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ABSTRACT

1. Introduction

Sources of uncertainty in ocean ecosystem models arise from abstractions necessary to
reduce complexity and represent essential ecosystem processes in an aggregate sense.
These biogeochemical models are replete with parameters, many of which are poorly
known or abstracted from experiments, times and locations that might not be relevant to
the ecosystem under study. Moreover, the ocean ecosystem model parameters are
correlated in some instances, and in almost all cases ocean ecosystem model parameters do
not benefit from an abundance of data. Indeed, uncertainty also arises in the hard-won
observations of ecosystem variables; both in terms of measurement error and errors of
representativeness. The under-determination problem in parameter specification (e.g.
Ward et al,, 2010) is an inherent issue in ocean ecosystem model development and

interpretation.



The mismatch between sparse information from imperfect observations versus many,
correlated and imperfectly-defined parameters is well-known to ocean ecosystem
modelers. It is the topic of recurring workshops in marine biogeochemical

modeling (e.g., see special issue of Journal of Marine Systems, 2010) and it has been
qualified and quantified in a pioneering feasibility demonstration by Harmon and Challenor
(1997), and more recently in papers by Friedrichs and co-workers (e.g., Friedrichs et al.,
2007; 2009; Ward et al., 2010), Dowd (e.g., Dowd 2007; 2011), and others (e.g., Malve et al.,
2007, Margvelashvili and Campbell, 2012).

Under-determination challenges arose in a study of the coupled physics and biology of the
coastal Gulf of Alaska (CGOA), with a focus on the lower-trophic level (LTL) ecosystem
response to environmental forcings. Qualification and quantification of under-
determination, and ecosystem model parameter estimation were achieved in spite of it.
The limitations and success in the CGOA ocean ecosystem parameter estimation process
are recounted in this paper. The story involves an interplay between deterministic and
probabilistic approaches that provide an update on methodological tools for ocean

ecosystem model parameter estimation given under-determination.

Physical-Biological Setting in the CGOA

General circulation features of the CGOA (Figure 1) include the Alaska Current, entering the
domain from the northeast along a narrow shelf offshore of Sitka and Yakutat; and the
Alaska Stream, exiting the domain from northeast to southwest along the broad shelf
offshore of the Kenai Peninsula, Kodiak Island, and Shumagin Island. Important synoptic
scale circulation features include Yakutat eddies that propagate along the shelfbreak in the
direction of the Alaska Current and Alaska Stream for several weeks at a time; driving
exchanges of shelf and basin waters with important biological implications (Brown and
Fiechter, 2012; Fiechter and Moore, 2012).

<< Figure 1 goes about here>>

The LTL ecosystem characteristics in the CGOA consist of shelf, shelf-break and ocean basin

regimes. The shelf regime is iron rich due to river sources and resuspension of bottom



sediments. Spring bloom dynamics comprise the principal driver for primary production
on the shelf. A weaker bloom also occurs in Fall in most years (see Fiechter, 2012 and
references therein). With increasing distance off the shelf, the phytoplankton abundance is
increasingly limited by iron availability such that the basin waters are a high-nutrient low-
chlorophyll (HNLC) regime. The shelf and basin regimes are affected by the Yakutat eddies
that propagate slowly along the shelf-break and transport iron-rich shelf waters offshore

and nutrient-rich basin waters onshore.

Bayesian Hierarchical Modeling

We begin from a Bayesian hierarchical model (BHM) perspective. Bayesian modeling is a
probabilistic approach wherein random variables are endowed with probability
distributions. Following Cressie and Wikle (2011; see also Berliner et al., 2003), we
organize the components of a BHM into 3 parts leading to the posterior distribution of

interest. Starting with Bayes Theorem, write:

[ X664 | Y]1oc [Y]X,641(X16,][6,][64] 1
where the notation [A] denotes a probability distribution for random variable A4, and [A|B]
is the conditional distribution for A given B. The ocean ecosystem processes of interest
(e.g., phytoplankton and zooplankton abundances) are given by X and associated
observations (e.g., SeaWiFS surface chlorophyll retrievals and zooplankton counts from net
tow data) by Y. As such, the first term on the right hand side of (1) is the data stage
distribution, and the second term is the process model distribution. The 0, and @, are
parameters that arise in specifications of the process and data stage models, and they are
assumed here to be independent, completing the right hand side of (1). These right hand
side distributions are convolved in a Bayesian solution procedure to obtain estimates of the
posterior probability distribution of interest; i.e., the left hand side of (1), where the
posterior includes estimates for the distributions of the process X and parameters ,,, 8 4;
given the data Y. The data stage and process model distributions in (1) represent these

BHM components at the highest level of the model hierarchy. An essential part of BHM



strategy is to condition distributions for complex (joint) processes that are difficult to
specify, on component processes for which data exist and/or model formulations are more
certain. Sources of uncertainty are similarly conditioned and specified, process-by-process
and observation type-by-observation type, down the model hierarchy. In this way,

uncertainty management is explicitly built into BHM design.

In our CGOA application the process (X) is the time-dependent abundances of state
variables in a six-compartment LTL ocean ecosystem model to be described. Process
model parameters (6,) are given by a subset of the many parameters of the LTL ocean
ecosystem model. Data (Y) are taken from: a) time-averaged surface chlorophyll retrievals
from SeaWiFS data in the CGOA; and b) nutrient and phytoplankton concentrations from
vertical profiles taken, onshore and offshore of the shelf break, at GLOBEC stations in the
CGOA (Figure 1). The data stage parameters (8,) include measurement error estimates for

SeaWiFS and the GLOBEC Station data.

