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Modeling 3-D spatio-temporal biogeochemical
processes with a forest of 1-D
statistical emulators
W. B. Leedsa,b*, C. K. Wikleb, J. Fiechterc, J. Brownd and R. F. Milliff e

This paper focuses on the spatio-temporal dynamical processes in lower trophic level marine ecosystems, where various
sources of uncertainty make statistical modeling difficult. Such dynamical processes exhibit nonlinearity in time and
potential nonstationarity in space. Planktonic organisms are microscopic, making it difficult to measure their abundance
and resulting in limited data. Further, deterministic, component-based ecosystem models contain a large number of
parameters, some of which can be difficult to estimate. We consider a Bayesian hierarchical framework for parameter
estimation that uses an approximation to the dynamical models for computational feasibility. Specifically, we develop a
computationally inexpensive first-order statistical emulator for a one-dimensional NPZD model with iron limitation. Then,
we introduce a novel approach to the modeling of three-dimensional lower trophic level marine ecosystem processes, linking
the one-dimensional emulators via a two-dimensional spatial field on the parameters. This methodology is used to estimate
important biological parameters on the coastal Gulf of Alaska, leading to a reduction in Bayesian credible interval width
compared with a nonspatial model. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION
Many scientific processes can be represented by spatial fields that evolve in time. For such processes, spatio-temporal statistical models are
useful for assessing the various sources of uncertainty. A common approach to developing these models is through descriptive statistical
models that characterize the process through first-order and second-order moment (i.e., mean and covariance) specifications. However, it is
also sometimes useful to consider a dynamical model where the current value of the underlying scientific process is modeled as an evolution
from the process in the previous time step(s), and possibly related to spatial locations of nearby proximity (e.g., see Cressie and Wikle, 2011,
for an overview).

A common pitfall with dynamical spatio-temporal models (DSTMs) is the so-called curse of dimensionality. Even relatively simple, linear
DSTMs are often overparameterized in higher-dimensional settings. Bayesian hierarchical models (BHMs) provide a partial solution to this
problem by allowing dependence among parameters through a series of conditional models, but even this is often not enough in the case of
more complicated nonlinear processes, and the specification of nonlinear DSTMs. However, BHMs also allow for the inclusion of scientific
information into the model. We not only can include scientific information about the parameters but also can use scientific knowledge about
the process dynamics. In other words, we can develop a science-based parameterization for the statistical model (e.g., Leeds and Wikle,
2012). Such a model can allow for dependencies in the parameters and in the underlying scientific process. Incorporating such information
can be carried out in multiple ways.

1.1. Incorporation of scientific information

One way of incorporating scientific information about the process into a BHM would be through a “physical–statistical” or “mechanistically
motivated statistical” model (Royle et al., 1999; Wikle et al., 2001; Berliner, 2003; Wikle, 2003; Wikle and Hooten, 2010; Milliff et al.,
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2012), where scientific information about a physical (or biological, ecological, etc.) process is used to motivate a sensible parameterization
of the DSTM.

It is also common to use the mechanistic model (or, more specifically, numerical solutions to a mechanistic model) directly in the BHM,
rather than using it simply to motivate the parameterization of the BHM. This is related to the Bayesian melding approach (Poole and
Raftery, 2000; Fuentes and Raftery, 2005; Finley et al., 2011), which includes the use of implicit and explicit priors on the input and output
of a mechanistic model. These four priors are then pooled together in order to perform Bayesian inference. Mechanistic models are also used
in a framework that does not involve the pooling of implicit and explicit priors. For example, Royle et al. (1999) used spatial output from
mechanistic models as data, along with real-world observations. Wikle et al. (2001) used spatial output as data along with a reduced-rank
mechanistically motivated statistical model. This framework has been shown to accommodate both upscaling and downscaling (Fuentes and
Raftery, 2005; Wikle and Berliner, 2005; Berrocal et al., 2010).

1.2. Statistical emulators

In many instances, the mechanistic model is often computationally expensive, and so running it iteratively in a Markov chain Monte Carlo
algorithm poses a problem. We follow the foundational work of Sacks et al. (1989), Currin et al. (1991), and Kennedy and O’Hagan (2001)
and use a statistical approximation to the computer code as a surrogate model. This surrogate model acts as a fast approximation to the mech-
anistic model and allows one to perform uncertainty analysis, sensitivity analysis (O’Hagan, 2006), and model calibration and prediction
(Higdon et al., 2004, 2008) with a high degree of accuracy while requiring relatively few runs of the mechanistic model. Recent research has
extended the methodology to incorporate dimension reduction (Higdon et al., 2008), dynamical models (Drignei, 2008; Conti et al., 2009;
Liu and West, 2009), and multivariate output (Rougier, 2008; Conti and OHagan, 2010).

Although most statistical emulation has been carried out through the use of second-order (covariance) model specification (Sacks et al.,
1989; Kennedy and O’Hagan, 2001; O’Hagan, 2006), it may be desirable to model the input–output relationship for a mechanistic model
by using first-order characteristics (e.g., van der Merwe et al., 2007; Frolov et al., 2009). For example, Hooten et al. (2011) used random
forests to model the inputs to the mechanistic model to the right singular vectors of a singular value decomposition of an ensemble of
realizations from a mechanistic model. Their goal was to facilitate parameter estimation for a lower trophic level marine ecosystem model.
These emulators can then be used in the place of the deterministic model inside the BHM.

