Earth’s magnetic field, where L2 is a
dissipation term due to electrical conductivity.

3The assumption that ions move with the neutral molecules will usually be
true if the wavelength and wave period are much greater respectively than the
mean free path and mean time between collisions. However, the development
could be generalized by including ion-drag terms (Hickey and Cole, 1987).
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4. Linearization

Our linearization of the equations mostly follows that of Lan-
dau et al. (1984, Section 69) and Ostrovsky (2008): We perturb
the equations by letting U = U0 + u, H = H0 + h, ρ = ρ0 + δρ,
p = p0 + δp, and ρ̃pot = ρ̃pot 0 + δρ̃pot.

A linearization of (1) is

D0u
Dt

+ (u · ∇)U0 +
1
ρ0
∇

(
δp +

H0 · h
4π

)
−

1
4πρ0

(H0·∇)h −
1

4πρ0
(h · ∇)H0 − g̃

δρ

ρ0
= δL1 , (9)

where
D0

Dt
≡
∂

∂t
+ U0·∇ , (10)

and

g̃ ≡ g −
D0U0

Dt
=

1
ρ0
∇

p0 +
H2

0

8π

 − 1
4πρ0

(H0·∇)H0

=
∇p0

ρ0
+

1
4πρ0

H0×(∇ ×H0) (11)

is the effective gravitational field, including (minus) the back-
ground acceleration of the fluid.

A linearization of (2) is
D0δρ

Dt
+ ρ0(∇ · u) −

δρ

ρ0

D0ρ0

Dt
+ (u · ∇)ρ0 = 0 . (12)

A linearization of (4) is (Jones, 2001, 2005, 2006)
D0δρ̃pot

Dt
+ u · ∇ρ̃pot 0 = 0 . (13)

A linearization of (7) is
D0h
Dt

+ (u · ∇)H0 − (H0·∇)u − (h · ∇)U0

+H0(∇ · u) + h(∇ · U0) = δL2 . (14)

In what follows, we neglect dissipative terms. This is jus-
tified in many cases for the upward propagating waves. For a
brief discussion of the role of dissipation with the correspond-
ing references, see Ostrovsky (2008). However, there may
be situations where the dissipation terms are significant (e.g.
Hickey and Cole, 1987). For relatively short-period infrasound,
a radical increase in dissipation can be due to the nonlinearity
which increases with height due to the decrease in air density
and results in shock waves forming (Ostrovsky and Rubakha,
1972). However, we neglect nonlinear effects here.

Appendix A presents the linearized coupled equations in
matrix form. Appendix B gives the dispersion relation for
magneto-acoustic-gravity waves in terms of the determinant
of the matrix that represents the linearized coupled equations
following the method given by Weinberg (1962, Section IV).
Equation (B.2) gives the magneto-acoustic-gravity-wave dis-
persion relation including Coriolis force, vorticity, and rate-of-
strain. In the absence of the magnetic field, the dispersion re-
lation reduces to that for acoustic-gravity waves (Jones, 2001,
2005, 2006).

From here on, we drop zero subscripts for compactness. All
quantities without subscript from here on are background quan-
tities.

5. Notation

We define several quantities that will be used later.

Γ ≡ kA − ∇p/(ρc2
s) (15)

is the vector generalization (Jones, 2001) of Eckart’s coefficient
(Gossard and Hooke, 1975, p. 90) and

Γ̃ ≡ kA − g̃/c2
s , (16)

where kA ≡ ∇ρ/(2ρ).
The buoyancy frequency for a fluid that does not have an

imposed magnetic field is the Brunt-Väisälä frequency, whose
square is

N2 = ∇ρ̃pot · ∇p/ρ2 = kB · ∇p/ρ , (17)

where kB ≡ ∇ρ̃pot/ρ. The buoyancy frequency Ñ for a fluid
that has an imposed magnetic field is given by

Ñ2 = ∇ρ̃pot · g̃/ρ = kB · g̃ , (18)

where g̃ is given by (11), and includes some force terms from
the magnetic field in addition to the gradient of pressure.

The acoustic cutoff frequency ωa for a fluid that does not
have an imposed magnetic field is given by

ω2
a = c2

sΓ
2 + N2 = c2

sk2
A . (19)

The corresponding frequency ω̃a for a fluid that has an imposed
magnetic field is given by

ω̃2
a = c2

sΓ · Γ̃ + Ñ2 . (20)

6. Magneto-acoustic-gravity waves

For this development of magneto-acoustic-gravity waves, we
neglect Coriolis force, vorticity, and rate-of-strain. That is, we
take

M̂ = M̂1 + M̂2 + M̂3 + M6 (21)

as defined in (A.3), (A.4), (A.5), and (A.8) in Appendix A, and

M = M1 + M2 + M3 + M6 (22)

as defined in (B.4), (B.5), (B.6), and (A.8) in the appendices.
Multiplying the determinant of (22) by c2

s H2
x H2

y H2
z /((4πρ)3ω2)

and setting it to zero gives4

ω4
[
ω2 − c2

s(k + iΓ) · (k − iΓ̃) − kB · g̃

−(H · k)2/(4πρ) − H2k2/(4πρ)
]

+H2k2ω2(H · k)2/(4πρ)2

+c2
sω

2 [(k + iΓ) × kB] ·
[
(k − iΓ̃) × g̃

]
+c2

sω
2
[
+(k + iΓ) · (k − iΓ̃)(k ·H)2

+k2(k + iΓ) ·H(k − iΓ̃) ·H
]
/(4πρ)

4as verified by an algebraic manipulation program (Mathematica)
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−c2
sk2(k ·H)2

[
(k + iΓ) ·H(k − iΓ̃) ·H

]
/(4πρ)2

+ω2
[
+(kB · g̃)(k ·H)2

+k2(H · kB)(H · g̃)
]
/(4πρ)

−k2(k ·H)2(H · kB)(H · g̃)/(4πρ)2

+
[
c2

sω
2(k ·H × Γ)(k ·H × Γ̃)

+ω2(k ·H × kB)(k ·H × g̃)
−c2

s H2(k · Γ × kB)(k · Γ̃ × g̃)
+c2

s(k ·H)(k · (k + iΓ) × kB)(H · (k − iΓ̃) × g̃)
+c2

s(k ·H)(H · (k + iΓ) × kB)(k · (k − iΓ̃) × g̃)
−c2

s(k ·H)2((k + iΓ) × kB) · ((k − iΓ̃) × g̃) ] /(4πρ)
= 0 . (23)

We can partially factor (23) to give[
ω2 −

(H·k)2

4πρ

] {
ω2

[
ω2 − c2

s(k + iΓ) · (k − iΓ̃) − kB · g̃

−H2k2/(4πρ)
]

+c2
s [(k + iΓ) × kB] ·

[
(k − iΓ̃) × g̃

]
+c2

s

[
k2(k + iΓ) ·H(k − iΓ̃) ·H

]
/(4πρ)

+
[
k2(H · kB)(H · g̃)

]
/(4πρ)

}
+

[
c2

sω
2(k ·H × Γ)(k ·H × Γ̃)

+ω2(k ·H × kB)(k ·H × g̃)
−c2

s H2(k · Γ × kB)(k · Γ̃ × g̃)
+c2

s(k ·H)(k · (k + iΓ) × kB)(H · (k − iΓ̃) × g̃)

+c2
s(k ·H)(H · (k + iΓ) × kB)(k · (k − iΓ̃) × g̃)

]
/(4πρ)

= 0 . (24)

We use

Γ × kB = kB × ∇p/(2ρc2
s) = B/(2c2

s) (25)

and

Γ̃ × g̃ = kA × g̃ = B̃2/2 (26)

in (24) to give[
ω2 −

(H·k)2

4πρ

] {
ω2

[
ω2 − c2

sk2 − ω̃2
a − ik · (g̃ − ∇p/ρ)

−H2k2/(4πρ)
]

+c2
s

[
k2Ñ2 − k · kBk · g̃ + B · B̃2/(4c2

s)

+ik ·
(
B̃2 × kB − B × g̃/c2

s

)
/2

]
+c2

s

[
k2(k + iΓ) ·H(k − iΓ̃) ·H

]
/(4πρ)

+
[
k2(H · kB)(H · g̃)

]
/(4πρ)

}
+

[
c2

sω
2(k ·H × Γ)(k ·H × Γ̃)

+ω2(k ·H × kB)(k ·H × g̃)
−c2

s H2(k · B)(k · B̃2)/(4c2
s)

+ic2
s(k ·H)(k · B)

(
H · (k × g̃ − iB̃2/2)

)
/(2c2

s)

−ic2
s(k ·H)

(
H ·

(
k × kB + iB/(2c2

s)
))

(k · B̃2)/2
]
/(4πρ)

= 0 (27)

for the dispersion relation, where the baroclinic vectors B and
B̃2 are defined in (34) and (36) in section 8.