Fiechter et al. (2009; 2013) describe a deterministic version of the LTL ocean ecosystem
model adapted to the BHM in the CGOA. The differential equations and parameter
definitions for the LTL model are reproduced from Fiechter et al. (2013) in Tables 1 and 2.
The model includes state variables for dissolved nitrogen, phytoplankton biomass,
zooplankton biomass and detritus (i.e. NPZD, with time-dependent abundances given in
units of nitrogen concentration), as well as dissolved iron and phytoplankton-associated
iron given in terms of iron concentration. Extensions of the traditional NPZD model are
incorporated to: a) address iron limitation effects on primary production in offshore
waters of the CGOA (so, an NPZDFe LTL ocean ecosystem model); and b) include a vertical

mixing term parameterized by mixed-layer depth in each of the state variable equations.

Estimating the Posterior Distribution
According to (1), there is at least the hope that, given sufficient data (Y'), distributions for
the NPZDFe model parameters (6,,) could be updated and available in the posterior

distribution. But how much data is sufficient? What kinds of data are optimal? And what



are the underlying issues that complicate parameter estimation in the NPZDFe BHM? To
put these issues in context, we first need to review (in words) the procedures for

estimating the posterior distribution in the BHM.

Equation (1) is expressed as a proportionality. To form an equality, the right hand side of
(1) is divided by an integral over all possible states of the observations and processes such
that the posterior distribution on the left hand side of (1) is a proper probability
distribution. The normalizing integral term is intractable in large state and parameter
space problems of the kinds characterized by an ocean ecosystem BHM. Instead, estimates
of the posterior distribution are obtained by Monte Carlo methods in sampling algorithms
that have been adapted to higher-dimension problems. Initial values are taken for a subset
of the process model parameters to be treated as random variables, and updated in the
posterior distribution. Through the NPZDFe process model, the fixed and random
parameters define an initial state for the ocean ecosystem. Proposal parameters are then
selected in a Markov process wherein random perturbations from the previous values are
obtained. The implied state vector is computed and compared with the previous state and
current observations. Depending on the outcome of the state comparison, the new set of
parameters are either accepted and become the latest entries in the estimate of the
posterior distribution for 8,,, or they are rejected and the frequency of occurrence for the
previous set of parameters is incremented by one in the posterior estimate. This is an
outline of the Metropolis-Hastings (M-H) algorithm that forms the basis of many Markov-
Chain Monte Carlo (MCMC) methods to estimate posterior distributions in BHM. Useful
practical implementations of M-H algorithms depend on efficient proposals such that all

important regions of parameter space are visited and acceptance rates are around 25%.

MCMC sampling can be thought of in an analogy with descent algorithms that are perhaps
more familiar to deterministic modelers (i.e. in the solution of elliptic operators that arise
in data assimilation and primitive equation solvers). The dimension of the state and
parameter space in the BHM is tied to the number of random variables. The ranges over

which perturbations from the initial values are selected bound the iteration space for



MCMC sampling. Efficient sampling occurs when the M-H algorithm explores local and
global extrema in the fewest feasible number of iterations (analogous to finding gradients
in steepest descent algorithms). Conversely, if random variables are correlated and
conditional distributions for the data do not project upon distributions for specific
parameters or state variables, the solution surface is smooth and local extrema are very

hard to identify and explore efficiently by iteration.

In the statistics parlance, “Bayesian learning” expresses the extent to which the convolution
of distributions on the right hand side of (1) can update the distributions for state variables
in X and parameters in 8,,. If the data stage distribution does not project upon regions of
the process model distribution the updates do not change initial distributions and the
process and/or parameters do not exhibit learning relative to the prior specification of the
process model distribution. Expanding data types and/or reducing the set of random
variables in the BHM design might serve as remedies, but these changes are often infeasible
(i.e. in the case of expanded observations for ocean ecosystem parameters), or only
achieved by trial and error. Remedies of these kinds were explored in the NPZDFe BHM for
the CGOA as described below. This notion of Bayesian learning is related to the statistical
notion of “identifiability.” We say that a parameter is identifiable if, given enough
information, it is theoretically possible to learn the value of that parameter. Thus, in this
article we will say that a parameter that does not exhibit Bayesian learning is not

identifiable.

Initial BHM Experiments

The NPZDFe equations in the Table 1 include O(20) parameters; far too many to be
identified by the relatively sparse datasets from SeaWiFS retrievals and the GLOBEC
stations. We started with six random parameters for the NPZDFe process model (i.e. the
0,). They were (see Table 2): the phytoplankton maximum growth rate (VmNO3), the half-
saturation constant for iron (KFeC), the initial slope of the phytoplankton-light utilization
curve (PhylS), the maximum grazing rate for zooplankton consumption of phytoplankton

(ZooGR), the remineralization rate for detritus (DetRR), and the fraction of the available



iron that is remineralized (FeRR). Initial values for these parameters in the CGOA were
taken from the deterministic coupled physical-biological model calculations described by
Fiechter et al. (2009). Ranges over which random perturbations to the initial values could
be selected in the M-H algorithm were the subjects of experimentation, but sensible

estimates were provided by expert opinion and published values.

