At risk: forests, watersheds, water quality and even air quality. How will the forests recover from Colorado’s pine beetle epidemic?

New model developed to forecast lethal coral bleaching

Could you be tracked by your bacterial ‘fingerprints?’

The Vatican investigates the possibility of life beyond Earth
Researchers have begun flying unmanned aircraft systems (UAS) with video and still cameras to see if the UAS can help them track seal populations in the rapidly changing Arctic. The first such mission produced about 25,000 images, leaving scientists with the daunting task of pouring through the photos to find the seals. Find the answer and read more about the research on page 19.

See the seals?

Researchers have begun flying unmanned aircraft systems (UAS) with video and still cameras to see if the UAS can help them track seal populations in the rapidly changing Arctic. The first such mission produced about 25,000 images, leaving scientists with the daunting task of pouring through the photos to find the seals. Find the answer and read more about the research on page 19.

11 million pounds

Of chemical pentachlorophenol (PCP) had been produced in the United States as of 2002. The chemical is still used as a wood preservative; many other uses have been restricted.

Source: US EPA

8,202 feet

Elevation that the American pika in New Mexico, Nevada, and southern California rarely live below.

Source: US Fish and Wildlife Service

“The Vatican has a long history of interest in astronomy. The idea that life might be found elsewhere … would be considered as evidence of God’s magnificence.”

Read more of the Shelley Copley’s unique trip to the Vatican on page 21.
Bleach Alert!

NOAA/CİRES tool gives advance warning of coral-stressing heat

Warm water can kill coral, and the “bleaching” of coral reefs around the world, often associated with heat stress, has become a critical problem in reef ecosystems. So CİRES researchers and colleagues developed a new tool to forecast warm water episodes. The still-experimental Coral Bleaching Outlook is a companion to NOAA Coral Reef Watch’s real-time satellite monitoring of ocean temperatures. The outlook uses models and observations of sea surface temperatures to forecast temperatures one week to three months in advance. NOAA researchers who developed the tool won a Silver Medal for their effort; in 2010, CİRES’ Ludmila Matrosova won a CİRES Silver Medal, too, for her work on the outlook.

American pikas, little rabbit-like mammals that live on cool and rocky high-altitude slopes, have become a symbol of climate change impacts for some environmental groups. They often cannot tolerate the relative warmth of valleys, and so if climate change forces their preferred habitat upslope, populations could be left isolated, on “sky islands” of good habitat.

In 2007, an environmental group requested that the U.S. Fish and Wildlife Service assess threats to the mammal—especially climate change—to see if pikas warranted protection under the Endangered Species Act. The FWS sought help from NOAA—the first time NOAA has been involved in a species status review.

“We were approached by Fish and Wildlife to conduct a rapid review of the area’s climate that they could use to inform their decision on pika status,” said ESRL’s Andrea Ray (Physical Sciences Division, currently on assignment to the Office of Policy, Planning & Evaluation). “We brought different threads of scientific study together to bear on the particular problem and provided it in about six months so FWS could meet their deadline,” she said.

Pika generally live in alpine and subalpine rockfields, and their range includes mountainous regions from the U.S. and Canadian West.

In February, Ray and CİRES’ Joe Barsugli, Klaus Wolter, and Jon Eischeid (all with ESRL’s Physical Sciences Division, too) completed a 47-page analysis of observed and projected climate changes in pika habitat. The team assessed climate observations at and near pika locations; and projections from the Intergovernmental Panel on Climate Change Fourth Assessment report. They also “downscaled” the IPCC projections, to project future climate patterns in 22 specific pika locations.

The research team found that for pika habitat, the average summers of the middle of this century will be warmer than the warmest summers of the past, by about 5°F. Observing stations in parts of Nevada and Oregon, for example, show summertime warming of 2-4°F during the past 30 years. These findings are consistent with the large-scale warming projected by the IPCC global models.

The trends identified in the NOAA report are probably enough to harm some pika populations, especially those in low-elevation, higher-temperature parts of the Great Basin, the U.S. Fish and Wildlife Service concluded.