Setting the magnetic field to zero in (27) agrees with the usual
dispersion relation for acoustic-gravity waves in a baroclinic
fluid (Jones, 2005, equation 11) and (Jones, 2006, equation 5)
when the effects of vorticity, rotation of the Earth, and rate-of-
strain are neglected.

We shall consider in section 11 how the details of (27)
can give us insight into the propagation of magneto-acoustic-
gravity waves.

7. Hamiltonian ray tracing

In Hamiltonian ray tracing, the ray paths are determined by
Hamilton’s equations.

dxi

dτ
=
∂H(t, xi, σ, ki)

∂ki
, (28)

dki

dτ
= −

∂H(t, xi, σ, ki)
∂xi

, (29)

dt
dτ

= −
∂H(t, xi, σ, ki)

∂σ
, (30)

and

dσ
dτ

=
∂H(t, xi, σ, ki)

∂t
, (31)

where i varies from 1 to 3, τ is an independent variable
whose significance depends on the choice of Hamiltonian,
H(t, xi, σ, ki), and these equations are integrated numerically
along the ray path. Equation (28) gives the progression of the
ray, (29) gives the refraction of the wave normal, (30) gives
the travel time of the time-maximum of a wave packet (Hines,
1951a,b), and (31) gives the frequency shift of the wave if the
medium is changing with time.

(Misner et al., 1973, p. 488) refer to the Hamiltonian in
(28) through (31) as a super-Hamiltonian. The difference is
that a normal Hamiltonian is three-dimensional, represents en-
ergy, and varies along the path, whereas a super-Hamiltonian
is four-dimensional and is a constant (equal to zero) along the
path.

Because it is necessary to choose for the Hamiltonian some-
thing that should be constant along the ray path, it is usual to
choose some form of the dispersion relation for a Hamiltonian.
Here, is is useful to take

H(t, xi, σ, ki) = c2
s H2

x H2
y H2

z |M| /((4πρ)3ω2) = 0 (32)

for the Hamiltonian, where the matrix M is defined in
(22). There will be no confusion between the Hamiltonian
H(t, xi, σ, ki) and the Earth’s magnetic field H.

Unless attenuation of a wave is a significant cause of refrac-
tion (as it is for low-frequency radio waves in the ionospheric
D region (Jones, 1970)), the imaginary part of the Hamilto-
nian can be neglected for calculating ray paths, and used only
for calculating attenuation of the wave (or amplification of the
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wave when there is transfer of energy from the mean flow to the
wave).

Although the determinant defining the Hamiltonian in (32)
could be expanded out to give a more explicit form for the
Hamiltonian, it would be tedious for an 8 × 8 determinant, and
is not necessary because the derivatives of a determinant nec-
essary to calculate Hamilton’s equations can be expressed ex-
plicitly in terms of the trace of derivatives of the elements of
the corresponding matrix times the inverse of the matrix using
Jacobi’s formula (e.g. Magnus and Neudecker, 1988, Part 3,
Section 8.3, p. 149).

An appropriate computer program to calculate ray paths
using the dispersion relation in (32) is the general three-
dimensional ray tracing program for calculating acoustic-
gravity waves in the atmosphere (described in Bedard and
Jones, 2013; Jones and Bedard, 2015) based on an earlier pro-
gram for calculating the propagation of acoustic waves (Jones
et al., 1986a,b; Georges et al., 1990). In addition to adding to
that ray tracing program the dispersion relation defined by the
Hamiltonian in (32), it would be necessary to add a model for
the Earth’s magnetic field.

Although dissipation is neglected here, there can be growth
or decay of the wave because of energy exchange between the
wave and the mean flow. This is shown by the complex disper-
sion relation, which leads to a complex phase refractive index, a
complex group refractive index, and a complex group velocity.
Although the significance of a complex phase refractive index
is well known, the significance of a complex group refractive
index and a complex group velocity are less well known. The
group refractive index n′ can be defined as

n′ =
cref
∂ω/∂k

, (33)

where cref is an arbitrary reference speed, and ∂ω/∂k is group
velocity.

Hines (1951a,b) showed that the speed of the time-maximum
of a pulse was equal to the reference speed divided by the real
part of the group refractive index. That is, the travel time of the
time-maximum of a pulse is proportional to the integral along
the ray path of the real part of the group refractive index.

The significance of the imaginary part of the complex group
refractive index is less well known. The group refractive in-
dex will be complex if the wave growth or decay depends on
frequency. A pulse propagating through a medium that has a
complex group refractive index will have its frequency shifted
by an amount that is proportional to the imaginary part of the
group refractive index (Jones, 1981)

8. Energy exchange between the waves and the mean flow

Usually, imaginary terms in a dispersion relation represent
growth or decay of the wave. Sometimes those imaginary terms
are extraneous, caused by not correctly scaling some of the vari-
ables. For example, not scaling some variables by the square
root of the density can cause extraneous growth or decay of the
wave.

Without extraneous growth or decay, imaginary terms in the
dispersion relation are due to either dissipation, or energy ex-
change between the wave and the background flow. Because
dissipation has been neglected here, growth or attenuation of
the wave must be associated with energy exchange between the
wave and the background flow. There is then the question of
whether we are violating the non-acceleration theorem, which
we now address.

The non-acceleration theorem states that steady, non-
dissipated, long, quasi-static, stationary waves have no effect
on the mean (zonally averaged) flow (Eliassen and Palm, 1960;
Andrews, 2009). Or, in a related statement (Charney and
Drazin, 1961) “However, when the wave disturbance is a small
stationary perturbation on a zonal flow that varies vertically but
not horizontally, the second-order effect of the eddies on the
zonal flow is zero.” It seems clear from the above statements,
that although the non-acceleration theorem is important and
has wide applicability, it does not prohibit coupling between
the wave and the mean flow in all cases. In particular, Jones
(2001, Sections IV and V) presents a parcel explanation to show
that buoyancy is a non-conservative force in a baroclinic fluid,
which implies energy exchange between a wave and the mean
flow. In addition, Jones (2001, Sections IV and V) uses the vor-
ticity equation to show that baroclinicity contributes to a time
variation of vorticity, and estimates the time-rate-of-change of
the action to show why we should expect energy exchange be-
tween the wave and the background flow in a baroclinic fluid.
The generalized Eliassen-Palm and Charney-Drazin theorems
(Andrews and McIntyre, 1976, 1978) also do not prohibit cou-
pling between the wave and the mean flow in all cases.

If the matrix M̂ in (A.2) is Hermitian (that is, if the real part
of the matrix is symmetric and the imaginary part is antisym-
metric), then the waves will propagate without growth or atten-
uation. Because M̂1, M̂2, and M̂3 are symmetric, M̂ will be
Hermitian if all of the other matrices (which are all imaginary)
are antisymmetric.

For a fluid that does not have an imposed magnetic field, the
fluid is barotropic if ∇p is in the same direction as ∇ρ. On the
other hand, the fluid is baroclinic if the gradients of pressure and
density are inclined to each other. Specifically, the baroclinic
vector is defined as

B ≡ ∇ρ×∇p/ρ2 = ∇ρ̃pot×∇p/ρ2 = 2kA×∇p/ρ = kB×∇p/ρ . (34)

For a fluid that has an imposed magnetic field, there is more
than one way that the fluid can be baroclinic because the direc-
tion of the magnetic field and its gradient give additional inde-
pendent vectors that might or might not be in the same direction
as the gradients of pressure or density. There are, in that general
case, three independent vectors, and three independent pairs of
those vectors, that leads to three independent baroclinic vectors.
Specifically, in addition to the baroclinic vector defined in (34),
we also have another baroclinic vector B̃1 defined by

B̃1 ≡ ∇ρ̃pot × g̃/ρ = kB × g̃ , (35)

and another baroclinic vector B̃2 defined by

B̃2 ≡ ∇ρ × g̃/ρ = 2kA × g̃ , (36)
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both of which differ from the baroclinic vector defined in (34)
when the curl of the magnetic field is non-zero, as can be seen
from (11).