Tables 1 and 2 (reproduced from Fiechter et al., 2013) demonstrate that the parameters
treated as random variables in our BHM enter the NPZDFe LTL ocean ecosystem model
affecting phytoplankton abundance. These are sensible choices for the random parameters
of the BHM since most of our data stage information will also be related to phytoplankton
abundance. However, the correlations among some of these parameters, and the number
of parameters relative to the sparse data, result in M-H acceptance rates well below 25%
and parameters that are not identifiable by the data. This latter point is crucial in the

interpretations of the posterior distribution from the BHM to be described.

2. Ensemble Calculations in a Coupled Physical-Biological Extension of the Regional
Ocean Modeling System in the CGOA

To learn more about the parameter under-determination in the NPZDFe BHM application
in the CGOA, we turned to deterministic tools. An ensemble of forward-model calculations
(Fiechter, 2012) was run in the coupled physical-biological model for the CGOA developed
by Fiechter, Moore and co-workers (Fiechter et al., 2009; Fiechter and Moore, 2009;
Fiechter et al,, 2011). The coupled model system for the CGOA is comprised of a physical
model component that is the Regional Ocean Modeling System (ROMS; Haidvogel et al,,
2008) and a LTL ecosystem model component that is a six-compartment augmentation of
an NPZD model with 2 additional compartments for iron remineralization and
phytoplankton associated iron concentration; i.e. NPZDFe. As noted above, this biological
model component is also the basis of the process model in the BHM. Coupled physical-
biological forward model calculations in the CGOA with the deterministic system use best
estimates for the 19 parameters of the biological model component. Some of these

parameters are well known and/or independent of regional specifics. Others are relatively



unknown in the CGOA and based on estimates from other regions (e.g. a California Current
System study by Powell et al,, 2006). Coupled model simulations successfully reproduce
seasonal variability in LTL ecosystem response (Fiechter et al., 2009) as well as signals
associated with synoptic eddies in the CGOA (Brown and Fiechter, 2012; Fiechter and
Moore, 2012).

Ensemble calculations with the coupled biological-physical model are designed to provide a
set of state variable responses to parameter variations. Fiechter (2012) reports ensemble
calculations with the coupled biological-physical model for the CGOA for 2001; a year that
included strong Spring and weaker Fall phytoplankton blooms on the shelf and an
interaction with a Yakutat eddy off the shelf-break in Summer. Seven biological
parameters were varied for each forward model ensemble member according to Latin
Hypercube randomizations given reasonable ranges around the parameter values from
control runs (e.g. Fiechter et al., 2009). The perturbed parameters included: the initial
slope of the light utilization curve by phytoplankton (PhyIS); the maximum growth rate for
phytoplankton (VmNO3); the half-saturation constant for nitrogen (KNO3); the half-
saturation constant for iron (KFeC); the zooplankton grazing rate (ZooGR); and
reminearlization rates for detritus (DetRR) and iron (FeRR). These parameters directly
affect the equation for phytoplankton abundance (see Tables 1 and 2) and they overlap the

set of parameters treated as random variables in the initial experiments with the BHM.

The state variable simulations for phytoplankton, P, in each ensemble member, are
compared with 8-day average surface phytoplankton retrievals from SeaWiFS to begin to
identify key biological parameters and confirm biological scenarios for the LTL ecosystem
evolution on synoptic and seasonal timescales in the CGOA. The ensemble approach is
limited by the costs of the coupled physical-biological calculation for each ensemble
member, and by the extent to which the biological model parameter space is explored by

the perturbations from control values in a few parameters.

Fiechter (2012) also examined the effects of ensemble size and parameter range variations

on the summaries obtained from the ensemble experiments. The leading spatial empirical



orthogonal function (EOF) pattern, the associated amplitude time series, and the ensemble
spreads in each, for surface chlorophyll concentrations in 2001 were insensitive to
ensemble sizes of 25 members and above. They were more sensitive to increasing ranges
supplied to the Latin Hypercube algorithm for randomization of the 7 biological
parameters; with minimum spread when the parameter ranges were + 10% of the
respective control values, and maximum spreads for parameter ranges spanning values
from half to double the control values. Greater range in the biological parameters led to an
earlier phytoplankton bloom in Spring (by up to 3 weeks). Agreement with 8-day average
surface phytoplankton concentration retrievals from SeaWiFS was also insensitive to
ensemble size, but sensitive to parameter range in the ensemble experiments. The best
agreement with averaged SeaWiFS occurred for the half-double parameter range
constraint. These agreements were best during the Spring bloom on the shelf. Target
diagrams that locate every ensemble member in a root-mean-square-difference vs. bias (i.e.
model - observations) space were plotted for comparisons with the 8-day average surface
chlorophyll as well. The target diagrams help identify particular ensemble members (i.e. a

specific set of parameter values) that minimize differences and bias.

To identify parameter impacts in sub-domains of the CGOA Fiechter (2012) performed
multivariate linear regressions for the surface chlorophyll concentration given terms
representing each of the 7 biological parameters that were randomly perturbed for each
ensemble member. Each regression coefficient (one for each parameter) identifies the
relative impact (in a normalized least squares sense) of its associated biological parameter.
The random parameters explaining the largest fractions of the variance in surface
phytoplankton concentration are weighted by the largest normalized regression

coefficients.

