

Introduction

 The McMurdo Dry Valleys are the largest ice-free area of Antarctica

•This region only receives between 3-50 mm of precipitation a year; it's classified as a polar desert

•Streams are one of two vectors that connects glaciers to soils to lakes, and are host to a range of algae and microorganisms

•Little research has been done on the presence of physical vs. chemical weathering in the streams; The sediments could be a source of nutrients

Objective

 To investigate the grain size distribution and mineralogy of sediments from an Antarctic stream as a first step in understanding where weathering occurs

Methods

(1) Samples were dried before the grain size and mineralogical analysis



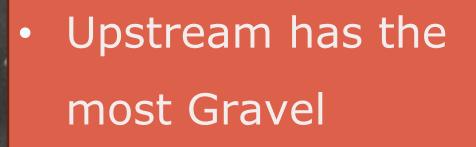
(2) A Ro-tap was used to sieve samples for grain size analysis

(3) X-ray diffraction was used for the mineralogy analysis on 6 of the 15 sample

- Fryxell in the Taylor Valley
- weeks out of the year
- meandering feature

Soi	І Туре	Particle Size (mm)	XRD Analysis Combinations	
Gravel		4.75 - 75	Coorco	
	Coarse	2.0 - 4.75	Coarse Combination	
Sand	Medium	0.42 - 2.0	Combination	
	Fine	0.075 - 0.42	Fine	
Silt		0.002 - 0.075	Combination	
Clay		<0.002		

Not All That Glitters Is Gold:


Analysis of Sediments from an Antarctic Stream Bed

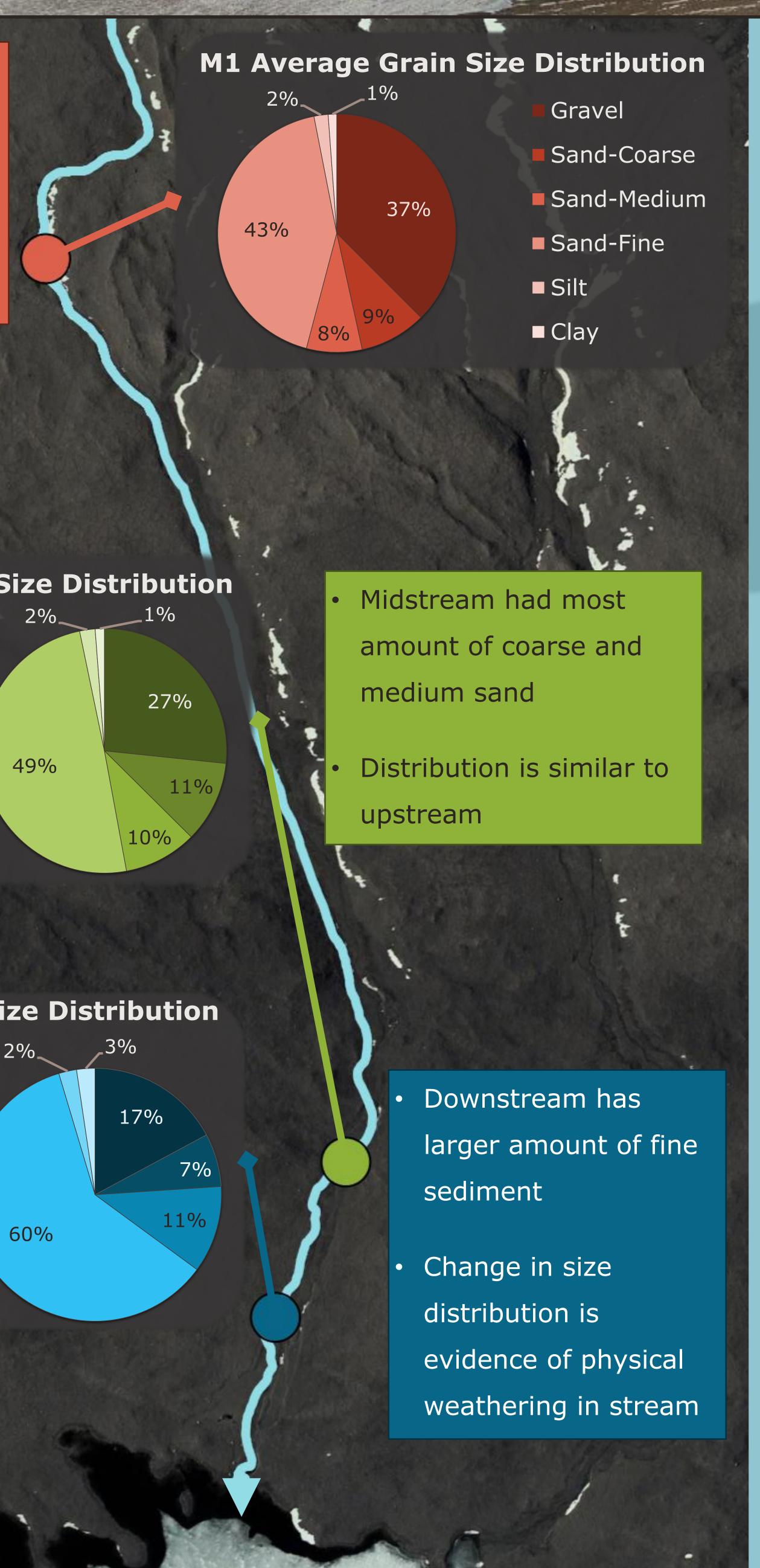
Izze Marler¹, Briana Prado^{2,3}, Wendy Roth³, Melisa Diaz^{2,3}