The matrix M6 in (A.8) would be antisymmetric if the flow
were barotropic (B, B̃1, and B̃2 all equal to zero) and if Γ̃ = Γ.
The matrix M6 in (A.8) will have a symmetric component if the
wave is baroclinic (any of B, B̃1, or B̃2 being non-zero) or if
Γ̃ , Γ.

Because M4 and M8 in (A.6) and (A.11) are antisymmetric,
they will not contribute to energy exchange between the wave
and the mean flow. Because M5 and M12 in (A.7) and (A.15) are
symmetric, they could contribute to energy exchange between
the wave and the mean flow, but that would require magnetic
monopoles and the creation of matter in the atmosphere.

That the symmetric rate of strain tensor (A.10) in the ma-
trix M7 in (A.9) can contribute to energy exchange between the
wave and the background flow follows from the relationship
among Reynolds stress, eddy viscosity, and the symmetric rate
of strain tensor (Monin and Yaglom, 1987, section 6.3, p. 389).
The rest of the matrix M7 in (A.9) is antisymmetric, so it will
not contribute to energy exchange between the wave and the
mean flow.

Because M9 and M11 in (A.12) and (A.14) have symmetric
components, they can contribute to energy exchange between
the wave and the mean flow. The matrix M10 in (A.13) can con-
tribute to energy exchange between the wave and the mean flow
unless the curl of the Earth’s magnetic field is zero. However,
Maxwell’s equations would then require there to be electric cur-
rents or a time-varying electric field, which would explain why
such a term might lead to energy exchange between the wave
and the background.

9. Current-free background

The contribution of the background magnetic field to the ef-
fective background gravitational field g̃ in (11) is proportional
to the curl of the magnetic field. However, one of Maxwell’s
equations tells us that the curl of the magnetic field is zero in
any region that is free of electric currents if the electric field
is not changing with time. For the case of a current-free back-
ground, the contribution of the magnetic field to the effective
gravitational field g̃ in (11) is also zero.

In that case, we get g̃ = ∇p/ρ, which gives Γ̃ = Γ, Ñ = N,
ω̃a = ωa, and B̃1 = B̃2 = B, which results in a great deal of
simplification in the dispersion relation in (27). This gives[

ω2 −
(H·k)2

4πρ

] {
ω2

[
ω2 − c2

sk2 − ω2
a − H2k2/(4πρ)

]
+c2

s

[
k2N2 − k · kBk · g̃ + B · B/(4c2

s)

+ik ·
(
B × kB − B × g̃/c2

s

)
/2

]
+c2

s

[
k2(k + iΓ) ·H(k − iΓ) ·H

]
/(4πρ)

+
[
k2(H · kB)(H · g̃)

]
/(4πρ)

}
+

[
c2

sω
2(k ·H × Γ)2 + ω2(k ·H × kB)(k ·H × g̃)

−c2
s H2(k · B)2/(4c2

s)

+ic2
s(k ·H)(k · B) (H · (k × g̃ − iB/2)) /(2c2

s)

−ic2
s(k ·H)

(
H ·

(
k × kB + iB/(2c2

s)
))

(k · B)/2
]
/(4πρ)

= 0 (37)

for the dispersion relation.

10. Barotropic approximation

The barotropic approximation is usually valid for acoustic-
gravity waves whenever Coriolis effects can be neglected. It
is likely that the barotropic approximation is also valid for
magneto-acoustic-gravity waves whenever Coriolis effects can
be neglected. We make the barotropic approximation by ne-
glecting the baroclinic vectors B and B̃2 in (27). This gives[

ω2 −
(H·k)2

4πρ

] {
ω2

[
ω2 − c2

sk2 − ω̃2
a − ik · (g̃ − ∇p/ρ)

−H2k2/(4πρ)
]

+ c2
s

[
k2Ñ2 − k · kBk · g̃

]
+c2

s

[
k2(k + iΓ) ·H(k − iΓ̃) ·H

]
/(4πρ)

+
[
k2(H · kB)(H · g̃)

]
/(4πρ)

}
+

[
c2

sω
2(k ·H × Γ)(k ·H × Γ̃)

+ω2(k ·H × kB)(k ·H × g̃) ] /(4πρ)
= 0 . (38)

The barotropic approximation for the dispersion relation for
a current-free background, from (37), is[

ω2 −
(H·k)2

4πρ

] {
ω2

[
ω2 − c2

sk2 − ω2
a − H2k2/(4πρ)

]
+c2

s

[
k2N2 − k · kBk · g̃

]
+c2

s

[
k2(k + iΓ) ·H(k − iΓ) ·H

]
/(4πρ)

+
[
k2(H · kB)(H · g̃)

]
/(4πρ)

}
+

[
c2

sω
2(k ·H × Γ)2

+ω2(k ·H × kB)(k ·H × g̃) ] /(4πρ)
= 0 . (39)

Rearranging terms and making appropriate substitutions in
(39) gives(

ω2 − c2
Ak2

H

) [
(ω2 − ω2

a)
(
ω2 − c2

Ak2
)

+c2
s(N2(k2

x + k2
y ) − ω2k2)

+c2
Ak2(−ω2

a(H2
x + H2

y )/H2 + c2
sk2

H)
]

+k2
⊥c2

Aω
2ω2

a(H2
x + H2

y )/H2 = 0 , (40)

where kH is the component of k in the direction of H, Hx and
Hy are the components of H perpendicular to kB and g̃, kx and
ky are the components of k perpendicular to kB and g̃, k⊥ is the
component of k perpendicular to both kB (and g̃) and H, and

cA =
H√
4πρ

(41)

is the Alfvén velocity.
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Notice that the dispersion relation for the Alfvén wave fac-
tors out only if the wave vector k is in the plane of kB (and g̃)
and H (making the last term zero). Setting cA to zero in (40)
gives the usual barotropic acoustic-gravity-wave dispersion re-
lation (e.g. Eckart, 1960; Gossard and Hooke, 1975; Jones,
2001, 2005, 2006). Setting both N and ωa to zero in (40) gives
the dispersion relation for magnetoacoustic waves and Alfvén
waves (61).

Ordinary sound transforms to magnetic sound smoothly with
no discontinuities. Gravity waves do not couple with acous-
tic waves because there is a frequency gap between the Brunt-
Väisälä frequency and the acoustic-cutoff frequency. However,
there is not always a frequency gap between magnetogravity
waves and magnetoacoustic waves under some circumstances.

11. Properties of the magneto-acoustic-gravity wave disper-
sion relation

Now we consider more specific dispersion properties of
magneto-acoustic-gravity waves in several quantitative exam-
ples. Here we neglect Coriolis force and concentrate on three
factors which are characteristic of the relatively short-period
waves excited by the ground and water motions affecting the
ionosphere, namely the compressibility, magnetic field, and
gravity.