To isolate temporal variability in the leading parameters, the linear regression analysis was
spatially averaged over shelf and basin regions of the CGOA for 25-member ensembles
when the parameter values spanned ranges from half to double the default values.

Figure 2 depicts the normalized monthly average regression coefficient for each parameter

for the period March through October 2001 from Fiechter (2012). The left panel shows the



correlations on the shelf and the right panel the relative impacts in the CGOA basin. On the
shelf, primary production in the Spring bloom is consistent with efficient utilization of
sunlight and rapid phytoplankton growth; i.e. large amplitude normalized regression
coefficients for PhyIS and VmNO3. PhyIS is again important leading into the Fall bloom. P
abundance is moderated by zooplankton, Z, grazing in Summer and Fall as noted by large
negative normalized regression coefficients in ZooGR for May-October. While bloom
signals for the basin regime are similar in PhylS, VmNO3 and ZooGR, there are additional
important terms having to do with uptake of dissolved iron by phytoplankton cells (KFeC)
and iron remineralization (FeRR).

<< Figure 2 goes about here >>

When the spatial-averaging is relaxed, point-by-point linear regressions can be used to
identify spatial distributions of the dominant normalized regression coefficients, and
therefore biological parameters, in the LTL ecosystem of the CGOA. Figure 3 depicts maps
of dominant biological parameters contributing to P abundance for 3 seasons of 2001; May,
July and September, representing the Spring bloom, the Summer synoptic eddy season and
the Fall bloom. We discuss here the results for the 25-member ensemble given half-double
ranges in the 7 biological parameters. For comparisons involving many ensemble sizes and

parameter ranges see Fiechter (2012).

The dominant ecosystem process on the shelf in April is the Spring bloom and the
controlling parameter is PhylS over most of the shelf. Offshore, the ecosystem is iron-
limited and this is reflected in the importance of the half saturation constant for dissolved
iron uptake, KeFC. By Summer, ZooGR controls the P abundance on the shelf in the middle
of the domain and across the shelf break into the basin over most of the domain. The light-
limitation parameter, PhylIS, is negatively correlated with sustaining primary productivity
into Summer in nearshore regions; i.e. less efficient light utilization preserves some
nutrients for later in the year. Remineralization of iron (FeRR) plays a dominant role
offshore and in the south. There is a hint of nutrients being drawn off the shelf in the north
where a spatial patch on the scale of a Yakutat eddy is dominated by the VmNO3

parameter. This corresponds to an eddy location noted in Brown and Fiecther (2012) and
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Fiecther and Moore (2012). By Fall, ZooGR controls P abundance from the coast across the
shelf break in the south, while signals of the Fall bloom due to DetRR and PhyIS are evident
onshore in the north. Dominant parameters in the basin are similar to the Summer
distributions with FeRR in the south, KeFC in the north, and evidence of onshore-offshore
transports along the shelf break where PhylS and ZooGR are most important.

<< Figure 3 goes about here >>

The ensemble calculations have identified seasonal, synoptic and sub-domain variabilities
in dominant parameters of the LTL ecosystem dynamics for the CGOA up to the limits
explored in terms of ensemble size and ranges in the subset of biological parameters (i.e. 7
of 19) varied in the experiments. Randomly selected parameter values led to surface
phytoplankton estimates that could be compared with 8-day and monthly averages from
SeaWiFsS retrievals. For the purposes of parameter probability distribution estimation, the
ensemble experiments have identified a few key parameters and suggested reasonable

ranges to pose as priors for [0, ] in (1).

3. The Parameter-Estimation BHM in the CGOA

The NPZDFe BHM was revisited in light of the insights gained from ensemble calculations
in the coupled physical-biological forward model. The 1-D vertical BHM was implemented
at inner and outer shelf locations on the GLOBEC line off the Kenai Peninsula (Fig. 1) during
2001. The NPZDFe process model is unchanged from the earlier implementation and the
data stage inputs are taken separately and in combinations from: surface phytoplankton
retrievals from daily SeaWiFS data; temporally intermittent in-situ observations of nitrate
and chlorophyll at the GLOBEC stations; and from coupled physical-biological model output
to be used for sensitivity tests and validation experiments. We focus on 2001 because
concurrent measurements of nitrate and chlorophyll are available at both the inner and
outer shelf GLOBEC stations that year in April, May and July (Strom et al., 2006). The inner
shelf location is representative of nitrate-limited primary production with strong Spring

and weaker Fall blooms in P. The outer shelf location is offshore of the shelf break where
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iron limitation is important and P abundance does not exhibit a strong seasonal signal. To
demonstrate parameter estimation in the NPZDFe BHM, we highlight a few interpretations
and implications from the posterior distribution estimates obtained, with a focus on the
inner shelf location. For a more complete analysis, including equal emphasis on posterior

distribution estimates for the outer shelf location, see Fiechter et al., 2013.

We begin with 2 random parameters; VmNO3 and ZooGR, shown to be important in
controlling P abundance in the ensemble calculations. VmNO3 is the most flexible
parameter to reflect the full range of potential phytoplankton growth rates. PhylS was
important in setting the onset of the Spring bloom, but its functional dependence (i.e., as
the coefficient for the light limitation term) is limited to the range [0,1] as are other terms
(e.g., Michaelis-Menten nutrient limitation) in the equation governing phytoplankton
growth (see Tables 1 and 2). Also, recall that in the NPZDFe BHM a vertical mixing term
based on mixed-layer depth estimates refines the timing of the Spring bloom onset. So, we
revisit the NPZDFe BHM with VmNO3 and ZooGR as random parameters, while fixing the

other parameters (Table 2) at their default values.