We are interested in modeling lower trophic level marine ecosystem processes. Because the associated mechanistic models were originally
developed to investigate phytoplankton response to oceanic mixed layer dynamics, their formulation is inherently one-dimensional (1-D) in
the vertical direction. However, important spatial variability also occurs in the horizontal directions. Computer models for lower trophic level
marine ecosystems generally take this horizontal spatial variability into account by coupling a vertical marine ecosystem model to a physical
ocean circulation model. As such, the spatial variability cannot all be attributed to differences in parameters at different spatial locations—a
notion that is scientifically plausible (Friedrichs et al., 2007).

In this paper, we construct a first-order emulator to act as a surrogate for a 1-D (vertical) mechanistic model representing lower trophic
level marine ecosystem dynamics. Because the 1-D mechanistic model includes vertical dynamics, we think of a single 1-D emulator as a
“tree.” Then, we link together these 1-D emulators through 2-D spatial random fields on the parameters, creating a “forest” of 1-D models
that allows for the modeling of 3-D spatio-temporal processes. Kennedy et al. (2008) proposed a similar concept using Gaussian process
emulation of dynamic vegetation models but did not consider a spatial Gaussian process on the input parameters themselves, as is carried
out in this paper.

An outline of the paper is given as follows. Section 2 discusses more fully our motivating problem, including the area of study, the data
that were used, and the mechanistic model that was emulated. Section 3 provides a brief background on the two-stage approach to using a
first-order emulator in a BHM. Section 4 describes a proof-of-concept example, based on simulated data, and an application related to lower
trophic level marine ecosystem processes in the coastal Gulf of Alaska (CGOA). Finally, Section 5 provides our discussion of the results and
related future work.

2. MOTIVATING PROBLEM
The methodology presented here is motivated by lower trophic level marine ecosystem dynamics. Because lower trophic level marine
ecosystem processes are tied to so-called primary and secondary productions, it is critical to be able to monitor the abundance of phyto-
plankton and zooplankton. This involves accounting for the interactions between biological and physical processes that are involved. These
relationships impact the food chain at all trophic levels, so it is important to have an appropriate understanding of the scientific process. In
particular, having a proper understanding of the dynamics of phytoplankton throughout the year is important to biological oceanographers.
“Biogeochemical models” that take into account important bio-physical interactions range in complexity from the simpler NPZ (nutrient,
phytoplankton, zooplankton) model (Franks, 2002) to the more complicated North Pacific Ecosystem Model for Understanding Regional
Oceanography model (Kishi et al., 2007), which includes extensions that take into account 1-D (Fujii et al., 2007), 2-D (Wainwright et al.,
2007), and 3-D (Aita et al., 2007) spatial structure. These models account for important interactions and are a useful way to predict a process
for which fewer data are available.

Typically, model calibration and prediction have been considered from a deterministic perspective. Parameters are “estimated” in the sense
that they are constrained so that model output closely resembles the data. Then, the state is predicted by using these constrained values and
running the model for future time points. However, a Bayesian framework is a useful way to perform state and parameter estimation from
a statistical perspective. This framework has been used for state estimation (Harmon and Challenor, 1997; Evensen, 2003; Dowd, 2006,
2007; Jones et al., 2010) as well as parameter estimation (Harmon and Challenor, 1997; Malve et al., 2007; Jones et al., 2010; Dowd, 2011).
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The use of emulators is becoming more common in this area, with Mattern et al. (2012) and Margvelashvili and Campbell (2012) using
emulators for such models in a data assimilation framework. This is in contrast to Hooten et al. (2011), who use the emulator in order to
assist in parameter inference.

We consider an application of our methodology to the U.S. Global Ocean Ecosystem Dynamics study area along the CGOA. We develop
a BHM that includes remotely sensed ocean color observations (that serve as a proxy variable for phytoplankton biomass), as well as a
first-order emulator for the 1-D (in the vertical) NZPDFe model proposed by Fiechter et al. (2009). The 1-D NPZDFe model is an NZPD
(nutrient, phytoplankton, zooplankton, detritus) lower trophic level ecosystem model with iron (Fe) limitation and a detritus sinking term
(see Appendix A for further details).

Our data are based on ocean color observations from the sea-viewing wide field-of-view sensor (SeaWiFS). These remotely sensed obser-
vations are effectively chlorophyll measurements, which have been transformed so that they correspond to the surface “P” output from the
1-D NPZDFe model. Although we emulate the 1-D NPZDFe mechanistic model, we only considered the surface levels for phytoplankton,
because this corresponded to our only available data. However, the other components (for which we have no observations) are a critical part
of the dynamics, meaning that an emulator for the 1-D NPZDFe model should be superior to a 0-D (i.e., no spatial dimension) NPZ (or, even
simpler, a predator–prey model) in its place. Because of extensive missing observations on daily and 8-day composites, because of extensive
cloud coverage in the CGOA, we consider monthly averages of the SeaWiFS data (Brown and Fiechter, 2012). Then, we construct an emu-
lator by using monthly averages for 5 years for the 1-D NPZDFe model at the study area. For the purpose of this study, nine locations are
selected to represent alongshelf and cross-shelf variability (Figure 1). At each alongshelf location (off the Kenai Peninsula, Kodiak Island,
and Shumagin Islands), three cross-shelf locations are considered: the inner shelf (closest to shore), the outer shelf (near the shelf break),
and the eddy corridor (where oceanic mesoscale processes dominate). Satellite observations were then sampled at those nine locations.