To determine the properties of the magneto-acoustic-gravity
wave dispersion relation, it is useful to choose a coordinate sys-
tem in which the magnetic field is in the x − z frame. Then, we
can write (40) as [

ω2 − c2
Ak2

H

] {
(ω2 − ω2

a)ω2

+k2
x

[
N2c2

s − ω
2(c2

s + c2
A) + c2

Aω
2
a cos2 φ + c2

Ac2
sk2

H

]
+k2

y

[
N2c2

s − ω
2(c2

s + c2
A) + c2

Aω
2
a cos2 φ + c2

Ac2
sk2

H

]
+k2

z

[
−ω2(c2

s + c2
A) + c2

Aω
2
a cos2 φ + c2

Ac2
sk2

H)
]}

+k2
yc2

Aω
2ω2

a sin2 φ = 0 , (42)

where φ is the angle between the magnetic field and the z axis,
and

k2
H = k2

x sin2 φ + 2kxkz sin φ cos φ + k2
z cos2 φ . (43)

A symmetric form, equivalent to (42), that we shall use later
to explain some of the figures is(

k2−k2
H

ω2 +
k2

A sin2 φ

ω2 −
(k2

x+k2
y )N2

ω4

) (
1
c2

s
+ 1

c2
A
−

k2
H
ω2 −

k2
A cos2 φ

ω2

)
−

(
1
c2

s
−

k2
H
ω2 −

k2
A cos2 φ

ω2

)(
1
c2

A
−

k2
H
ω2 +

k2
A sin2 φ

ω2 −
(k2

x+k2
y )N2

ω4

)
+

k2
y

ω2
k2

A sin2 φ

ω2−c2
Ak2

H
= 0 . (44)

11.1. In the kx − kz plane
For propagation in the kx − kz plane, the last term in (42) is

zero. In that case, the rest of (42) factors. The second factor is

[ω2 − ω2
a]ω2

+
[
N2c2

s − ω
2(c2

s + c2
A) + c2

Aω
2
a cos2 φ + c2

Ac2
sk2

H

]
k2

x

+
[
−ω2(c2

s + c2
A) + c2

Aω
2
a cos2 φ + c2

Ac2
sk2

H

]
k2

z

= 0 . (45)

Equation (45) can tell us under what conditions waves are prop-
agating or evanescent. If the coefficients (the factors in brack-
ets) of all three terms in (45) are the same sign, then the waves
will be evanescent because that would require at least one ofω2,
k2

x, or k2
z to be negative. For very large frequency, the first coeffi-

cient will be positive and the other two coefficients will be neg-
ative, to give a propagating acoustic wave or magnetoacoustic
wave depending on other conditions. As the frequency is low-
ered, one or more of the coefficients will eventually change
sign. If the first coefficient changes sign first (which it will
when cA is small enough), then the wave will become evanes-
cent, and the wave will remain evanescent until the frequency is
lowered enough that one of the other coefficients changes sign,
which usually occurs at the Brunt-Väisälä frequency, N, when
cA is small enough. When cA is larger, there might not be any
frequencies for which all three coefficients are the same sign,
and therefore no frequencies for which the wave is evanescent.
However, even then, gravity would still have a significant effect
on the propagation at some frequencies through the N and ωa

terms.
We present here a set of figures to illustrate the effects of the

magnetic field on acoustic-gravity-wave propagation. Since the
Alfvén speed cA varies approximately exponentially with height
(because it is proportional to the reciprocal of the square root
of density), its height variation will dominate the height vari-
ation of the dispersion relation. To illustrate that dependence,
we have chosen values of cA that represent its value at various
heights in the atmosphere. The first two figures show the dis-
persion relation for gravity waves at heights of about 95 km and
115 km to show how the effect of the magnetic field on grav-
ity waves increases with height. The next four figures show the
dispersion relation for normal sound and magnetic sound just
below and just above the height (about 155 km) where normal
sound couples to magnetic sound because cA is equal to cs, the
sound speed there.

One way to look at the dispersion relation is to consider fre-
quency to be a function of the components of the wavenumber.
For that, we write (45) as

ω4 − ω2
[
ω2

a + (c2
s + c2

A)(k2
x + k2

z )
]

+k2
x

[
N2c2

s + c2
Aω

2
a cos2 φ + c2

Ac2
sk2

H

]
+k2

z

[
c2

Aω
2
a cos2 φ + c2

Ac2
sk2

H

]
= 0 . (46)

Equation (46) can be solved as a quadratic equation for ω2

as a function of kx and kz. The results are shown as three-
dimensional surface plots in figures 1 through 4 for various val-
ues of the parameters. In addition, the intersections of those sur-
faces with a horizontal plane for a specific frequency is shown.

Figures 1 and 2 show the intersection of the dispersion-
relation surface with a plane that corresponds to an intrin-
sic frequency below the acoustic cutoff frequency, while fig-
ures 3 and 4 show a similar intersection for an intrinsic fre-
quency above the acoustic cutoff frequency. Note that in the
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low-frequency case only one propagating wave mode exists,
whereas at higher frequencies and larger cA there are two propa-
gating modes. Figure 5 shows both these modes (intersections)
in the form of the dispersion curves relating kx and kz for a fre-
quency of 0.01 Hz. For all of these figures, the sound speed,
cs = 0.3 km s−1, the Brunt-Väisälä frequency, N = 0.01 s−1,
cos2 φ = 0.5, kA = 0.035 km−1, and the acoustic cutoff fre-
quency, ωa = 0.0105 rad s−1.

The cases in figures 1 and 2 can be interpreted as a mix-
ture of magnetogravity waves and magnetoacoustic waves.
Near the origin, we see the dispersion relation for magneto-
gravity waves, which resembles that for non-magnetic grav-
ity waves. However, the magneto-gravity waves switch to
magneto-acoustic waves away from the origin.

The case in figure 2 is the same as that in figure 1 except
that the Alfvén speed is larger in figure 2, leading to a larger
effect from the magnetic field. Generally, the effect of the
magnetic field increases with height in the atmosphere as the
Alfvén speed increases because it is inversely proportional to
the square root of density.

Figure 3 shows the dispersion relation for the slow magneto-
acoustic wave. The direction of the magnetic field is approxi-
mately perpendicular to the two nearly parallel lines. It would
be exactly perpendicular if there were no effect of the gravita-
tional field.

Figure 4 shows the dispersion relation for the fast magne-
toacoustic wave. The radius of the small “circle” is approxi-

mately
√
ω2/c2

s − k2
A cos2 φ (≈ ω/cs for the values in figure 4)

parallel to the magnetic field, but the radius is approximately

ω/
√

c2
s + c2

A normal to the magnetic field (when the effect of
gravity can be neglected). The fast magnetoacoustic wave be-
comes an ordinary acoustic wave as cA → 0. Because the mag-
nitude of the wavenumber k in figure 4 is smaller than that in
figure 3, the phase speed ω/k will be larger in figure 4 than in
figure 3. Therefore, the wave in figure 4 is called the fast wave.

To consider the relation between kx and kz for a fixed fre-
quency, we write (45) as

cos2 φ k4
z + sin 2φ kxk3

z

+
[
2k2

x cos2 φ − ω2
(
c−2

s + c−2
A

)
+ k2

A cos2 φ − k2
x cos 2φ

]
k2

z

+k3
x sin 2φ kz + k4

x cos2 φ

+
[
−ω2

(
c−2

s + c−2
A

)
+ k2

A cos2 φ + N2c−2
A − k2

x cos 2φ
]

k2
x

+
(
ω2 − ω2

a

)
ω2/(c2

Ac2
s) = 0 . (47)

Equation (47) can be solved as a quartic equation in kz as a
function of kx. The result is shown in figure 5, which shows
the dispersion relation relating kx and kz for a frequency of
0.01 Hz. The second factor in (44) shows that the approxi-
mate formula for the nearly straight lines that describe the slow
magneto-acoustic wave in figures 3, 5, and 6 is

k2
H = (kzcos φ+kx sin φ)2 ≈ ω2

(
1/c2

A + 1/c2
s

)
−k2

Acos2 φ . (48)

However, the dispersion relation for the slow magnetoacoustic

Figure 1: Dispersion relation for a magneto-acoustic-gravity wave for propa-
gation in the same vertical plane as the Earth’s magnetic field. The surface
gives the intrinsic frequency in rad s−1 as a function of kx and kz in km−1. Also
shown is the intersection of the surface with a horizontal plane for an intrin-
sic frequency of 0.001 Hz, which is below the acoustic cutoff frequency for
this case. The sound speed, cs = 0.3 km s−1. The acoustic cut-off frequency
ωa = 0.0105 radians s−1. The Brunt-Väisälä frequency, N = 0.01 s−1. The
angle between the magnetic field and vertical, φ = 45◦. The Alfvén speed,
cA = 0.01 km s−1. The effect of the magnetic field is smaller here than it is
in figure 2 because of the smaller Alfvén speed here. Generally, the effect of
the magnetic field increases with height in the atmosphere as the Alfvén speed
increases because it is inversely proportional the the square root of density. The
value of cA in this figure corresponds to a height of about 95 km if we use a
value of 8.5 km as the density scale height (Ostrovsky, 2008). Color online.