The NPZDFe BHM can be validated in part by replacing in-situ and remotely-sensed data
stage inputs with simulated observations from the control run of the coupled physical-
biological model. These are so-called “nearly perfect data experiments”. The goal is to
reproduce in the posterior distribution of the NPZDFe BHM the default values used in the
forward model for the random parameters VmNO3 and ZooGR. The simulated data in
these experiments are “nearly perfect” because there is no explicit account in the 1-D BHM
for the time-dependent 3-D effects of the ocean circulation in and around the GLOBEC
stations that does affect P in the forward model. The nearly-perfect data experiments did
reproduce, with negligible spread, posterior mean values for VmNO3 and ZooGR thereby
validating the implementation of the NPZDFe BHM and indicating that 3-D circulation

effects on P were secondary (Fiechter et al.,, 2013).

The nearly perfect data sampling was degraded in time and content to study the effects of

more realistic data stage inputs and to help interpret posterior distributions from NPZDFe
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BHM experiments using SeaWiFS and GLOBEC station data stage inputs. Inferences
regarding sampling that emerge from these sensitivity studies include (Fiechter et al,,
2013): a) it is important to capture data, both for the onset (i.e.,, dominated by P growth)
and decay (i.e., controlled by Z grazing) phases, of the Spring bloom on the shelf;

b) in-situ samples of more than one state variable (e.g. chlorophyll and nitrate) usefully
constrain posterior distributions of interest; and c) data stage inputs with widely different
space-time properties (e.g. resolution, seasonality, vertical vs. surface biases in coverage,
etc.) might not be additive in their contributions to refining posterior distribution

estimates.

<<< Figure 4 goes about here >>>

Figure 4 shows estimates of the posterior distributions for VmNO3 (top row) and ZooGR
(bottom row) for the inner shelf location when degraded forward model outputs (denoted
ROMS NPZDFe in Fiechter et al., 2013) are used as data stage inputs in the BHM to mimic
the temporal and vertical sampling and data types collected at the GLOBEC station (left
column), SeaWiFS sampling (middle column) and combined GLOBEC and SeaWiFS
sampling (right column). Large uncertainty in VmNO3 for GLOBEC sampling of forward
model output is shown by Fiechter et al. (2013) to be due to the absence of station data in
the early phases of the Spring bloom. The uncertainty in VmNO3 is greatly reduced using
forward model output with SeaWiFS sampling intervals and the same is true for combined
GLOBEC and SeaWiFS (right column). The SeaWiFS sampling covers the initial phases of
the Spring bloom. ZooGR is well estimated given forward model data stage inputs for all
sampling intervals. Zooplankton grazing does not control P abundance until after the peak

in the Spring bloom on the shelf (e.g. see Fig 3).

When the real in-situ GLOBEC station data and SeaWiFS remote sensing data are used in
isolation and in combination (Figure 5), the posterior distribution estimates for VmNO3
and ZooGR at the inner shelf location are more complicated. Vertical profiles of nitrate and
chlorophyll from the GLOBEC station data are sufficient to estimate posterior mean values
for VmNO3 and ZooGR that are close to default values with very little uncertainty.

However, the posterior distribution estimates using SeaWiFS-only data stage inputs are
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farther from the default values. There is evidence of noise in the posterior for VmNO3 that
Fiechter et al. (2013) attribute to high-frequency variability in the SeaWiFS data that is
missing in smoother forward model output (See Fig 4). Posterior distribution estimates for
Z00GR using SeaWiFS-only data stage inputs exhibit an as yet unexplained bi-modality with
modal values much larger than the default values. The combined GLOBEC and SeaWiFS
data lead to a posterior distribution estimate for VmNO3 that is highly uncertain, while the
bi-modality in ZooGR disappears and the posterior mean value is closer to the default.
Recall that SeaWiFS provides an estimate of chlorophyll only at the surface, averaged over
a 10km area. The GLOBEC station data include profiles of chlorophyll and nitrate at 10m
intervals in the vertical. Apparently, these datasets are detecting different processes
affecting P abundance at the GLOBEC inner shelf station location.

<<< Figure 5 goes about here >>>

Identifiability issues begin to arise when the number of random parameters is expanded to
6. Figure 6 shows the posterior distribution estimates for (from left) PhylS, VmNO3,
Z00GR, DetRR, KFeC and FeRR at the inner shelf location given GLOBEC station data (top
row), SeaWiFS surface chlorophyll retrievals (middle row) and the combined GLOBEC and
SeaWiFS data (bottom row). These data stage inputs to the NPZDFe BHM now identify 6
random parameters controlling P abundance limitations due to light, nitrogen, iron and
remineralizations of detritus and iron. Individual datasets (either GLOBEC or SeaWiFS)
lead to posterior distributions exhibiting significant uncertainties for almost all
parameters. In the GLOBEC data stage input case the uncertainty in VmNO3 noted in the 2
random parameter BHM has been compensated in some sense by a low but relatively
certain distribution for PhyIS. Low values of the light limitation parameter are offsetting
large but uncertain values in growth rate. The compensation appears to go the other way
(i.e. large and uncertain PhylS and lower but relatively certain VmNO3) in the SeaWiFS
only data stage case that focuses on surface chlorophyll only. This is an example of
parameter correlation making the interpretation of ecosystem dynamics from BHM output
more challenging. Note that in the 6 random parameter BHM, combining datasets reduces

uncertainty in the posterior distributions for all parameters; with many parameter
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posterior mean values near default values. The exception is FeRR which was not shown to
be important on the shelf in the ensemble experiments (Fiechter, 2012; see also Figs 2, 3).