An obvious issue relating to the use of mechanistic models in this framework is the inability of the mechanistic model to generate as
much variability as the observations. This is typically the case even when all parameters are allowed to vary and the mechanistic model
parameters are not constrained (or, at the very least, have wider constraints than those we have used in our example). Because of a limited
number of observations and the noise in those observations (for a discussion of measurement error of SeaWiFS observations, see Hooker
and McClain, 2000), it would be difficult to adequately estimate all the model parameters. In similar situations, common approaches include
using a simpler mechanistic model, limiting the number of parameters allowed to vary or further restricting the range on certain parameters.
We feel that this is a balancing act and compromises must be made. This issue of not being able to adequately estimate all parameters is well
known in the biogeochemical modeling community and is referred to as the underdetermination problem (Ward et al., 2010). We note also
that in most nonlinear multiparameter models (such as those of interest here), it is possible that multiple parameter sets can give very similar
output states. Thus, these two issues (insufficient data and multiple parameter states) require that in traditional optimization approaches and
modern Bayesian approaches that one informatively constrain parameters (e.g., Ward et al., 2010).

When deciding to reduce the number of parameters that are allowed to vary, it is important to choose parameters that the model is
sensitive to and that have important biological meaning. It would be the hope that only varying a few parameters can adequately capture
most of the variation in the output (when all parameters vary randomly). Fiechter (2012) provides a more detailed discussion of this issue,
but we note that in our case, the choice of which parameters to vary is only of secondary importance, as compared with demonstration of the
methodology that considers a Gaussian process on the parameters to allow us to model 3-D spatio-temporal processes. For this paper,

Figure 1. A plot of the study area in the coastal Gulf of Alaska. The three locations on each line are the inner shelf (location nearest the shore), the outer
shelf (the middle location on the line) and the eddy corridor (the location furthest off shore)
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we allow two critical 1-D NPZDFe model parameters (inputs) to vary: the half-saturation constant for iron (KFeC) and zooplankton
maximum grazing rate (ZooGR). On the basis of a priori expert opinion, KFeC varies between 8:45 and 33:8 day�1 and ZooGR varies
between 0:20 and 0:80 �molFe(molC)�1. Other inputs (e.g., biological parameters, initial conditions, etc.) are fixed.

Although the methodology presented herein is motivated by the modeling of lower trophic level marine ecosystem dynamics, it extends to
other problems as well. In particular, the methodology is generically applicable to modeling multivariate spatio-temporal processes exhibiting
nonlinear behaviors.

3. METHODS
We use a two-stage approach for fitting the model, similar to the one outlined in Hooten et al. (2011). First, we develop a first-order emu-
lator, modeling the input–output relationship via random forests. Then, we embed the emulator into the BHM. A detailed explanation of
the first-order emulator approach is provided in Appendix B. We split the BHM into a series of conditional models: the data, process, and
parameter models, as outlined in Berliner (1996) and Cressie and Wikle (2011). Each model is described in the following subsections. Note
that ŒX� denotes the marginal probability distribution of X , ŒX; Y � denotes the joint probability distribution of X and Y , and ŒX jY � denotes
the conditional probability distribution of X given Y .

3.1. Data model

Let ´k;t .si / represent a realization of the kth variable (k D 1; : : : ; K) at time t (t D 1; : : : ; T ) and location si D .xi ; yi / (i D 1; : : : ; n). For
our application, we require that the data model be bounded above and below. Thus, we use the following truncated normal distribution for
our data model:

´k;t .si /jyk;t .si /; �
2
k .si /� TN

�
yk;t .si /; �

2
k .si /

�uk
`k

where yk;t .si / is the latent kth process at time t and location si . We also assume a process-specific and location-specific measurement
error variance. Then, `k and uk are the lower and upper bounds for the kth variable. As in all statistical analyses, there is some subjectivity
on the choice of likelihood (or data) distributions. We decided upon a truncated normal data model for two reasons. First, the data for our
application (phytoplankton concentrations) are required to be positive. Second, although other distributions (e.g., the gamma distribution)
could account for the first issue, it is also necessary in our first-order emulator formulation that the mean be allowed to be less than or equal
to zero (because our random forest emulator predictions need not be positive). The truncated normal distribution seemed a natural fit in this
case. As a result, the joint probability distribution for our data model is

h
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where ´ D
�
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�0, y D �
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�0, and � 2 D
�
�21 .s1/; : : : ; �

2
K
.sn/

�0
. We also note that this model

could easily accommodate multiple sources of data, as well as missing observations, but we retain this specific format for notational
convenience.

