FORM TO SPECIFY INPUT DATA FOR ATMOSPHERIC LOSS MODEL SBLOSS

This attenuation model for atmospheric acoustic waves is based on the paper by Sutherland and Bass (2004) with errata given by Sutherland and Bass (2006) and a summery given by Bass and Hetzer (2006).

The attenuation coefficient in Nepers per kilometer is given by
$\alpha=\frac{\omega}{C_{s}}\left[\Re\left(-i k_{1} k_{2}\right)+\sum_{i=1}^{2} \frac{\left(A_{\max , i} / \pi\right)\left(\omega / \omega_{\mathrm{vib}, .}\right){ }^{2}}{1+\left(\omega / \omega_{\mathrm{vib}, i^{2}}\right)^{2}}\right]$, where ω is angular frequency, C_{s} is sound speed, the first term combines classical absorption and rotational loss, we neglect diffusion loss, and the sum includes vibrational relaxation loss from O_{2} and N_{2}.

We have $k_{1}^{2}=-\frac{1}{1+i \nu}$, where $\nu=\frac{4 \omega \mu}{3 p}, \mu=\mu_{0}\left(\frac{T}{T_{0}}\right)^{3 / 2} \frac{T_{0}+S}{T+S}$ is viscosity, p is pressure, and $T_{0}=293.15 \mathrm{~K}$.

The other variables are defined on the following pages.
Specify-
the model check for SBLOSS $=$ \qquad (w500)
the input data-format code $=$ \qquad
an input data-set identification number $=$ \qquad (w502)
an 80-character description of the model with parameters:
and the model values:
Reference viscosity at $T_{0}, \mu_{0}=$ \qquad $\mathrm{kg} \mathrm{s}{ }^{-1} m^{-1}(\mathrm{w} 503)\left(18.192 \times 10^{-6}\right.$ suggested)
Sutherland's constant, $S=$ \qquad Kelvins (w504) (117 suggested)
$Z_{N_{2}, \infty}=$ \qquad (w505) (63.3 suggested)
$T_{N_{2}}^{1 / 3}=$ \qquad $K^{1 / 3}$ (w506) (16.7 suggested)
$Z_{O_{2}, \infty}=\longrightarrow$ (w507) (54.1 suggested)
$T_{O_{2}}^{1 / 3}=\ldots K^{1 / 3}$ (w508) (17.3 suggested)
Characteristic temperature for $O_{2}, \theta_{O_{2}}=$ \qquad (w509) (2239.1 K suggested)
Characteristic temperature for $N_{2}, \theta_{N_{2}}=$ (w510) (3352 K suggested)
$a_{1}^{*}=$ Hz (w511) (24 suggested)
$a_{2}^{*}=$ \qquad Hz (w512) (2400 suggested)
$b^{*}=$ \qquad $\mathrm{Hz} / \%$ (w513) (40400 suggested)
$c^{*}=$ \qquad \% (w514) (0.02 suggested)
$d^{*}=\square \quad \%$ (w515) (0.391 suggested)
$e^{*}=$ \qquad Hz (w516) (9 suggested)
$g^{*}=$ \qquad Hz (w517) (28000 suggested)
Ratio of x^{\prime} to $x, c_{1}=\ldots$ (w518) (2.36 suggested)
$c_{2}=$ \qquad (w519) (9.16 suggested)
$c_{3}=$ \qquad (w520) (10 suggested)
$c_{4}=\square$ (w521) (11.2 suggested)
$c_{5}=\ldots$ (w522) (8.41 suggested)
$c_{6}=\square$ (w523) (19.9 suggested)
$c_{7}=$ \qquad (w524) (4.17 suggested)

OTHER MODELS REQUIRED: Any sound speed, pressure, temperature, and molecular weight model.