March 20, 2017, 4:31pm Jones, Ostrovsky, and Bedard, JASTP p. 10

Figure 2: Dispersion relation for a magneto-acoustic-gravity wave for propa-
gation in the same vertical plane as the Earth’s magnetic field. The surface
gives the intrinsic frequency in rad s−1 as a function of kx and kz in km−1. Also
shown is the intersection of the surface with a horizontal plane for an intrinsic
frequency of 0.001 Hz, which is below the acoustic cutoff frequency for this
case. The Alfvén speed, cA = 0.03 km s−1. Otherwise, conditions as in figure
1. The effect of the magnetic field is larger here than it is in figure 1 because
of the larger Alfvén speed here. Generally, the effect of the magnetic field in-
creases with height in the atmosphere as the Alfvén speed increases because it
is inversely proportional the the square root of density. The part of the disper-
sion relation near the origin corresponds to a gravity wave. The part away from
the origin corresponds to a magnetoacoustic wave. Where they join gives the
possibility of coupling between the two kinds of waves. The value of cA in this
figure corresponds to a height of about 115 km if we use a value of 8.5 km as
the density scale height (Ostrovsky, 2008). Color online.

Figure 3: Dispersion relation for a slow magneto-acoustic-gravity wave for
propagation in the same vertical plane as the Earth’s magnetic field. The surface
gives the intrinsic frequency in rad s−1 as a function of kx and kz in km−1. This
is a slow magnetoacoustic wave. Also shown is the intersection of the surface
with a horizontal plane for an intrinsic frequency of 0.01 Hz, which is above
the acoustic cutoff frequency for this case. The Alfvén speed, cA = 0.25 km
s−1. Otherwise, conditions as in figure 1. The conditions in this figure represent
the case where the Alfvén speed cA is slightly smaller than the sound speed cs,
which would occur at a height of about 152 km in the atmosphere if we use a
value of 8.5 km as the density scale height (Ostrovsky, 2008). Color online.

Figure 4: Dispersion relation for a fast magneto-acoustic-gravity wave for prop-
agation in the same vertical plane as the Earth’s magnetic field. The surface
gives the intrinsic frequency in rad s−1 as a function of kx and kz in km−1. This
is a fast magnetoacoustic wave. Also shown is the intersection of the surface
with a horizontal plane for an intrinsic frequency of 0.01 Hz, which is above
the acoustic cutoff frequency for this case. The Alfvén speed, cA = 0.25 km
s−1. Otherwise, conditions as in figure 1. The conditions in this figure represent
the case where the Alfvén speed cA is slightly smaller than the sound speed cs,
which would occur at a height of about 152 km in the atmosphere if we use a
value of 8.5 km as the density scale height (Ostrovsky, 2008). Color online.

wave deviates more noticeably from a straight line as cA in-
creases.

Figure 6 shows the corresponding case for cA = 0.35 km
s−1. In this case, with cA > cs, the center portion is magnetic
sound. As (41) shows, the Alfvén speed is proportional the
the magnetic field and inversely proportional to the square root
of the density. Therefor, cA will grow approximately exponen-
tially with height because the approximately exponential decay
of density with height dominates the height variation.

We can use (44) and [(65) in section 12] to analyze figures 3
through 6. Looking at (44), we see that the gravity terms that
contain kA and N are small for the values in figures 3 through
6, so that (44) reduces to (65) for the ky = 0 case. We use (65)
for the main analysis, but sometimes refer to (44) to see how
gravity alters the main effects.

To orient ourselves, the magnetic field is in the kx-kz plane, at
a 45◦ angle with the kz axis, pointing roughly perpendicular to
the two nearly straight lines in figures 3, 5, and 6. The compo-
nent of k in the direction of the magnetic field is kH . The square
of the component of k in the direction normal to the magnetic
field is k2 − k2

H .
From (65), we see that the magnitude of the component of

k normal to the magnetic field will be zero when the compo-
nent of k along the magnetic field is ω/cs or ω/cA. That gives
four intersections of the dispersion relation function with a line
through the origin that is in the direction of the magnetic field.
Figures 3 and 4 each show two of those intersections, and fig-
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Figure 5: Dispersion relation for magneto-acoustic-gravity waves for propa-
gation in the same vertical plane as the Earth’s magnetic field for an intrinsic
frequency (0.01 Hz) above the acoustic cutoff frequency. The vertical axis is kz
in km s−1. The horizontal axis is kx in km s−1. The Alfvén speed, cA = 0.25
km s−1. Otherwise, conditions as in figure 1. The center part is a fast magneto-
acoustic wave. The outer portion is a slow magnetoacoustic wave. From the
lower left to the upper right, the distances from the origin are approximately:
ω/cA, ω/cs, ω/cs, and ω/cA. Because of the effect of gravity, the distances
are only approximate. The conditions in this figure represent the case where
the Alfvén speed cA is slightly smaller than the sound speed cs, which would
occur at a height of about 152 km in the atmosphere if we use a value of 8.5 km
as the density scale height (Ostrovsky, 2008). If the Alfvén speed cA and the
sound speed cs were equal, the two branches of the dispersion relation would
touch, and there would be coupling between the acoustic waves and the mag-
netic sound waves. This would occur at a height of about 155 km in the atmo-
sphere because of the exponential growth of CA with height (Ostrovsky, 2008).

ures 5 and 6 each show all four intersections. Because cA < cs

in figures 3, 4, and 5, ω/cs will give the intersections closer
to the origin in figure 5, and the only intersections in figure 4.
ω/cA will give the intersections farther from the origin in fig-
ure 5, and the only intersections in figure 3. Similarly, because
cA > cs in figure 6, ω/cA will give the intersections closer to
the origin in figure 6 and ω/cs will give the intersections farther
from the origin in figure 6. Equation (44) can be used to show
that gravitational effects alter these calculations slightly.

From (65), we see that component of k normal to the mag-
netic field is infinite when the denominator on the right-hand
side of (65) is zero. That allows us to calculate the asymptotic
values of the nearly straight lines in figures 3, 5, and 6 as giving
k2

H = ω2/c2
s + ω2/c2

A. Equation (44) can be used to show that
gravitational effects alter these calculations slightly.

Setting kH to zero in (65) shows that the “radius” of the small
“circle” in the direction normal to the magnetic field in figures

4, 5, and 6 is approximately ω/
√

c2
s + c2

A. Equation (44) can be
used to show that gravitational effects alter these calculations
slightly.

11.2. In the ky − kz plane
For propagation in the ky − kz plane, the dispersion relation

becomes [
ω2 − c2

Ak2
z cos2 φ

] {
(ω2 − ω2

a)ω2

+k2
y

[
N2c2

s − ω
2(c2

s + c2
A) + c2

Aω
2
a cos2 φ + c2

Ac2
sk2

z cos2 φ
]

+k2
z

[
−ω2(c2

s + c2
A) + c2

Aω
2
a cos2 φ + c2

Ac2
sk2

z cos2 φ
]}

Figure 6: Dispersion relation for magneto-acoustic-gravity waves for propa-
gation in the same vertical plane as the Earth’s magnetic field for an intrinsic
frequency (0.01 Hz) above the acoustic cutoff frequency. The vertical axis is kz
in km s−1. The horizontal axis is kx in km s−1. The Alfvén speed, cA = 0.35
km s−1. Otherwise, conditions as in figure 1. The center part is a fast magneto-
acoustic wave. The outer portion is a slow magnetoacoustic wave. From the
lower left to the upper right, the distances from the origin are approximately:
ω/cs, ω/cA, ω/cA, and ω/cs. Because of the effect of gravity, the distances
are only approximate. The conditions in this figure represent the case where
the Alfvén speed cA is slightly greater than the sound speed cs, which would
occur at a height of about 158 km in the atmosphere if we use a value of 8.5 km
as the density scale height (Ostrovsky, 2008). If the Alfvén speed cA and the
sound speed cs were equal, the two branches of the dispersion relation would
touch, and there would be coupling between the acoustic waves and the mag-
netic sound waves. This would occur at a height of about 155 km in the atmo-
sphere because of the exponential growth of CA with height (Ostrovsky, 2008).