3.2. Process model

In our model formulation, output from the mechanistic model is included in the process stage of the BHM (as opposed to its use as
another source of “observations”). As mentioned in Section 2, we use the 1-D NPZDFe model to motivate the parameterization for the
process model:

y t DM.y t�1I�mI �t /

where y t D .y1;t .s1/; : : : ; yK;t .sn//
0 and M is a function that describes the evolution of the process from t � 1 to t , with parameters �m.

This mapping could also accommodate a random error process, �t (possibly spatially colored).
Often, the process evolution represented by M is nonlinear, and a general statistical model for the process would likely be

overparameterized. As previously mentioned, we use a first-order emulator of the 1-D NPZDFe model, allowing us to include important
process dynamics into our statistical model but with computational improvements over using the mechanistic model itself. The first-order
emulator is fit offline (i.e., the parameters were estimated and then the emulator was used to represent the process in the BHM) in a two-stage
approach. Further details are provided in Appendix B, but we include a brief description of the emulator here.

For y.si /D
�
y1;1.si /; : : : ; y1;T .si /; : : : ; yK;1.si /; : : : ; yK;T .si /

�0, we have the following process model:

y.si /D êi˛i
˛i j� i ; Ǒ i �

h
˛i j� i ; Ǒ i

i
where êi˛i is a truncated spectral representation of the underlying process. The matrix êi is a TK�qi matrix of basis functions that are the
retained left singular vectors (and singular values) from a truncated singular value decomposition (svd) of the ensemble of output from the
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1-D NPZDFe model. Here, the size of the truncation (i.e., the choice of qi ) is problem specific, but we typically choose qi so that we retain
almost all (e.g, greater than 95%) of the variation in the mechanistic model output. We caution that the right singular vectors explaining the
most variation may not necessarily be the best predictors in certain instances, and so some methods that automatically select which singular
vectors to keep (e.g., stochastic search variable selection) may be appropriate in specific applications. In the present application, the 95%
truncation works quite well.

The vector ˛i is a qi -dimensional vector with elements corresponding to the retained right singular vectors from the svd, and � i is a
p-dimensional vector with elements representing the biological parameters in the mechanistic model for location si . We note that although
the svd is a linear decomposition of the model output, the emulator was not entirely a “linear approximation,” as ˛i is predicted on the basis
of � i (the mechanistic model parameters for location si ) using a nonlinear statistical model to account for uncertainty. Lastly, ˇi is a vector
whose elements are statistical parameters used in this nonlinear statistical model.

Because we follow a two-stage approach, we use the matrices êi derived from the left singular vectors and singular values of an svd from
the output from the 1-D NPZDFe model. Then, we use a nonlinear statistical model (random forests), to estimate the statistical parameters
ˇi , giving us the distribution Œ˛i j� i ; Ǒ i �. This distribution allowed us to predict right singular vectors (corresponding to ˛i ) from biological
parameters, � i . The construction of an approximate predictive distribution for ˛i given � i using random forests is given in Appendix B, but
it is possible to use another nonlinear statistical model (e.g., neural networks and radial basis functions) in place of random forests. Thus, we
are left with the joint distribution for the process model:

�
yjêall;˛all

�
D

nY
iD1

�
y.si /jêi ;˛i �

h
˛allj�all; Ǒ all

i
D

nY
iD1

h
˛i j� i ; Ǒ i

i

where the “all” subscript refers to all n spatial locations.

3.3. Parameter model

As mentioned previously, vertical spatial variability is accounted for within the 1-D NPZDFe model itself. Rather than accounting for hor-
izontal spatial variability through the coupling of the 1-D NPZDFe model to an ocean circulation model, we choose to allow the selected
biological parameters to vary in space. Because for our example we have an a priori prescribed range for the parameters in our mechanistic
model, we consider a transformation of the parameters to facilitate the use of a spatial Gaussian process model. That is, for a parameter
vector � i D .�1;i ; : : : ; �p;i /

0, we provide lower and upper bounds for �j;i , aj , and bj , respectively. Then, we consider the transformation
�j;i D log..�j;i � aj /=.bj � �i;i //, so that �j;i 2 R. Next, we assign � i a Gaussian prior with mean 0p and, for locations .xi ; yi / and

.xi 0 ; yi 0/, cov.� i ;� i 0/D diag
�
�21�
jjAhjj
1 ; : : : ; �2p�

jjAhjj
p

�
, where hD .xi � xi 0 ; yi � yi 0/

0 and A is the matrix:

A D

�
1=amax 0

0 1=amin

	 �
cos	 sin	
� sin	 cos	

	

Here, amax is the range of the spatial dependence in direction 	, and amin is the range in the direction 	 ˙ 90ı (see, e.g., Cressie, 1993;
Cressie and Wikle, 2011). The angle 	 is fixed to allow maximum range in the alongshelf direction (and the minimum range is in the
cross-shelf direction). The decision to use an anisotropic correlation matrix with this property is based on published research concerning
alongshelf dependence relative to cross-shelf dependence (e.g., see Brown and Fiechter, 2012).