References

[Sutherland and Bass (2004)] Sutherland, Louis C. and Henry E. Bass, "Atmospheric absorption in the atmosphere up to 160 km," J. Acoust. Soc. Am 115, 1012-1032, 2004.
[Sutherland and Bass (2006)] Sutherland, Louis C. and Henry E. Bass, "Erratum: 'Atmospheric absorption in the atmosphere up to 160 km," [J. Acoust. Soc. Am 115, 10121032, 2004], J. Acoust. Soc. Am 120, 2985, 2006.
[Bass and Hetzer (2006)] Bass, Henry E. and Claus H. Hetzer, "An overview of absorption and dispersion of infrasound in the upper atmosphere," Inframatics, The newsletter of subaudible sound, Number 15 September 2006, pp. 1-5.

Definitions:

FORTRAN variable

OW

OWI
V
K
Cs
CsSQ
APH
PI
PIT2
PID2
k1
k1SQ
i
nu
mu
mu0
p
p0
T
T0
S
Rgas
XN2
XO2
XN
XO
XH2O
XO3
k2
AmaxN2
AmaxO2
AmaxN2dp
AmaxO2dp

Variable name

$$
\omega_{v}
$$

$\omega=\omega_{v}-\mathbf{k} \cdot \mathbf{v}$
v
k
C_{s}
C_{s}^{2}
α
π
2π
$\pi / 2$
k_{1}
$k_{1}^{2}=-1 /(1+i \nu)$
$i=\sqrt{-1}$
$\nu=4 \omega \mu /(3 p)$
$\mu=\mu_{0}\left(\frac{T}{T_{0}}\right)^{3 / 2} \frac{T_{0}+S}{T+S}$
μ_{0}
p
p_{0}
T
T_{0}
S
S
R
$X_{N_{2}}$
$X_{O_{2}}$
X_{N}
X_{O}
$X_{\mathrm{H}_{2} \mathrm{O}}$
$X_{O_{3}}$
$k_{2}=\frac{\left(\sigma^{2}-1\right) x+2 i \sigma\left(1+x^{\prime 2}\right)}{2 \sigma\left[\left(1+x^{\prime 2}\right)\left(1+\sigma^{2} x^{\prime 2}\right)\right]^{1 / 2}}$
$A_{\text {max }, N_{2}}$
$A_{\text {max }, O_{2}}$
$A_{\max , N_{2}} / \pi$
$A_{\max , O_{2}} / \pi$

