At rest, you inhale 10⁴ to 10⁸ microbial cells every hour outside

(Bowers et al. 2010. ISME Journal, Bowers et al. 2009. Appl. Environ. Micro.)

allergens and pathogens

cloud condensation/ice nuclei

microbial dispersal

Darwin, 1832

"Thus, wherever it has been tested, the atmosphere has been found charged with the germs of Bacteria"

BY JOHN TYNDALL, F.R.S. (M. D. TÜBINGEN).

NEW YORK: D. APPLETON AND COMPANY, 1, 3, and 5 bond street 1888.

Tyndall 1882

THE SCIENTIFIC MONTHLY

JANUARY, 1935

COLLECTING MICRO-ORGANISMS FROM THE ARCTIC ATMOSPHERE

By FRED C. MEIER COOPERATIVE INVESTIGATIONS, BUREAU OF PLANT INDUSTRY AND WEATHER BUREAU, U. S. DEPARTMENT OF AGRICULTURE

WITH FIELD NOTES AND MATERIAL By CHARLES A. LINDBERGH

How do the bacteria and fungi found in outdoor air vary across the continental U.S.?

How do the bacteria and fungi found in outdoor air vary across the continental U.S.?

Eastern Meadowlark (NPWRC, USGS)

Juglans distribution (C.S. Sargent 1884)

Outer door trim as passive aerosol collector

1,500 samples collected

Barberán et al. 2015. PNAS

Holly Menninger

NC STATE UNIVERSITY

1,400 fungal and 4,700 bacterial 'species' per sample (mean)

88% of fungal and 94% of bacterial taxa were found in <10 samples

Barberán et al. 2015. PNAS

Predictable geographic patterns in community composition

Fungi: r_M = 0.29, p<0.01

Bacteria: r_M = 0.13, p<0.01

Predictable geographic patterns in community composition

Dust-associated microbial communities are structured by **climate** and **soil**

Fungi

Mean Annual Precipitation

Barberán et al. 2015. PNAS

Dust-associated microbial communities are structured by **climate** and **soil**

Bacteria

Soil pH

Barberán et al. 2015. PNAS

Geographic distributions of allergenic fungi

Cladosporium

Alternaria

Crop plant-fungus co-occurrence

Cotton production

Cladorrhinum

Can we use microbial analyses to identify the geographic origin of dust samples?

Mean prediction error = 230 km

Grantham et al. 2015. PLoS One

We spend 90% of our time indoors

(Klepeis et al. 2001)

What about the microbes found in indoor air?

1,500 homes sampled

Where you live determines what fungi are found in your home

Barberán et al. 2015. Proc. Royal Soc. B.

Most fungi found inside your home come from outside

<10% of taxa are more common indoors

Fungi more common inside homes:

Aspergillus Fusarium Penicillium Eurotium

Common household molds

Stereum Trametes Schizophyllum Chaetomium

Wood-degraders

Malassezia Trichosporon Human skin associated

Indoor bacterial communities are <u>not</u> predictable from climate, soil, or geography

Barberán et al. 2015. Proc. Royal Soc. B.

Bacteria found indoors are more likely to come from home occupants

For indoor bacteria, <u>who</u> you live with matters more than <u>where</u> you live

(male:female ratio)

≈40% of homes have a dog or a cat

Predicting the presence of pets in home

Predicting which homes have only male inhabitants

= <u>no</u> women present in home

Predicting which homes have only male inhabitants

Problem: Only 6% of homes have no women living in them

Ragweed (Ambrosia)

Univ. of Colorado Albert Barberán Joanne Emerson Jessica Henley Jon Leff Anne Madden Shelly Miller **Jamie Morton**

North Carolina State Univ.

Rob Dunn **Neal Grantham** Eric Laber Holly Menninger **Brian Reich** Krishna Pacifici

Univ. of California – San Francisco Josh Ladau Katie Pollard

Funding provided by: **National Science Foundation A.P. Sloan Foundation Personal Genome Project** James. S. McDonnell Foundation