We use a Uniform.0; 1/ prior for each of the spatial correlation parameters, �j , j D 1; : : : ; p, and we use a log-normal prior for �2.si /,
log.�2.si // � N

�
0; �2�

�
, for i D 1; : : : ; n. For the NPZDFe model parameters, �1; : : : ;�n, we want the prior to be relatively noninforma-

tive regarding central tendencies of the parameter. If one was to place a Uniform.aj ; bj / prior on �j;i , this would be similar to a N.0; 22/
prior on �j;i . Thus, we fix �2j D 4 for j D 1; : : : ; p.

Posterior distribution/sampling. The aforementioned hierarchical model formulation implies the following posterior distribution:

h
˛all;�all; �

2;�j´
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� h
˛allj�all; Ǒ all

i
Œ�allj�� Œ�
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where Œ�allj�� represents the prior distribution for �all D .�1; : : : ;�n/, where � D .�1; : : : ; �p/0. For this application, our primary interest
is in the estimation of the 1-D NPZDFe model parameters, rather than both the estimation of the parameters and the process. We note that
for our process distribution,

�
yjêall;˛all

�
D
Qn
iD1

�
y.si /jêi ;˛i �, �y.si /jêi ;˛i � is a degenerate distribution with all of the probability

mass at êi˛i . Our process model only accounts for uncertainty in the use of the emulator with respect to the mechanistic model, rather than
uncertainty in the underlying marine ecosystem process. So we consider the integrated posterior

h
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Z h
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This integration is carried out within the context of an Markov chain Monte Carlo algorithm. Specifically, during a Metropolis–Hastings

update for the parameter � i , for a given proposal ��i , we generate a realization ˛�i from
h
˛i j�

�
i ;
Ǒ
i

i
as mentioned in Section 3.2. Then, ˛�i

is used in the likelihood portion of the Metropolis–Hastings acceptance probability.

4. APPLICATION
4.1. Proof-of-concept example

We briefly discuss a proof-of-concept example to illustrate the ability of the emulator to act as a surrogate for the 1-D NPZDFe model. A
first-order emulator is constructed (and used inside a Gibbs sampler) with simulated observations from the 1-D NPZDFe model. For consis-
tency with the application, we use locations corresponding to the sites of the application (i.e., the coordinates were set to be the same as the
locations on the CGOA). Parameter sets �1; : : : ;�n are simulated from a Gaussian distribution with mean 0p and spatial covariance function
provided in Section 3.3. For � i D .�1;i ; �2;i /0, �1;i represents the KFeC parameter and �2;i represents the ZooGR parameter. Known inputs
(e.g., mixed layer depth and short wave radiation data) at each location for the 1-D NPZDFe model were different, so we construct n D 9
emulators, one for each location. For the covariance and spatial dependence parameters, we set �21 D 4, �22 D 4, �1 D 0:95, and �2 D 0:2
(i.e., we simulate one parameter to have high spatial dependence and another to have low spatial dependence). The parameters 	, amin,
and amax are fixed at their “true” values (i.e., those values used to simulate the data). The values �1; : : : ;�n are then transformed back to
�1; : : : ;�n, and the 1-D NPZDFe model is run. At each location, only the output for the surface values of phytoplankton is retained in order
to investigate our ability to recover parameter values with only SeaWiFS surface phytoplankton data. Also, at one location (with coordinates
corresponding to the outer shelf off Kodiak Island), 80% of the monthly observations were removed at random, in order to illustrate the
usefulness of the spatial model at locations where fewer data are available. For construction of the emulator, only two right singular vectors
are retained. For each location/emulator, this accounts for over 97% of the variation in the mechanistic model output.

At all locations, the data are generated as realizations from a truncated normal distribution with mean parameter equal to the surface
phytoplankton “truth” output and variance parameter equal to 0:52. We plot the “true” process at the inner shelf off of each location off
Kodiak Island, simulated from the 1-D NPZDFe model, along with the mean of the approximate predictive distribution for the emulator
given the “true” parameter values (Figure 2). The emulator at the “true” parameter values is nearly identical to the mechanistic model output
at those same locations, but we point out the inability to capture the “valley” between the spring and fall blooms. Further, a Metropolis–
Hastings within Gibbs sampler is used to obtain samples from the posterior distribution. This sampler is run for 100; 000 iterations with
a burn-in period of 50; 000 iterations, and thinning every 10th iteration, leaving a posterior sample size of 5000. In addition to the model
described in Section 3, we also run a Gibbs sampler where �1 and �2 are fixed at zero, in order to assess any benefit of being able to borrow
strength across space. In both situations, the posterior distributions for all parameters contain the “true” values. With regard to the biological
parameters, this suggests again that the emulator can act as a surrogate for the 1-D NPZDFe model. Further, the posterior distributions for
the KFeC parameter in the linked model (i.e., the model where �1 and �2 are not fixed at zero) are significantly smaller in width (less than
half the width) at five of the nine locations.

4.2. Application to coastal Gulf of Alaska

We use the model described in Section 3 applied to phytoplankton data for the CGOA. We use monthly averages of SeaWiFS chlorophyll
measurements at the nine locations. The SeaWiFS observations are transformed by multiplying by the appropriate carbon-to-chlorophyll and
nitrogen-to-carbon contents within phytoplankton cells and are thus matched up with the phytoplankton output of the 1-D NPZDFe model.
One extension to the model described in Section 3 is that we allow for a seasonally varying variance parameter.

