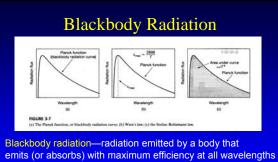
#### Climate: It's All About the Sun!!! Or, Is It? Chris Fairall, NOAA ESRL


- Introduction, background on climate system
- Black body radiation basics
- The sun vs earth as blackbodies
- Mean radiative balance of the earth
- Greenhouse effect made (deceptively) simple
- Tropics vs poles
- Global circulations
- The sun vs CO2: A global warming question

## Introduction, background on climate system


- The Earth climate system maintains a balance between solar energy absorbed and IR (blackbody) energy radiated to space.
- The so-called *Greenhouse* effect distributes the temperature in the atmosphere so that the surface is much warmer than the mean radiative temperature.
- Currents and Winds redistribute the heat within the System principally cooling the equatorial regions and warming the poles.

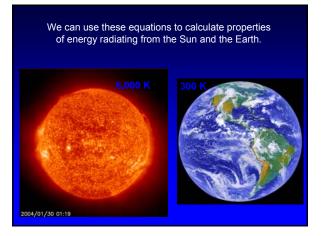
# Blackbody Radiation/ Planetary Energy Balance

\*Electromagnetic Spectrum \*Blackbody radiation – temperature \*Sun's heat at the earth \*Earth's blackbody radiation to space \*Planetary radiation temperature of Earth \*Surface temperature of Earth








Greybody radiation —radiation emitted by a body that emits (or absorbs) with efficiency  $\epsilon$  (0 to 1.0) at all wavelengths  $\epsilon$  is called the EMISSIVITY

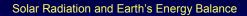
#### Basic Laws of Radiation

- 1) All objects emit radiant energy.
- Hotter objects emit more energy than colder objects. The amount of energy radiated is proportional to the temperature of the object raised to the fourth power.
- ➡ This is the Stefan Boltzmann Law

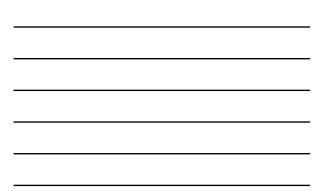
 $F = \sigma T^4$ 

F = flux of energy (W/m<sup>2</sup>) T = temperature (K)  $\sigma$  = 5.67 x 10<sup>-8</sup> W/m<sup>2</sup>K<sup>4</sup> (a constant)








|       | Т<br>(К) | λ <sub>max</sub><br>(μm) | region in<br>spectrum | F<br>(W/m²)         |
|-------|----------|--------------------------|-----------------------|---------------------|
| Sun   | 6000     | 0.5                      | Visible<br>(green)    | 7 x 10 <sup>7</sup> |
| Earth | n 300    | 10                       | infrared              | 460                 |
|       |          |                          |                       |                     |



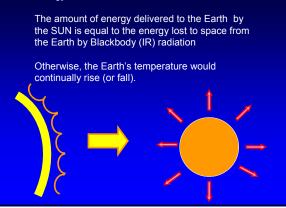


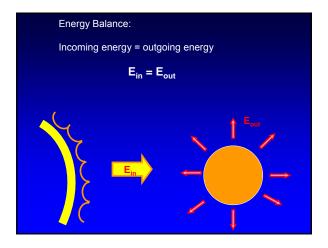




# Planetary Energy Balance

• We can use the concepts learned so far to calculate the radiation balance of the Earth


• Some Basic Information:


Area of a circle =  $\pi r^2$ 

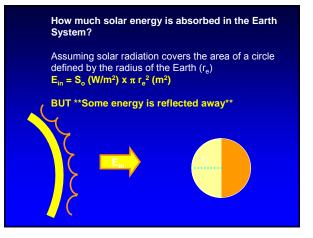
Area of a sphere =  $4 \pi r^2$ 

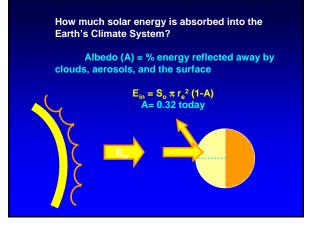


## Energy Balance:









# Solar Radiative Flux at the Earth

$$S_0 = \frac{\sigma T_{sun}^4 * r_{sun}^2}{r_s^2}$$

 ${\rm S}_{\rm o}$  is the  ${\rm solar}\ {\rm constant}$  for Earth

It is determined from the flux at the surface of the Sun and by the distance between Earth (r<sub>s-e</sub> = 1.5 x 10<sup>11</sup>m) and the Sun's radius, r<sub>sun</sub> =2.3 x 10<sup>9</sup>m . S<sub>o</sub> = **1368 W/m<sup>2</sup>** 

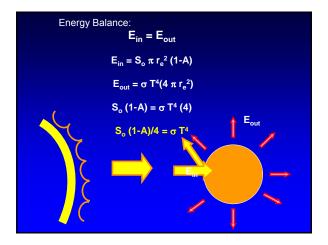






How much energy does the Earth emit?