<<< Figure 6 goes about here >>>

<<< Possible Box: What does iron limitation look like in 2 and 6 random parameter BHMs?

Careful consideration of the posterior distribution estimates for the parameters of the
NPZDFe BHM can be used to: quantify identifiability; evaluate differing information content
in differently sampled data stage inputs; and qualify ecosystem dynamical interpretations
(i.e. in terms of certainties). Validation and sensitivity experiments with simulated data
stage inputs from skillful forward model integrations are essential to diagnosing these
issues as well (i.e. the nearly-perfect-data experiments). However, computational costs
associated with many thousands of iterations through the M-H algorithm constrain the
number of experiments that can be run. Limitations in the abundance and precision of data
stage inputs constrain the number of parameters that can be treated as random and
identified in the posterior. These constraints preclude BHM experiments wherein random
parameters are identified in space (i.e. at each grid point or in sub-regions on the shelf,
shelf-break or in the basin) and time (i.e. for different phases of the Spring bloom). In the
next section, we describe developments to circumvent computational costs such that many

more degrees of freedom enter the Bayesian analysis.

4. Bayesian Statistical Emulators for Estimating Parameters and State Variables

The use of statistical “emulators” or “surrogates” to approximate complex deterministic
forward models has seen increasing use in recent years, particularly in model calibration
(i.e. procedures for inferring parameters; e.g., Kennedy and O'Hagan, 2001; Higdon et al,
2008; Rougier, 2008). This is often accomplished in a two-stage approach. In the first stage,
emulators are constructed by running the forward model under multiple different input
(calibration) parameter settings. Then, some summary measure of the forward model
output is considered a response surface relative to the input parameters, and a covariance-

based statistical model (e.g., a Gaussian Process model) is used to “fill in” the output surface
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so that one predicts the forward model (summary) output at untried input settings. In the
second stage, if real-world observations are available that correspond to the response
surface summary variable, then these statistical models can be estimated with classical or

Bayesian methods, and provide a reasonable calibration of the forward model.

We used statistical emulators to help facilitate uncertainty quantification of the CGOA
NPZDFe and CGOA ROMS-NZPDFe models. In particular, we evaluated parameter
uncertainty of the CGOA-NPZDFe model, linked one-dimensional (vertical) NPZDFe models
across spatial locations, and assimilated both models with SeaWiFS observations to obtain
complete spatial fields of near surface phytoplankton. The emulator-based solutions to
these problems are described briefly below. Critical to our methodology is the use of what
we have labeled “first-order” emulators, which differ from the response surface approach
described above in that our focus is on modeling the response through its mean (e.g., first-
order moment; Hooten et al,, 2011) rather than covariance (second-order moments) based

approaches which rely on Gaussian Processes (GPs).

First-Order Emulator-Assisted Parameter Estimation

<<< Figure 7 goes about here >>>

Hooten et al. (2011) showed that one can obtain parameter estimates for complicated
nonlinear forward models by the use of first-order emulator approximations within a
Bayesian estimation approach. The key to this approach is that the forward model output is
obtained for a subset of scientifically plausible parameter values. Then, one develops a
statistical model to describe the input-output relationship. A critical component of the
modeling is that the dimensionality of the model output is reduced through a truncated
singular value decomposition of the forward model output. The right singular vectors are
modeled statistically in terms of the forward model inputs as well as some statistical
parameters. This relationship is formulated in the context of a nonlinear statistical model,
with associated additive errors, and the associated statistical model parameters are
estimated “off-line” from the forward model output. Given actual observations
corresponding to the model output, and a prior distribution for the forward model input

parameters, the posterior distribution of these parameters can be obtained without having
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to re-run the forward model. This procedure is illustrated graphically in Figure 7 and in the
following steps:

1. Select sets of 7 randomized input parameters, 8 *, 0,k (i.e. from the prior

s
distribution [Bp]).

2. For 8, run the forward model f(6,;,¥) (Where y corresponds to ancillary model
input such as boundary and initial conditions and “fixed” parameters), obtaining the
desired output vector x;.

3. Collect output into matrix X = (x4, **, Xg).

4. Perform singular value decomposition of the matrix in step 3 to get X = UDV' and
approximate it by a subset of left and right singular vectors; i.e. X ~ UDV".

5. Develop a statistical model for each right singular vector with 8,,; as a predictor
variable corresponding to response variable v; in the i*® column of V. The resulting
statistical model is v(8, B), where B are the estimated statistical model parameters.