Figure 2. The upper panel is a plot of the true simulated process (solid line) for surface phytoplankton, along with the prediction (dashed line) using the
first-order emulator and the true parameter values. The lower panel shows the difference between the simulation with the true model (f .�/) and the emulator

(ˆ˛). Units on the y-axis are mmolN m�3
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Figure 3. A plot of the 95% credible intervals for the posterior distribution of half-saturation constant for iron, using the SeaWiFS data. The line segment
on the left at each location is the credible interval for the model with the spatial prior on the parameters. The line segment on the right at each location is the
credible interval for the model without the spatial prior on the parameters. The circle in the middle of the two lines is the parameter value from which the data
were simulated at each location. At the location with coordinates corresponding to the outer shelf off Kodiak Island, 80% of the data were removed at random

The 95% credible intervals for �1 and �2 are .0:030; 0:657/ and .0:031; 0:488/, respectively, suggesting low-to-moderate spatial depen-
dence for both parameters. In Figure 3, the 95% credible intervals for the posterior distribution of KFeC are plotted by location. The least
amount of uncertainty in the estimates seems to be off Kodiak Island, where estimates decrease moving further offshore. Figure 4 shows the
credible intervals for ZooGR. Overall, there is less uncertainty in the estimates for ZooGR than KFeC. The estimates for zooplankton grazing
rate are near the upper bound of the range, with the exception of the inner shelf location off Kodiak Island, where ZooGR is estimated to
be near the lower limit of the range. For the most part, there is little difference between the spatial and nonspatial models with regard to the
estimates for ZooGR. However, for KFeC, we see a reduction in the credible interval width at the inner shelf location off Shumagin island.

Figure 5 shows 95% prediction intervals for phytoplankton off the Kenai Peninsula, Kodiak Island, and Shumagin Islands, along with the
data for all locations. Uncertainty in the process is highest during the fall bloom on the inner shelf off Kodiak Island and during the spring
bloom on the outer shelf off Shumagin Island.

5. DISCUSSION
Allowing parameters to vary spatially is a scientifically plausible idea for marine ecosystems based on previous research (Friedrichs et al.,
2007). By doing so, we reduce the uncertainty in the parameter estimates and for the half-saturation constant for iron on the inner shelf off
the Shumagin Islands. Zooplankton grazing rates at all but one location were estimated to be near the upper limit of the a priori prescribed
range, which suggests that either the range is too restrictive (i.e., zooplankton grazing pressure is underestimated) or that other processes
contributing to phytoplankton loss (e..g, phytoplankton mortality) are underestimated.

Sparse and uncertain data make it difficult to model primary production in marine ecosystems. For that reason, mechanistic models that
take into account complex relationships between the different parameters and response variables are a critical part of understanding which
processes control lower trophic level marine ecosystem dynamics. Although uncertainty is assessed through uncertainty analysis and sen-
sitivity analysis, and although parameter and process inference can be performed somewhat through model calibration and prediction, the
inclusion of these models into a BHM allows us to assess uncertainty in the data, process, and parameters, as well as uncertainty in the
mechanistic model.

Sometimes, a mechanistic model may be prohibitively expensive computationally to run iteratively in a Gibbs sampler, making it impos-
sible to sample from the posterior distribution for Bayesian inference. First-order emulators for mechanistic models allow for a simple and
straightforward way to include important dynamics from a mechanistic model that may be too computationally expensive to run in an iter-
ative way. Further, using an emulator for a complex mechanistic model, as opposed to a simpler mechanistic model, may include important
dynamics from the complex model that the simpler mechanistic model may have excluded.

Emulators are built on a limited number of runs of the true mechanistic model, in order to predict the output of the mechanistic model
at untried input settings. As such, the emulator may not be reasonable for predicting outside the range of inputs in the training data set.
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Further, in the case of certain models, nonlinearity may cause regime shifts outside the training data set. In these situations, it may be more
appropriate to consider the true mechanistic model. If this model is still too computationally expensive to run iteratively in a Gibbs sampler,
then one might consider a mechanistic model that includes important dynamics yet still is computationally efficient.

As an extension, we could expand this framework to include more parameters and more locations, as well as to allow for more flexible
fitting of the spatial covariance matrix (e.g., allowing amin and amax to vary). Further, because the posterior estimates for zooplankton grazing
rate pushed the upper bounds of the a priori range, we may consider constructing an emulator on the basis of new ensembles of the 1-D
NPZDFe model, where the range is increased for zooplankton grazing rate, or phytoplankton mortality is allowed to vary. We could also
create an emulator that considers nutrient output in addition to phytoplankton and could include observations at multiple depths.