+k2
y c2

Aω
2ω2

a sin2 φ = 0 . (49)

Factoring out the Alfvén wave gives

(ω2 − ω2
a)ω2

+k2
y

[
N2c2

s − ω
2(c2

s + c2
A) + c2

Aω
2
a f1 + c2

Ac2
sk2

z cos2 φ
]

+k2
z

[
−ω2(c2

s + c2
A) + c2

Aω
2
a cos2 φ + c2

Ac2
sk2

z cos2 φ
]

= 0 , (50)

where

f1 ≡
ω2 − c2

Ak2
z cos4 φ

ω2 − c2
Ak2

z cos2 φ
. (51)

The dispersion-relation curve in the ky − kz plane intersects
the ky axis in two places, which are

k2
y =

(ω2
a − ω

2)ω2

N2c2
s − ω

2(c2
s + c2

A) + c2
Aω

2
a

. (52)

The dispersion relation in the ky − kz plane is more complicated
because of the possible coupling with the Alfvén wave.

11.3. In an arbitrary vertical plane

For propagation in an arbitrary vertical plane that makes an
angle θ with the vertical plane containing the magnetic field, the
dispersion relation is

(ω2 − ω2
a)ω2
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+k2
h

[
N2c2

s − ω
2(c2

s + c2
A) + c2

Aω
2
a f2 + c2

Ac2
sk2

H

]
+k2

z

[
−ω2(c2

s + c2
A) + c2

Aω
2
a cos2 φ + c2

Ac2
sk2

H

]
= 0 , (53)

where the horizontal component of the wave vector is kh,

f2 ≡

(
cos2 φ + sin2 φ sin2 θ

)
ω2 − c2

Ak2
H cos2 φ

ω2 − c2
Ak2

H

, (54)

and

k2
H = k2

h cos2 θ sin2 φ+2khkz cos θ sin φ cos φ+k2
z cos2 φ . (55)

Equation (53) can be written as

c2
Ac2

sk2k2
H

+k2
[
−ω2

(
c2

s + c2
A

)
+ c2

Aω
2
a cos2 φ

]
+

(
ω2 − ω2

a

)
ω2 + N2c2

sk2
h + k2

y sin2 φ
c2

Aω
2ω2

a

ω2−c2
Ak2

H

= 0 . (56)

Or,

c2
Ac2

s cos2 φk4

+k2
[
−ω2

(
c2

s + c2
A

)
+ c2

Aω
2
a cos2 φ

+c2
Ac2

s

(
2khkz cos θ sin φ cos φ + k2

h(sin2 φ cos2 θ − cos2 φ)
)]

+
(
ω2 − ω2

a

)
ω2 + N2c2

sk2
h + k2

y sin2 φ
c2

Aω
2ω2

a

ω2−c2
Ak2

H

= 0 . (57)

It can be seen from figure 2, that magnetoacoustic waves
are not restricted to be above the acoustic-cutoff frequency be-
cause figure 2 (which contains both magnetoacoustic and mag-
netogravity waves) is for a frequency below the acoustic cutoff

frequency.
Reflection of magnetogravity waves at ionospheric heights is

controlled by the rapid increase of c2
A with height as the density

of the atmosphere decreases as seen in (41). Looking at (53), we
see that as c2

A increases in the second term in the coefficient of
k2

h, there will be a height where the k2
h term no longer dominates

the (ω2 − ω2
a)ω2 term. At that point, k2

z will be zero, and would
be negative above that height, indicating an evanescent region.
Reflection occurs at that height.

12. Magnetoacoustic waves

To compare with previous results in the special case of a
pure magnetoacoustic wave (Ostrovsky, 2008) (also called a
magnetosonic wave (Landau et al., 1984)) without losses, we
neglect all but the first three matrices in M̂ as given by (A.2)
and in M as given by (B.3). That is, we take

M̂ = M̂1 + M̂2 + M̂3 (58)

and

M = M1 + M2 + M3 . (59)

Multiplying the determinant of (59) by c2
s H2

x H2
y H2

z /((4πρ)3ω2)
and setting it to zero gives5

ω4
(
ω2 − c2

sk2 −
(H·k)2+H2k2

4πρ

)
+

H2k2ω2(H·k)2

(4πρ)2

+
c2

s k2(H·k)2

4πρ

[
2ω2 −

(H·k)2

4πρ

]
= 0 (60)

for the dispersion relation. Notice that in the absence of the
Earth’s magnetic field, the dispersion relation reduces to the
standard dispersion relation for an acoustic wave. We can factor
(60) to give[
ω2 −

(H · k)2

4πρ

] [
ω4 −

(
c2

s +
H2

4πρ

)
k2ω2 +

c2
s(H · k)2k2

4πρ

]
= 0 (61)

for the dispersion relation. The first factor in (61),

ω2 −
(H · k)2

4πρ
= 0 , (62)

gives the dispersion relation for an Alfvén wave, where the
group velocity is parallel to the background magnetic field and
has a speed equal to the Alfvén speed, and for an arbitrary di-
rection of the wave normal, the trace speed in the direction of
the background magnetic field is also equal to the Alfvén speed.

The second factor in (61),

ω4 −

(
c2

s +
H2

4πρ

)
k2ω2 +

c2
s(H · k)2k2

4πρ
= 0 , (63)

is one form of the dispersion relation for the two magneto-
acoustic waves (Ostrovsky, 2008, eq. (3)). Another form for
the dispersion relation is

ω4 −

(
c2

s +
H2

4πρ

)
k2ω2 +

c2
s H2k2

Hk2

4πρ
= 0 , (64)

where kH is the component of k parallel to H. A symmetric
form of the dispersion relation that is a special case of (44) is

k2 − k2
H

ω2 =

(
1
c2

s
−

k2
H
ω2

) (
1
c2

A
−

k2
H
ω2

)
1
c2

s
+ 1

c2
A
−

k2
H
ω2

. (65)

Ostrovsky and Rubakha (1972) calculated the nonlinear ef-
fects of the propagation of a magnetoacoustic wave in the ver-
tical direction, including the effects of the magnetic field.

13. Hamiltonian ray tracing for Magnetoacoustic waves

As mentioned above, an appropriate computer program to
calculate ray paths using the dispersion relation in (64) is the
general three-dimensional ray tracing program for calculating
acoustic-gravity waves in the atmosphere (described in Bedard
and Jones, 2013; Jones and Bedard, 2015).

In that case, we would use

H(t, xi, σ, ki) = ω4 −

(
c2

s +
H2

4πρ

)
k2ω2 +

c2
s H2k2

Hk2

4πρ
(66)

5as verified by an algebraic manipulation program (Mathematica)
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for the Hamiltonian. To initialize a ray-path calculation, one
chooses the frequency and the wave-normal direction (that is,
the direction of k). To determine all of the components of k,
it is necessary calculate the magnitude of k from the disper-
sion relation. If there were no background wind, then ω in (66)
would equal the wave frequency and we could use the following
form of the dispersion relation

ω4 −

(
c2

s +
H2

4πρ

)
k2ω2 +

c2
s H2

k k4

4πρ
= 0 (67)

to determine the magnitude of k, where Hk is the component
of H parallel to k. If, however, there is a background wind U,
then we must use (B.1) for the intrinsic frequency in (67). That
gives

(σ−k · U)4−

(
c2

s +
H2

4πρ

)
k2(σ−k · U)2+

c2
s H2

k k4

4πρ
= 0 , (68)

which will give a quartic equation to determine k.

14. Concluding remarks

Equation (B.2) gives the general magneto-acoustic-gravity-
wave dispersion relation neglecting dissipation and nonlinear
effects. Equation (27) gives the dispersion relation in the special
case where we neglect Coriolis force, vorticity, and symmetric
rate-of-strain. Equation (37) gives the dispersion relation in a
current-free region. The barotropic approximation to the dis-
persion relation is in (38), or for a current-free region, in (40)
and (42). Equation (65) gives the special case of the disper-
sion relation for magnetoacoustic-waves. In the absence of the
magnetic field, the dispersion relation in each of the above cases
reduces to that of the corresponding case for acoustic-gravity
waves (Jones, 2001, 2005, 2006).

These dispersion relations can be used as a Hamiltonian to
calculate ray paths in a general atmospheric ray tracing program
(e.g. Bedard and Jones, 2013; Jones and Bedard, 2015; Jones
et al., 1986a,b; Georges et al., 1990). Keeping all terms in the
determinant-form of the dispersion relation in (B.2) will permit
quantitatively assessing the significance of all of the terms6, as
well as insuring that application of the WKB approximation
will be to the correct set of equations and not to an approximate
set of equations.