“However, these losses will not be on the scale that would cause any species, subspecies or distinct population segments of pika to become endangered in the foreseeable future,” the Service concluded, declining to confer protection to the species. “We believe the pika will have enough high elevation habitat to ensure its long-term survival.”

A climate for pikas

CİRES analysis helps federal biologists make protection decision

TheScience

For the first time, the U.S. Fish and Wildlife Service sought NOAA’s climate expertise for a species status review.

The team assessed climate observations at and near pika locations; and projections from the Intergovernmental Panel on Climate Change Fourth Assessment report. They also “downscaled” the IPCC projections, to project future climate patterns in 22 specific pika locations.

The research team found that for pika habitat, the average summers of the middle of this century will be warmer than the warmest summers of the past, by about 5°F. Observing stations in parts of Nevada and Oregon, for example, show summertime warming of 2-4°F during the past 30 years. These findings are consistent with the large-scale warming projected by the IPCC global models.

The trends identified in the NOAA report are probably enough to harm some pika populations, especially those in low-elevation, higher-temperature parts of the Great Basin, the U.S. Fish and Wildlife Service concluded.

“However, these losses will not be on the scale that would cause any species, subspecies or distinct population segments of pika to become endangered in the foreseeable future,” the Service concluded, declining to confer protection to the species. “We believe the pika will have enough high elevation habitat to ensure its long-term survival.”

Learn more

Women might be known as the fairer sex, but when it comes down to the nitty-gritty, a woman’s handshake is on average “ickier” than a man’s.

Noah Fierer, assistant professor of ecology and evolutionary biology at the University of Colorado at Boulder, looked at the microbial colonies making their homes on human hands. He found more than 4,700 species of bacteria distributed across 51 people. The average palm, he discovered, hosts about 150 different bacteria species. And when separated along gender lines, women, well, they house up to about 30 percent more kinds of microbes than guys.

Inevitable jokes aside, Fierer’s study co-authored by Micah Hamady of CU-Boulder’s computer science department, Christian Lauber of CU-Boulder’s Cooperative Institute for Research in Environmental Sciences and Assistant Professor Rob Knight of CU-Boulder’s Department of Chemistry & Biochemistry offers insights into understanding human bacteria and diseases in ways not previously explored.

“I view humans as ‘continents’ of microscopic ecological zones with the kind of diversity comparable to deep oceans or tropical jungles,” Fierer said. “Today we have the ability to answer large-scale questions about these complex microbial communities and their implications for human health that we weren’t even asking six months or a year ago.”

By focusing on a technique known as “metagenomics,” sampling DNA directly from the microbe community, Fierer literally zoomed in on the lives of bacteria with a high-powered sequencing machine, distinguishing about 100 times more gene sequences than previous studies of skin bacteria. Standard skin culturing misses much of the microbial hitchhikers, his study shows.

No need to go nuts with the hand sanitizer, however. Most bacteria don’t cause illness, and can even help protect against getting sick, said study co-author Rob Knight.

As for the gender gap of microbial distribution, there could be several reasons for the difference. Women tend to moisturize and apply more makeup, both of which could be sources of microbes especially because they tend to be reused. Nature has its role too, including differences in sweat and oil glands, hormones and pH. One thing’s for sure, whether on the palm of woman or man, people are planets when it comes to bacteria.

Touchy subject

No, girls don’t have cooties. But recent research shows that we’re all walking microbial habitats ...

... women just a little more so.

TheScience

DNA sequencing allows researchers to zero in on the particular bacterial coverage on a person’s body.

A bug’s-eye view on the world

For bacteria, getting respect can be hard. A bit of a boost came recently when Wisconsin declared Lactococcus lactis, the “bug” responsible for making all that yummy cheese, the state microbe. Now the little critters are getting more cred from CIRES. Here are a few of the ways CIRES scientists are upping the WOW factor of the microbial world.

Human bodies, microbial planets

Microbial diversity doesn’t just apply to a person’s hands. A bacterium that lives on the forehead might turn its flagellum up at real estate on the elbow. CU’s Rob Knight, Noah Fierer and a collaboration of scientists mapped bacterial communities across 27 sites on the human body and found that different zones host unique types of microbes. Not only that, but one person’s bacterial makeup likely differs from another.