Although we did have a process stage in our model, it does not explicitly account for uncertainty in the process or uncertainty in the
mechanistic model itself. Rather, it only accounts for uncertainty in the use of an emulator in place of the 1-D NPZDFe model. The former
types of uncertainty are accounted for indirectly and lumped together with measurement error and small-scale variability in the data model.
In the future, we want to include a process stage that deals with model uncertainty and process uncertainty, also accounting for extra spatial
variability in the process not accounted for by the spatially varying parameters. Lastly, the truncated normal distribution is biased, in the
sense that the expected value of a truncated normal random variable is not the realization from our emulator. Using a bias correction proce-
dure would correct this problem and potentially reduce uncertainty (e.g., Cangelosi and Hooten, 2009). However, this would be at the cost
of increasing computational time in the Gibbs sampler.

Finally, we note that the methodology described here is a special case of data assimilation, where we are seeking to fuse data and scientific
knowledge to estimate parameters and predict state processes in the presence of uncertainty. The literature on ocean data assimilation is
quite large (e.g., see the overviews of Bennett (2002); Bertino et al. (2003); Evensen (2009) as well as the important ensemble example for
the 1-D marine ecosystem model by Eknes and Evensen (2002)). To date, the traditional 4-D variational approaches for data assimilation
for high-resolution regional ocean models are only now just starting to deal with the assimilation of biological variables (with the obvious
limitation of the non-Gaussian nature of the state variables and the constrained support of the state processes and parameters). However,
such approaches are more suitable in general than the niche model presented here. However, the approach described here is very cheap
computationally and may provide quick solutions in problems for which more traditional data assimilation is currently untenable.
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APPENDIX A. THE 1-D NPZDFE MODEL
We provide a brief description here of the 1-D NPZDFe model for which the emulator was constructed. Appropriate units of measurement,
along with default values for parameters are provided in parentheses after they are mentioned. Readers interested in further details will find
them provided in Fiechter et al. (2009). First, the system contains an NPZD model:

@N

@t
D ıDC �nGZ �UP

@P

@t
D UP �GZ � �dP
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@Z

@t
D .1� �n/GZ � 
dZ

@D

@t
D �dP C 
dZCwd

@D

@´

where N , P , Z, and D refer to concentrations of nitrate, phytoplankton, zooplankton, and detritus, respectively. Note that the system of
equations also contains a lowercase “´,” which refers to vertical depth and should not be confused with the uppercase “Z,” which corresponds
to zooplankton concentration. The following model contains linear parameters: the detritus remineralization rate (ı; 1.0 day�1), zooplankton
excretion efficiency (�n; 0.3), phytoplankton senescence (�d ; 0.1 day�1), zooplankton mortality (
d ; 0.145 day�1), and a detritus sinking
term (wd ; 8.0 mday�1), as well as nonlinear functions, such as the zooplankton growth rate:

G DRm

�
1� e�ƒP

�

with the following parameters: zooplankton grazing rate (Rm; 0.65 day�1) and the Ivlev constant (ƒ; 0.84). The model also includes a
nitrate-limited phytoplankton growth rate:

UN D
VmN

N C kN

˛Ip
V 2mC ˛

2I2

with additional parameters as follows: phytoplankton nitrate uptake rate (Vm; 1.0 day�1), nitrate half-saturation constant (kN ; 1.0
mmolN m�3), and the initial slope of P –I curve (˛; 0.02 m�2 W�1). This function also includes a term for light availability at depth
(negative ´):

I D I0 exp

0
@k´´C kp

0Z
´

P.´0/d´0

1
A

with the following parameters: light extinction coefficient (k´; 0.067 m�1) and phytoplankton self-shading coefficient (kp ; 0.04 m2

mmolN �1). Surface irradiance (I0; W m�2) is imposed as daily average short-wave radiation from the data sets for Common Ocean-Ice
Reference Experiments (CORE2; Large and Yeager, 2009).

In addition, iron limitation is included in the model via governing equations for P -associated iron (Fp),

@Fp

@t
D Fp



U �

GZ

P
� �d

�
CLFe

and dissolved iron (Fd ),

@Fd

@t
D Fp



frem



GZ

P
C �d

�
�U

�
�LFe

which includes a parameter for the iron remineralization fraction (frem; 0.5). Other functions in the model include iron uptake by
phytoplankton:

LFe D
R0 �R

tFe
P ŒC WN�

which depends on the iron uptake time scale (tFe; 1.0 day), the Redfield carbon-to-nitrogen ratio (ŒC W N� D 106 W 16 molC/molN), and
empirically determined and realized iron-to-carbon [Fe:C] ratios:

R0 D bF
a
d ; RD

Fp

P ŒC WN�

where a (0.6) and b (64 (molC m�3)�1) are, respectively, the coefficient and power for estimating the empirical phytoplankton iron-to-carbon
ratio based on dissolved iron concentration. Maximum phytoplankton growth under both nitrate and iron limitation is then determined as

U Dmin
�
R2=

�
R2C k2Fe; UN

�

which includes the half-saturation constant for iron (kFe; 16.9 �molFe (molC)�1). The initial condition for dissolved iron concentrations is
based on in situ measurements for the Gulf of Alaska (Martin et al., 1989) and defined as

Fd;clim D Fd;maxC cFe.Fd;min �Fd;max/
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which includes a minimum for dissolved iron concentrations offshore (Fd;min; 0.05 �molFe m�3) and a maximum for dissolved iron
concentrations on the shelf (Fd;max; 2.0 �molFe m�3), and

cFe Dmax



0;min



1;

h� hmin

hmax � hmin

��

sets a linear transition (based on total water depth) between elevated iron concentrations inshore of the 200-m isobath (i.e., hmin D 200 m)
and depleted iron concentrations offshore of the 1500-m isobath (i.e., hmax D 1500 m).