6. Perform model calibration, using UVv(8*, B) in place of f (8", 7).

Hooten et al. (2011) applied this procedure to a 50-member ensemble of the ROMS-
NPZDFe coupled physical-biological model of the CGOA. In this experiment, 7 of the 19
biological parameters were allowed to vary randomly from a truncated normal distribution
with scientifically plausible lower and upper bounds and location parameter equal to the
default value for the parameter. The first-order emulator was constructed based on the
first three singular vectors (accounting for approximately 99% of the variability in the
ensemble) and a random forest model was used to estimate the relationship between the
right singular vectors and the input parameters. The additive error was included through a
bootstrapping approach based on random sampling of predictive residuals. The input
parameters were given uniform prior distributions over the scientifically plausible range of
variation. To evaluate the ability to recover true parameter values where the only model
uncertainty comes from the use of a statistical surrogate, the Bayesian estimation
procedure was run 50 times, each time assuming that one ensemble member was the
observed “truth” and using the other 49 ensemble members to construct the emulator. This

study showed that certain parameters could be recovered, but not all (an example of the
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under-determination problem). These results were corroborated when we used actual
SeaWiFS observations as well (which introduces model structural uncertainty as well as

measurement uncertainty).

Modeling 3-D Processes with a Forest of 1-D Emulators

Biogeochemical model parameters can vary in space (e.g., Friedrichs et al. 2007; see also
Fig. 3). Itis plausible to link a series of 1-D NPZDFe models through a 2-D spatial field on
their parameters in order to characterize the rough 3-D structure of biogeochemical
process. In particular for the CGOA, the dynamics behave differently along the inner shelf,
the outer shelf and in the synoptic eddy corridor, yet the variability is more similar along
the shelf regions and in the eddy corridor. Given the successful implementation of the first-
order emulator in the coupled ROMS-NPZDFe case, we investigated the possibility of
linking several 1-D NPZDFe models (a “forest of 1-D models”) through a hierarchical model
that linked the parameters (Leeds et al. 2012b). Critically, rather than doing this directly
with the NPZDFe models, we used the first-order emulator implementation of the 1-D
models in our BHM. The model input parameters were then given spatially-dependent

prior distributions that respected the anisotropic dependence across and along shelf.

The model was implemented to investigate two spatially varying parameters
corresponding to the zooplankton grazing rate, ZooGR, and the half-saturation constant for
iron, KFeC. Data were from SeaWiFS. Both parameters showed evidence of Bayesian
learning given the data and the spatial linkage was more critical for the than ZooGR.

<<< Figure 8 goes about here >>>

Emulator-Assisted Biogeochemical Data Assimilation

It is also plausible to develop statistical emulators for the dynamical operators in forward
models (e.g., Conti et al., 2009). Traditionally, such implementations have not considered
knowledge related to the inherent nonlinear interactions that are present in complicated
environmental and ecological processes. We developed a BHM that incorporated a
parametric nonlinear emulator to perform data assimilation of near-surface phytoplankton

and the coupled ROMS-NPZDFe model along with SeaWiFS observations. In particular, our
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model considers the interaction of sea surface temperature (SST), sea surface height (SSH),

and phytoplankton (P) fields through time (Leeds et al. 2012a).

A key component of this model is the representation of the multivariate spatial field (SST,
SSH, P) as the sum of a lower dimensional dynamical process and a lower-dimensional
(multivariate spatial) non-dynamical process. This can be accomplished naturally in the
context of the first-order emulator procedure by considering the higher-order singular
vectors to correspond to the time-varying dynamical process and allowing the remaining
singular vectors to correspond to the non-dynamical component. One then models the
evolution of the right singular vectors through a nonlinear evolution operator. In our case,
we utilized the parametric quadratic nonlinear model of Wikle and Hooten (2010) because

it explicitly accounts for dyadic nonlinear interactions.

The emulator was developed with 8-day averages of ROMS-NPZDFe SSH, SST, and P output
for 1998-2001. The BHM was then run given SeaWiFS ocean color observations for 2002 in
place of the ROMS-NPZDFe phytoplankton output. As shown in Figure 8, the model was
able to blend the ROMS-NPZDFe dynamics with the observations in a framework that

provides realistic measures of assimilation uncertainty.

5. Summary

The interplay between deterministic and probabilistic methods leads to clearer
understanding of LTL ecosystem dynamics in the CGOA and the extent to which those
dynamics are conditioned upon key parameters of the ecosystem model. The
quantification of uncertainty through in the posterior distribution of the BHM is an
incremental advance in understanding at the abstracted level of the NPZDFe LTL
ecosystem model approximation. In addition to these specific results, much of the work
here can be considered a “proof-of-methodology” as well. The refinement of the NPZDFe
BHM and the specific focus on key parameters of the LTL ecosystem model in the BHM
(Fiechter et al,, 2013), depend upon intuition gained in ensemble experiments in the

coupled physical-biological forward model (Fiechter, 2012). Limitations in the state-space
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dimension tractable in the BHM are overcome by constructing Bayesian emulators based
on leading space-time patterns deduced from, again, ensemble forward model calculations
(Hooten et al., 2011). In the larger state-space Bayesian emulator applications, parameters
borrow strength in horizontal spatial dimensions such that estimates for parameters are
obtained for shelf, shelf-break and basin sub-regions of the CGOA domain (Leeds et al.,
2012b). Bayesian emulators are also used to provide estimates, with space and time-
variable uncertainties, for surface P fields from sparse and imperfect SeaWiFS observations

(Leeds etal., 2012a).