Generalizing the dispersion relation in raytracing to include
magneto-acoustic-gravity waves is useful, but using gravity
waves from the ground to the ionosphere as a practical method
of earthquake warning depends on having early precursors
(Blaunstein and Hayakawa, 2009) because the travel time of
gravity waves from the Earth surface to the ionosphere varies
from hours to days (Jones and Bedard, 2016). The travel-time
calculations could be tested using the full magneto-acoustic-
gravity wave dispersion relation.

6by using the determinant as the Hamiltonian in a ray-tracing program, and
comparing ray-path calculations with and without various terms

The dispersion relation for the special case of magneto-
acoustic waves in (64) or (65) could also be used as a Hamilto-
nian in a ray tracing program. Because propagation of acous-
tic waves is so much faster than gravity waves, ray tracing of
magnetoacoustic waves could provide a practical method for
testing the possibility of detecting earthquake precursors by
monitoring the ionosphere.

The following reference validations were done in developing
these dispersion relations:

• When the effects of vorticity, rotation of the Earth, and
rate of strain are neglected and the magnetic field is set to
zero, the expression for magneto-acoustic-gravity waves
agrees with the usual dispersion relation for acoustic-
gravity waves in a baroclinic fluid.

• Magnetoacoustic wave dispersion relation - In the ab-
sence of the Earth’s magnetic field, the dispersion rela-
tion reduces to the standard dispersion relation for acoustic
waves.

• Magneto-acoustic-gravity wave dispersion relation - In the
absence of the Earth’s magnetic field, this reduces to the
dispersion relation for acoustic-gravity waves.

In addition, it is of general theoretical interest to under-
stand the propagation processes for how earthquake ground mo-
tion affects the ionosphere. Knowing the dispersion relation
for magneto-acoustic-gravity waves will help in understanding
how earthquake ground motion affects the ionosphere.

There is a challenge in evaluating the relative importance of
various terms, but the dispersion relations presented here will
make that easier to do.

There are a wealth of wave complexities and situations that
can be explained using the magneto-acoustic-gravity-wave dis-
persion relations under varying conditions (e.g. wind profiles
and temperature profiles). The dispersion relation presented
here should find valuable applications.
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Appendix A. Matrix representation

We can compactly write (9), (12), (13), and (14) as a single
matrix equation as

M̂



ρ1/2
0 u
ρ1/2

0 v
ρ1/2

0 w
ρ−1/2

0 δρ̃pot

ρ−1/2
0 δp

4πρ1/2
0 hx/H0x

4πρ1/2
0 hy/H0y

4πρ1/2
0 hz/H0z


= −iρ1/2

0



δL1x

δL1y

δL1z

0
0

δL2x/H0x

δL2y/H0y

δL2z/H0z


. (A.1)
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From here on, we neglect the dissipation terms, L1 and L2, but
there may be situations where the dissipation terms are signifi-
cant (e.g. Hickey and Cole, 1987).

The first three rows in (A.1) are the components of the lin-
earized momentum equations (9). The fourth row is the lin-
earized adiabatic condition (13). The fifth row is the differ-
ence between the linearized continuity equation (12) and the
linearized adiabatic condition (13). The last three rows are the
linearized equations for the Earth’s magnetic field (14). The
matrix M̂ is the 8 × 8 matrix given by

M̂ =

3∑
i=1

M̂i +

12∑
i=4

+Mi , (A.2)

and the various matrices above are defined as follows.

M̂1 = −



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1

c2
s

0 0 0
0 0 0 0 0 4πρ

H2
x

0 0
0 0 0 0 0 0 4πρ

H2
y

0

0 0 0 0 0 0 0 4πρ
H2

z


ω̂ , (A.3)

where ω̂ ≡ iD0/Dt = ∂/∂t + U0 · ∇, and zero subscripts have
been dropped from the matrices for compactness. All quantities
within matrices (except the differential operators ω̂ and k̂) are
background quantities.

M̂2 =



0 0 0 0 k̂x k̂x k̂x k̂x

0 0 0 0 k̂y k̂y k̂y k̂y

0 0 0 0 k̂z k̂z k̂z k̂z

0 0 0 0 0 0 0 0
k̂x k̂y k̂z 0 0 0 0 0
k̂x k̂y k̂z 0 0 0 0 0
k̂x k̂y k̂z 0 0 0 0 0
k̂x k̂y k̂z 0 0 0 0 0


, (A.4)

k̂ ≡ −i∇,

M̂3 = −



0 0 0 0 0 1
Hx

0 0
0 0 0 0 0 0 1

Hy
0

0 0 0 0 0 0 0 1
Hz

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1

Hx
0 0 0 0 0 0 0

0 1
Hy

0 0 0 0 0 0
0 0 1

Hz
0 0 0 0 0


H·k̂ , (A.5)

M4 =



0 2iΩ̃z −2iΩ̃y 0 0 0 0 0
−2iΩ̃z 0 2iΩ̃x 0 0 0 0 0
2iΩ̃y −2iΩ̃x 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (A.6)

where Ω̃ ≡ ζ/4, and ζ ≡ ∇ × U is the vorticity. However, if we
had included Coriolis force due to the rotation of the Earth in
the momentum equation (1), then we would have Ω̃ ≡ Ω+ ζ/4,
where Ω is the Earth’s angular velocity.

M5 =
1
ρ

Dρ
Dt



i
2 0 0 0 0 0 0 0
0 i

2 0 0 0 0 0 0
0 0 i

2 0 0 0 0 0
0 0 0 − i

2 0 0 0 0

0 0 0 i iρ1/2

c4
s

(
∂ρ1/2c2

s
∂ρ

)
sS

0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (A.7)

where the partial derivative in (A.7) is with holding the entropy
and the chemical composition constant,

M6 =



0 0 0 ig̃x −iΓ̃x 0 0 0
0 0 0 ig̃y −iΓ̃y 0 0 0
0 0 0 ig̃z −iΓ̃z 0 0 0
−ikBx −ikBy −ikBz 0 0 0 0 0
iΓx iΓy iΓz 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (A.8)

kA ≡ ∇ρ/(2ρ), kB ≡ ∇ρ̃pot/ρ,

M7 =
i

2ρ



−iexx −iexy −iexz 0 0 −
∂ρ
∂x −

∂ρ
∂x −

∂ρ
∂x

−ieyx −ieyy −ieyz 0 0 −
∂ρ
∂y −

∂ρ
∂y −

∂ρ
∂y

−iezx −iezy −iezz 0 0 −
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∂z 0 0 0 0 0


, (A.9)

and e is the matrix representing the symmetric rate-of-strain
tensor (Aris, 1962, p. 89), (Cole, 1962, p. 228), (Monin and
Yaglom, 1987), whose components are

ei j ≡
1
2

(
∂Ui

∂x j
+
∂U j

∂xi

)
, (A.10)

M8 =
iH · ∇ρ

2ρ


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Hx
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Hz
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− 1

Hx
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0 − 1
Hy
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0 0 − 1

Hz
0 0 0 0 0


, (A.11)
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M9 = iH · ∇



0 0 0 0 0 1
Hx

0 0
0 0 0 0 0 0 1

Hy
0

0 0 0 0 0 0 0 1
Hz

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (A.12)

M10 =
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∂x
1

Hy

∂Hy
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∂y
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∂Hz
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− 1
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∂Hy
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∂Hy
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− 1
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∂Hz
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∂Hz
∂y − 1
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∂Hz
∂z 0 0 0 0 0
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,(A.13)

M11 =

4πiρ


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z
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∂z


,(A.14)

M12 = 2πiρ0

(
1
ρ0

D0ρ0

Dt
−

D0

Dt

)
M13 , (A.15)

where we have used the continuity equation (2), and

M13 ≡



0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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H2
x

0 0
0 0 0 0 0 0 1

H2
y

0
0 0 0 0 0 0 0 1

H2
z


. (A.16)

That the matrices containing differential operators, M̂1, M̂2,
and M̂3, in (A.3), (A.4), (A.5), are symmetric exhibits explic-
itly that the equations (A.1) are symmetric hyperbolic, which
implies that Cauchy data will be propagated causally (Courant
and Hilbert, 1962; Garabedian, 1964).