#### How much energy does the Earth emit?

 $E_{out} = F x$  (area of the Earth)

 $F = \sigma T^4$ 

Area = 4  $\pi$  r<sub>e</sub><sup>2</sup>

 $E_{out} = (\sigma T^4) \times (4 \pi r_e^2)$ 





Planetary Blackbody Temperatu

$$T = \left[\frac{S_o(1-A)}{4\sigma}\right]^{1/4}$$

If we know  $S_o$  and A, we can calculate the temperature of the Earth. We call this the equivalent Blackbody temperature ( $T_{space}$ ). It is the temperature we would expect if Earth System radiates to **SPACE** like a blackbody.

This calculation can be done for any planet, provided we know its solar constant and albedo.

# So What is the Earth's Radiative Temperature?

$$T = \left[\frac{S_o(1-A)}{4\sigma}\right]$$

A = 0.33 $\sigma = 5.67 \times 10^{-8}$ 

 $T^4 = 4.23 \times 10^9 (K^4)$ 

Tspace = 252 K

DANG, That is Hot!!

# Earth's Planetary BB Temperature:

 $T_{space} = 252 \text{ K Kelvin}$ (°C) = (K) - 273 Centigrade  $T_{exp} = (252 - 273) = -21 \text{ °C}$ (which is about -4 °F) DANG, That is Cold!!

#### Is the Earth's surface really -18 °C?

#### NO. The surface temperature is warmer!

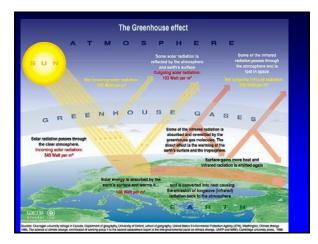
The observed ground temperature (T\_g) is 15 °C, or about 59 °F.

The difference between observed and blackbody temperatures ( $\Delta T$ ):

 $\Delta T = T_g - T_{space}$  $\Delta T = 15 - (-21)$ 

 $\Delta T = + 36 \ ^{o}C$ 

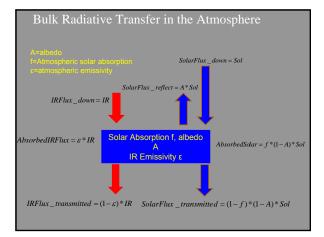
# Earth's "Greenhouse" Warming


∆T = + 36 °C

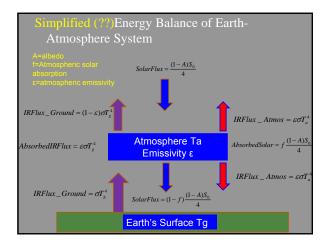
In other words, the Earth is 33 °C <u>warmer</u> than expected based on black body calculations and the known input of solar energy.

This extra warmth is what we call the GREENHOUSE EFFECT.

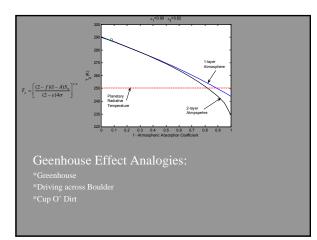
It is a result of warming of the Earth's surface by the absorption and re-emission of IR radiation by molecules in the atmosphere.


The atmosphere is warm at the surface (15 C) cold in the middle (-4 C) and very, very cold near the top (-100 C).

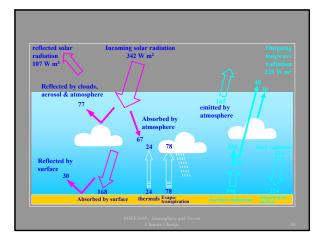





#### Greenhouse Effect is the Result of the Solar and IR Transmission Properties of the Atmosphere


- The solar flux is *moderately* scattered and *weakly* absorbed in the AIR. Thus, the sun principally passes through the atmosphere and HEATS the SURFACE.
- **IR** flux is *strongly* absorbed and emitted by 'greenhouse gases': water vapor, CO2, Ozone, Methane.
- Solar photons absorbed in the system are **never** re-emitted as solar photons. Their heat may be conducted, convected, or reemitted in the IR.
- The process of adjacent layers emitting and absorbing radiation from each other is important.
  Vertical mixing by turbulence, clouds, storms, etc is a
- complicating factor.

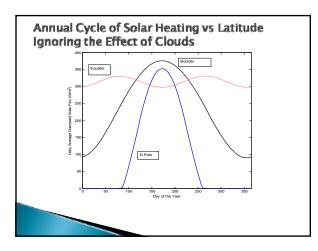




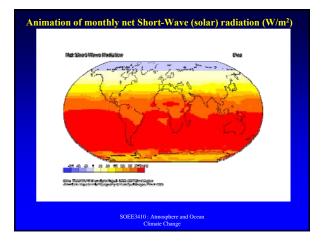


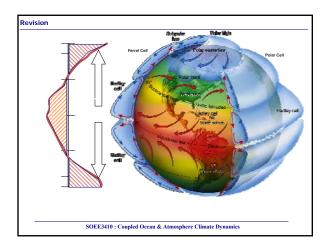








| Energy Flux (W m <sup>-2</sup> )       |      |  |  |  |
|----------------------------------------|------|--|--|--|
| Solar radiation                        | 230  |  |  |  |
| Rate of kinetic energy dissipation     | 2    |  |  |  |
| Photosynthesis                         | -0.1 |  |  |  |
| Geothermal heat flux                   | 0.06 |  |  |  |
| World energy production (fossil fuels) | 0.02 |  |  |  |