Because phytoplankton growth is also modulated by vertical mixing (a process not included in the 1-D NPZDFe model), we use mixed
layer depth information from a data assimilative, regional ocean circulation regional ocean modeling system (ROMS) model for the CGOA
(Fiechter et al., 2011) to limit phytoplankton growth rates during periods of intense vertical mixing (i.e., a stratified water column allows
phytoplankton to remain near the surface and grow more rapidly in response to increased light availability).

APPENDIX B. FIRST-ORDER EMULATORS
We use a first-order emulator, as outlined in Hooten et al. (2011), to construct a computationally affordable statistical surrogate for a deter-
ministic mechanistic model, f .c;�/, where c is a vector representing known forcings and � is a vector of unknown parameters. For notational
convenience, we will limit ourselves to discussing the development of a first-order emulator for one variable at one spatial location.

First, N parameter vectors ‚ D
�
�.1/; : : : ;�.N/

�
are selected, where �.k/ D

�
�
.k/
1 ; : : : ; �

.k/
p

�0
. These can be selected randomly from

the prior, but some methods such as a latin hypercube design may be preferred, in order to make sure the parameter space is explored as
efficiently as possible (Sacks et al., 1989). Using these inputs, we generate outputs y.1/ � f .c;�.1//; : : : ;y.N/ � f .c;�.N//, placed in
the T �N matrix, Y � .y.1/; : : : ;y.N//. Then, Y is decomposed via the svd,

Y D UDV
0

where U is a T � T matrix of left singular vectors, D is a T �N diagonal matrix with the j th singular value of Y in the j th row and j th
column (and 0 elsewhere), and V is an N �N matrix of right singular vectors. We retain the first q columns of UD, denoted ê.

The first q right singular vectors in V , v1; : : : ; vq , are used as dependent variables to develop q nonlinear statistical models. That is,
for each of these q right singular vectors of dimension N , the rows of ‚ are used as predictor variables in a nonlinear statistical model.
For each j D 1; : : : ; q, we compute an approximate predictive distribution Œ˛j j�;ˇj � to define the statistical relationship between vj and

.�.1/; : : : ;�.N//. So we estimate the ˇj parameters, and as a result, we are left with a distribution Œ˛j�; Ǒ � D Œ˛1j�; Ǒ 1� � � � Œ˛q j�;
Ǒ
q �.

(Hooten et al., 2011) modeled this input–output relationship by using the nonparametric bagged-regression tree approach, random forests
(Breiman, 2001). Regression trees are robust and low-bias estimators, but they have high variance. Random forests use regression trees,
with two substantial modifications. First, it is by using a bootstrap aggregation approach, whereby bootstrap samples from the complete
data set are used to create a regression tree, that the prediction at a point is the average of the predictions for each tree and the variance is

reduced. Specifically, for the j th right singular vector, we consider input
n�
v
.1/
j ;�.1/

�
; : : : ;

�
v
.N/
j ;�.N/

�o
. Then, B bootstrap samples are

taken from
n�
v
.1/
j ;�.1/

�
; : : : ;

�
v
.N/
j ;�.N/

�o
. For each bootstrap sample, a regression tree Tb is constructed. Thus, for a new input ��, we

predict Ǫj .�
�/D 1

B

PB
bD1 Tb;j .�

�/.

A second benefit of using random forests is that using only a subset of the input variables at each step reduces the correlation between the
trees, which reduces the variance further (see Hastie et al., 2009, for further details). As a result, our random forest implementation has both
low bias and low variance, and � should be a good predictor of ˛.

Importantly, random forests use out-of-bag samples, so that the prediction for a particular response variable is based only on the average
of trees constructed from bootstrap samples that did not contain that particular response variable (Hastie et al., 2009). In other words, when
the j th right singular vector for a known input �.k/ is predicted, the random forest prediction Ǫj .�

.k// is based on only regression trees that

are constructed when
�
v
.k/
j ;�.k/

�
was not part of the bootstrap data set. Thus, �.k/j D Ǫj .�

.k//� v
.k/
j , for k D 1; : : : ; N , can be thought

of as a sample of N true predictive residuals. Then, we use this to construct an estimate of the true predictive distribution for the random
forest, and define the process model

˛j� �
h
˛j�; Ǒ

i
To obtain a sample from this distribution, we first compute the random forest prediction for each of the q elements of ˛, denoted

Ǫ D
�
Ǫ1.�/; : : : ; Ǫq.�/

�0, given the parameter vector � . Then, for j D 1; : : : ; q, we add a bootstrap sample O�j from
n
�
.1/
j ; : : : ; �

.N/
j

o
.

The realization from the distribution is then ˛� D Ǫ C O�, where O�D
�
O�1; : : : ; O�q

�0 . We use this to effectively “integrate out” the uncertainty
due to use of a statistical surrogate (e.g., see Hooten et al., 2011).
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