Appendix B. Dispersion Relation

The dispersion relation corresponding to the differential
equation (A.1) is found by following the procedure in the

eikonal method (Weinberg, 1962), in which we replace the dif-
ferential operator ω̂ by the intrinsic frequency

ω = σ − k · U0 (B.1)

(where σ is the wave frequency), replace the differential op-
erator k̂ by the wavenumber k, and set the determinant of M
(possibly with some useful factors) to zero.

For the situation here, to avoid extraneous factors of density,
frequency, sound speed, and components of the magnetic field,
it is useful to use

c2
s H2

x H2
y H2

z |M| /((4πρ)3ω2) = 0 (B.2)

for the dispersion relation, where

M =

12∑
i=1

Mi , (B.3)

M1 = −



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
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c2
s

0 0 0
0 0 0 0 0 4πρ

H2
x

0 0
0 0 0 0 0 0 4πρ

H2
y

0

0 0 0 0 0 0 0 4πρ
H2

z


ω , (B.4)

M2 =


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kx ky kz 0 0 0 0 0


, (B.5)

and

M3 = −
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0 0 0 0 0 0 0

0 1
Hy
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0 0 1
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
H0·k . (B.6)

The dispersion relation in (B.2) can be considered to be
the general dispersion relation for a magneto-acoustic-gravity
wave. In the absence of the magnetic field, the dispersion re-
lation reduces to that for acoustic-gravity waves (Jones, 2001,
2005, 2006).

The magnetic field terms in the matrices M8, M9, M10, M11,
and M12 are not usually kept in the dispersion relation for
magnetoacoustic waves, but we keep those terms here in the
general dispersion relation in (B.2) so that their effect can be
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tested by using the general dispersion relation as the Hamilto-
nian in a ray-tracing program, and comparing ray-path calcu-
lations with and without various terms. Similarly, the atmo-
spheric terms in the matrix M5 are not usually kept in the dis-
persion relation for acoustic-gravity waves, but we keep those
terms here in the general dispersion relation in (B.2) so that
their effect can be tested.
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Figure Captions
Figure 1. Dispersion relation for a magneto-acoustic-gravity
wave for propagation in the same vertical plane as the Earth’s
magnetic field. The surface gives the intrinsic frequency in rad
s−1 as a function of kx and kz in km−1. Also shown is the in-
tersection of the surface with a horizontal plane for an intrinsic
frequency of 0.001 Hz, which is below the acoustic cutoff fre-
quency for this case. The sound speed, cs = 0.3 km s−1. The
acoustic cut-off frequency ωa = 0.0105 radians s−1. The Brunt-
Väisälä frequency, N = 0.01 s−1. The angle between the mag-
netic field and vertical, φ = 45◦. The Alfvén speed, cA = 0.01
km s−1. The effect of the magnetic field is smaller here than it
is in figure 2 because of the smaller Alfvén speed here. Gener-
ally, the effect of the magnetic field increases with height in the
atmosphere as the Alfvén speed increases because it is inversely
proportional the the square root of density. The value of cA in
this figure corresponds to a height of about 95 km if we use a
value of 8.5 km as the density scale height (Ostrovsky, 2008).
Color online.
Figure 2. Dispersion relation for a magneto-acoustic-gravity
wave for propagation in the same vertical plane as the Earth’s
magnetic field. The surface gives the intrinsic frequency in rad
s−1 as a function of kx and kz in km−1. Also shown is the in-
tersection of the surface with a horizontal plane for an intrinsic
frequency of 0.001 Hz, which is below the acoustic cutoff fre-
quency for this case. The Alfvén speed, cA = 0.03 km s−1.
Otherwise, conditions as in figure 1. The effect of the magnetic
field is larger here than it is in figure 1 because of the larger
Alfvén speed here. Generally, the effect of the magnetic field
increases with height in the atmosphere as the Alfvén speed in-
creases because it is inversely proportional the the square root
of density. The part of the dispersion relation near the origin
corresponds to a gravity wave. The part away from the origin
corresponds to a magnetoacoustic wave. Where they join gives
the possibility of coupling between the two kinds of waves. The
value of cA in this figure corresponds to a height of about 115
km if we use a value of 8.5 km as the density scale height (Os-
trovsky, 2008). Color online.
Figure 3. Dispersion relation for a slow magneto-acoustic-
gravity wave for propagation in the same vertical plane as the
Earth’s magnetic field. The surface gives the intrinsic frequency
in rad s−1 as a function of kx and kz in km−1. This is a slow mag-
netoacoustic wave. Also shown is the intersection of the surface
with a horizontal plane for an intrinsic frequency of 0.01 Hz,
which is above the acoustic cutoff frequency for this case. The
Alfvén speed, cA = 0.25 km s−1. Otherwise, conditions as in
figure 1. The conditions in this figure represent the case where
the Alfvén speed cA is slightly smaller than the sound speed cs,
which would occur at a height of about 152 km in the atmo-
sphere if we use a value of 8.5 km as the density scale height
(Ostrovsky, 2008). Color online.
Figure 4. Dispersion relation for a fast magneto-acoustic-
gravity wave for propagation in the same vertical plane as the
Earth’s magnetic field. The surface gives the intrinsic frequency
in rad s−1 as a function of kx and kz in km−1. This is a fast mag-
netoacoustic wave. Also shown is the intersection of the surface

with a horizontal plane for an intrinsic frequency of 0.01 Hz,
which is above the acoustic cutoff frequency for this case. The
Alfvén speed, cA = 0.25 km s−1. Otherwise, conditions as in
figure 1. The conditions in this figure represent the case where
the Alfvén speed cA is slightly smaller than the sound speed cs,
which would occur at a height of about 152 km in the atmo-
sphere if we use a value of 8.5 km as the density scale height
(Ostrovsky, 2008). Color online.
Figure 5. Dispersion relation for magneto-acoustic-gravity
waves for propagation in the same vertical plane as the Earth’s
magnetic field for an intrinsic frequency (0.01 Hz) above the
acoustic cutoff frequency. The vertical axis is kz in km s−1. The
horizontal axis is kx in km s−1. The Alfvén speed, cA = 0.25
km s−1. Otherwise, conditions as in figure 1. The center part
is a fast magnetoacoustic wave. The outer portion is a slow
magnetoacoustic wave. From the lower left to the upper right,
the distances from the origin are approximately: ω/cA, ω/cs,
ω/cs, and ω/cA. Because of the effect of gravity, the distances
are only approximate. The conditions in this figure represent
the case where the Alfvén speed cA is slightly smaller than the
sound speed cs, which would occur at a height of about 152 km
in the atmosphere if we use a value of 8.5 km as the density
scale height (Ostrovsky, 2008). If the Alfvén speed cA and the
sound speed cs were equal, the two branches of the dispersion
relation would touch, and there would be coupling between the
acoustic waves and the magnetic sound waves. This would oc-
cur at a height of about 155 km in the atmosphere because of
the exponential growth of CA with height (Ostrovsky, 2008).
Figure 6. Dispersion relation for magneto-acoustic-gravity
waves for propagation in the same vertical plane as the Earth’s
magnetic field for an intrinsic frequency (0.01 Hz) above the
acoustic cutoff frequency. The vertical axis is kz in km s−1. The
horizontal axis is kx in km s−1. The Alfvén speed, cA = 0.35
km s−1. Otherwise, conditions as in figure 1. The center part
is a fast magnetoacoustic wave. The outer portion is a slow
magnetoacoustic wave. From the lower left to the upper right,
the distances from the origin are approximately: ω/cs, ω/cA,
ω/cA, and ω/cs. Because of the effect of gravity, the distances
are only approximate. The conditions in this figure represent
the case where the Alfvén speed cA is slightly greater than the
sound speed cs, which would occur at a height of about 158 km
in the atmosphere if we use a value of 8.5 km as the density
scale height (Ostrovsky, 2008). If the Alfvén speed cA and the
sound speed cs were equal, the two branches of the dispersion
relation would touch, and there would be coupling between the
acoustic waves and the magnetic sound waves. This would oc-
cur at a height of about 155 km in the atmosphere because of
the exponential growth of CA with height (Ostrovsky, 2008).
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