Definition

angular wave frequency intrinsic wave frequency wind velicity wave number
sound speed
square of sound speed attenuation coefficient
viscosity
reference viscosity
pressure
reference pressure
temperature
reference temperature
Sutherland's constant
universal gas constant mole fraction of N_{2} mole fraction of O_{2} mole fraction of N mole fraction of O mole fraction of $\mathrm{H}_{2} \mathrm{O}$ mole fraction of O_{3}
omvibN2
omvibO2
N2rat
N2ratSQ
O2rat
O2ratSQ
vibN2
vibO2
sigma
x
xprine
xpXQ
n
Zrot
ZrotN2
ZrotO2
ZN2inf
T3N2
ZO2inf
T3O2
exN2
exO2
CpN2dR
CpO2dR
thN2
thO2
thN2dT
thO2dT
Tr
A1
A2
B
C
D
E
F
G
hprime
a1st
a2st
bst
$\frac{A_{\text {max }, i}}{\pi}=\frac{\left(X_{i} / 2\right)\left(C_{i}^{\prime} / R\right)}{(7 / 2)\left(5 / 2+C_{i}^{\prime} / R\right)}$
$\omega_{\text {vib }, N_{2}}=2 \pi \frac{p}{p_{0}} \frac{\mu_{0}}{\mu}\left[E+F X_{O_{3}}+G X_{H_{2} O}\right]$
$\omega_{\text {vib }, O_{2}}=2 \pi \frac{p}{p_{0}} \frac{\mu_{0}}{\mu}\left[A_{1}+A_{2}+B h^{\prime}\left(C+h^{\prime}\right)\left(D+h^{\prime}\right)\right]$
$\omega / \omega_{\text {vib, } N_{2}}$
$\left(\omega / \omega_{\text {vib, } N_{2}}\right)^{2}$
$\omega / \omega_{\text {vib }, O_{2}}$
$\left(\omega / \omega_{\text {vib }, O_{2}}\right)^{2}$
$\frac{\left(A_{\max , N 2} / \pi\right)\left(\omega / \omega_{\mathrm{vib}, N 2}\right)}{1+\left(\omega / \omega_{\mathrm{vib}_{, N 2}{ }^{2}}{ }^{2}\right)}$
$\frac{\left(A_{\max , \mathrm{O} 2 / \pi)\left(\omega / \omega^{2}\right.}{\left.\mathrm{vib}, \mathrm{O}_{2}\right)}{ }^{1+\left(\omega / \omega_{\mathrm{vib}, \mathrm{O}_{2}}{ }^{2}\right.}\right.}{}$
$\sigma=5 /(21)^{1 / 2}$
$x=3 n \nu / 4$
$x^{\prime}=c_{1} x$
$x^{\prime 2}$
$n=\frac{4}{5}\left(\frac{3}{7}\right)^{1 / 2} Z_{\text {rot }}$
$Z_{\text {rot }}=\frac{1}{X_{N_{2} / Z} Z_{\text {rot }, N_{2}}+X_{O_{2}} / Z_{\text {rot }, O_{2}}}$
$Z_{\mathrm{rot}, N_{2}}=Z_{N_{2}, \infty} \exp \left(-T_{N_{2}}^{1 / 3} T^{-1 / 3}\right)$
$Z_{\text {rot }, O_{2}}=Z_{O_{2}, \infty} \exp \left(-T_{O_{2}}^{1 / 3} T^{-1 / 3}\right)$
$Z_{N_{2}, \infty}$
$T_{N_{2}}^{1 / 3}$
$Z_{O_{2, \infty}}$
$T_{O_{2}}^{1 / 3}$
$C_{i}^{\prime} / R=\left(\theta_{i} / T\right)^{2} \exp \left(-\theta_{i} / T\right) /\left[1-\exp \left(-\theta_{i} / T\right)\right]^{2}$
$\exp \left(-\theta_{N_{2}} / T\right)$
$\exp \left(-\theta_{O_{2}} / T\right)$
$C_{N_{2}}^{\prime} / R$
$C_{O_{2}}^{\prime} / R$
$\theta_{N_{2}} \quad$ characteristic temperature for N_{2}
$\theta_{O_{2}}$
$\theta_{N_{2}} / T$
$\theta_{O_{2}} / T$
$T_{r}=\left(\frac{T}{T_{0}}\right)^{-1 / 3}-1$
$A_{1}=\left(X_{O_{2}}+X_{N_{2}}\right) a_{1}^{*} \exp \left(-c_{2} T_{r}\right)$
$A_{2}=\left(X_{O}+X_{N}\right) a_{2}^{*}$
$B=b^{*} \exp \left(c_{3} T_{r}\right)$
$C=c^{*} \exp \left(-c_{4} T_{r}\right)$
$D=d^{*} \exp \left(c_{5} T_{r}\right)$
$E=e^{*} \exp \left(-c_{6} T_{r}\right)$
$F=60000 \mathrm{~Hz}$
$G=g^{*} \exp \left(-c_{7} T_{r}\right)$
$h^{\prime}=100\left(X_{H_{2} \mathrm{O}}+X_{O_{3}}\right)$
a_{1}^{*}
a_{2}^{*}
b^{*}

cst	c^{*}	
dst	d^{*}	
est	e^{*}	
gst	g^{*}	ratio of x^{\prime} to x
c1	c_{1}	
c2	c_{2}	
c3	c_{3}	
c4	c_{4}	
c 5	c_{5}	
c 6	c_{6}	
c7	c_{7}	