In general, the under-determination problem is not going away. Although we have
relatively large amounts of satellite-derived estimates of near surface phytoplankton
abundance from the ocean color proxy, these observations are incomplete and fairly
uncertain. The NPZDFe models considered here are abstractions of more complicated
multi-component LTL ocean ecosystem models (e.g., NEMURO). The identifiability issues
discussed here are only going to be amplified in these more complicated models. This
suggests that uncertainty quantification in biogeochemical models will be focused on the
relatively few identifiable parameters, or the focus will change to one of state prediction
rather than parameter inference. In this case, there is a great need to account for the
uncertainties in these predictions and to use these predictive distributions to link to other
higher trophic levels of the ocean ecosystem. A major use of these linkages will be to study
both the consequences of management decisions and global climate change. The major
components of these models are likely to include stochastic parameterizations or emulator-
based processes. Both approaches will require significant contributions from statistical
scientists in collaboration with physical and biological oceanographers. We believe that

the results presented here provide a template for how such collaborations can be achieved.
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Tables

NPZDFe Lower Trophic Ecosystem Model

Dissolved nitrogen:

Phytoplankton:

Zooplankton:

Detritus:

P-associated iron:

Dissolved iron:

Phytop. growth rate:

Phytop. iron uptake:
Empirical and realized [Fe:C] ratios: R, =bF, , R= ll
P|C :N |
Light availability at depth: I =1 exp(kzz + kpj' P(z)dz'
0
Zooplankton growth rate:

Vertical mixing term:

2
ﬂ=6D+ynGZ—UP+Ka]2V
ot 0z
2
£=UP—GZ—O’dP+Kaf
ot 0z
/4 A
i=(l—yn)GZ—§dZ+Ka >
74 Z
2
£=adP+é‘dZ—(5D+wd@+Kalz)
ot 124 0z
oF GZ d°F
P=F |U-—- +L, + k—2~
at p( P pm) Fe azz
oF,

GZ
F —+ -U|-L,, +«K
8t p(frem( P pm) ) Fe

R* VN

d°F,

2

0z

R,-R
L, =

e

P[C:N]

Fe

G=R,(1-¢"")

ol
R’ +k12% ky+N \/sz +a’l?

K ~ MLD,,,,( MLD= Mixed Layer Depth)

Table 1. Biological source and sink terms for the 1-D NPZDFe model and growth functions for
phytoplankton and zooplankton (see Table 2 for parameter definitions and values).

23




Parameter Name Symbol Value Units
Light
Light extinction coefficient k; 0.067 m’!
Self-shading coefficient ky 0.04 m” mmolIN"!
Phytoplankton
Initial slope of P-I curve (PhylS) a 0.02 m* W
Maximum uptake rate (VmNO3) Vi 0.8 day™
Nitrogen half-saturation constant kn 1.0 mmolIN m™
Half-saturation for [Fe:C] (KFeC) kFe 16.9 mmolFe (molC)™!
Empirical [Fe:C] power a 0.6 nondimensional
Empirical [Fe:C] coefficient b 64 (mmolC m™)
Iron uptake time scale tFe 1.0 day
Mortality 04 0.1 day™
Zooplankton
Maximum grazing rate (ZooGR) Ry, 0.4 day™
Ivlev constant 4 0.84 nondimensional
Excretion efficiency Vn 0.3 nondimensional
Mortality G 0.145 day™
Remineralization
Detritus remin. rate (DetRR) 0 0.2 day™
Detritus sinking Wa 8.0 m day™
Iron remin. fraction (FeRR) frem 0.5 nondimensional

Table 2. Parameter names, symbols, values, and units for the 1-D NPZDFe model. Parameters

treated as random in the BHM framework are indicated in bold italics (i.e., PhyIS, VmNO3,

Z00GR, DetRR, KFeC, FeRR).
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160W 150W

Figure 1. Coastal Gulf of Alaska (CGOA) domain (adapted from Leeds et al.,, 2012b).
GLOBEC stations along the Kenai, Kodiak and Shumagin lines are noted. Each line consists
of an inner shelf, outer shelf and offshore station. The shelf break is indicated by the 200m,

1000m and 2000m isobaths. Directions for the general circulation features; Alaska Current
and Alaska Stream are indicated.
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Figure 4. CGOA Inner-shelf posterior distributions for phytoplankton growth rate (VmNO3;
top) and zooplankton grazing rate (ZooGR; bottom) using ROMS-NPZDFe subsampled as
GLOBEC (left), SeaWiFS (center) and both (right) as data stage. Dashed vertical red lines
indicate default parameter values (see Table 2).
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Figure 5. CGOA Inner-shelf posterior distributions for phytoplankton growth rate (VmNO3;
top) and zooplankton grazing rate (ZooGR; bottom) using observations from GLOBEC (left),
SeaWiFS (center) and both (right) as data stage. Dashed vertical red lines indicate default
parameter values (see Table 2).
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Figure 6. CGOA Inner-shelf posterior distributions for PhylS, VmNO3, ZooGR, DetRR, KFeC
and FeRR (from left to right) using observations from GLOBEC (top), SeaWiFS (middle) and
both (bottom). Dashed vertical red lines indicate default parameter values (see Table 2).
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Figure 7. Bayesian emulator flow-chart (see text).
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Figure 8. Plots of log-transformed SeaWiFS ocean color observations (top row), ROMS-
NPZDFe phytoplankton output (second row), posterior mean (third row), and posterior
standard deviation (fourth row), for three eight-day time periods: June 2, 2002 to June 9,
2002 (left column), June 10, 2002 to June 17, 2002 (center column), and June 18, 2002 to
June 25, 2002 (right column). Adapted from Leeds (2012a).
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