. Red Rocks Community College; 2. Department of Geography – University of Colorado at Boulder; 3. Institute of Arctic and Alpine Research

• Streams in the Antarctic flow for 4-12

Fifteen samples were collected in 2019 at 3 cross-sections where the stream had a

Larger sediments can settle in faster running water


M2 Average Grain Size Distribution

- Gravel
- Sand-Coarse
- Sand-Medium
- Sand-Fine
- Silt
- Clay

M3 Average Grain Size Distribution

Gravel Sand-Coarse Sand-Medium Sand-Fine ■ Silt Clay

Lake Fryxell

XRD Results

		M1-3 Coarse		M3-3 Coarse	
		% Weight	Mineral	% Weight	Mineral
	γS	13	Quartz	12.4	Quartz
	LA	67.4	Feldspar	68.9	Feldspar
	NON-CLAYS	7.6	Pyroxene	5.7	Pyroxene
	NO	0.5	Hematite	0.5	Pyrite
	Ž	1.8	Forsterite	0.2	Hematite
		2.9	Saponite	3.3	Saponite
	ΥS	3.2	Illite	4.5	Illite
	CLAYS	0.9	Biotite	0.8	Biotite
	C	0.5	Chlorite	1.5	Chlorite
		1.7	Sepiolite	2.0	Sepiolite
	M1-3 Fine		M3-3 Fine		
		I'I L	- 5 T me		-3 Fille
r		% Weight		% Weight	
[% Weight		% Weight	
•	γs	% Weight 11	Mineral	% Weight 12.8	Mineral
	\succ	% Weight 11 43.2	Mineral Quartz	% Weight 12.8 46.1	Mineral Quartz
	\succ	% Weight 11 43.2 17.1	Mineral Quartz Feldspar	% Weight 12.8 46.1 13.6	Mineral Quartz Feldspar
•	\succ	% Weight 11 43.2 17.1 1.8	Mineral Quartz Feldspar Pyroxene	% Weight 12.8 46.1 13.6 0.9	Mineral Quartz Feldspar Pyroxene
•	NON-CLAYS	% Weight 11 43.2 17.1 1.8 2.7 5.7	Mineral Quartz Feldspar Pyroxene Magnetite Maghemite Forsterite	% Weight 12.8 46.1 13.6 0.9 3.6	Mineral Quartz Feldspar Pyroxene Magnetite
	\succ	% Weight 11 43.2 17.1 1.8 2.7 5.7	Mineral Quartz Feldspar Pyroxene Magnetite Maghemite	% Weight 12.8 46.1 13.6 0.9 3.6 3.6	Mineral Quartz Feldspar Pyroxene Magnetite Maghemite
•	NON-CLAY	% Weight 11 43.2 17.1 1.8 2.7 5.7 0.7	Mineral Quartz Feldspar Pyroxene Magnetite Maghemite Forsterite	% Weight 12.8 46.1 13.6 0.9 3.6 3.6 1.6 8.9	Mineral Quartz Feldspar Pyroxene Magnetite Maghemite Forsterite Volcanic glass Saponite
•	\succ	% Weight 11 43.2 17.1 1.8 2.7 5.7 0.7 8.1 7.7	Mineral Quartz Feldspar Pyroxene Magnetite Maghemite Forsterite Volcanic glass	% Weight 12.8 46.1 13.6 0.9 3.6 3.6 1.6 8.9	Mineral Quartz Feldspar Pyroxene Magnetite Maghemite Forsterite Volcanic glass

Discussion and Summary

- Sediments of an Antarctic stream show clear differences between grain size (upstream has coarsest material) and minimal differences in bulk mineralogy
- Fine samples have more percent weight of clays; Coarse samples have more feldspars which breakdown into clays with water
- Additional analysis of bulk chemical composition of the stream can help to identify specific mineral phases that may be sources of nutrients in the system

Acknowledgments

The RECCS Program is funded by the National Science Foundation (Grant no. #1950681). Thank you to members of the RECCS team, my fellow RECCS mentees, Aidan Marler, Denise Mondragon, and Kathy Welch for your support and hard work this summer.

References, citations and additional information can be found by scanning the QR code:

Questions? Comments? Email me at izze.marler@colorado.edu