Bacterial crime fighters

Turns out when we touch things like a computer keyboard or mouse, we leave behind an identifying trace of bacteria. These buggy clues could eventually play a role in solving who-done-its, as the microbes we leave behind are so distinct they act like a bacterial fingerprint. There’s still work to do in order to sort out the details, such as distinguishing between multiple users of an object. But lawbreakers beware, some day investigators might swab for bacteria in crime scenes clean of prints or DNA, and then it’ll be curtains for crime.

The leafy loyalty of plant microbes

Trees too boast their own bacterial signature, showing that trees and their “bugs” share a close symbiotic relationship. Noah Fierer and his team sampled bacteria from several species of trees across the University of Colorado campus and found each species lived in harmony with its own microbial community. Unlike people, who may differ from person to person, trees of the same species likely harbor similar types of bacteria even if those trees live on different continents from one another.

We leave behind a bacterial trail so distinct, the 'fingerprint' could potentially be used like a fingerprint.
TheScience

After a blowdown, a fire, and a pine beetle infestation, how do those events affect a forest ecosystem’s recovery from one or all three?

Gales, fires, and beetles—oh my!
Ecologist Carol Wessman: How much can a forest stand?

When fire decimates the site of an experiment, some researchers might throw their hands up in dismay. Not so, CIRES Fellow Carol Wessman.

“My first thought was, ‘This is cool,’” said Wessman. “Now things are getting really interesting.”

Wessman’s research is focused on the impacts of multiple disturbances on forest ecosystems. Until 2003, she had been studying a region in the Routt National Forest of northwestern Colorado that had suffered a catastrophic blowdown in 1997, and had then been partially salvage logged in 1999. Wessman was comparing metrics of forest recovery between the two. Then came the fire. The 2002 Mt. Zirkel Complex Fire, which consumed more than 12,500 hectares, may have destroyed Wessman’s experiment but she simply took it as an opportunity to investigate a key ecological question: Just how much can a forest stand?

“I am interested to see if there is a limit to the number of severe disturbances that a forest can experience before its ability to regenerate breaks down,” said Wessman. “Do the effects of different disturbances accumulate? Do the disturbances interact?”

Wessman’s research is critical for those who want to understand the future of forests and the services they provide, from biodiversity to clean water and carbon storage. Climate change and other human-forest interactions are expected to disturb forests with greater frequency, extent, and intensity. The effects of such disturbances are likely to have far reaching economic and social consequences. Better understanding how forests will respond could help forest managers better plan for the potential stormy waters ahead.

Studying forest regeneration

Since the fire, Wessman and her students have been visiting the differently affected regions of the forest to meticulously log the fine details of forest regrowth. They measure the soil temperature, water content and nitrogen availability at 23 sites, and map the location, height, and species of every new seedling.

Prior to the fire, Wessman had found that regrowth in the areas that had been logged after the blowdown was slower than that in the “blowdown only” regions; fewer new seedlings were observed and the rate of growth for existing seedlings was reduced. It appeared that while the forest could recover from a single disturbance, multiple disturbances proved more challenging.

After the fire, however, some interesting and contradictory results began to emerge. Wessman found seedlings and new growth in the sites where the salvage logging had taken place, but not in the areas where just the blowdown had occurred—a reversal of previous results.

“Predicting the impacts of beetle kill

While Wessman’s besieged experimental plots were struggling to recover from the effects of multiple disturbances, the Routt National Forest—with many other forests in the Western United States—was hit with another catastrophe: beetle kill. The mountain pine beetle has devastated large regions in the Routt National Forest and District Rangers estimate 600 acres of the forest land are logged a month to remove affected trees. Moreover, the beetles have impacted both Wessman’s “control” forest and regions where the fire was less severe, effectively burrowing their way into her research.

Wessman, however, believes the latest disturbance simply adds another layer to her experiment. “The question is how will the beetle kill interact with the other recent disturbances as it hits along the margins and in the remaining areas of green forest? The whole area is undergoing change,” she said.

Wessman also hopes that the insights gleaned so far will provide useful information in predicting how these subalpine ecosystems will recover from the beetle kill. “Forest regeneration and nitrogen cycling in beetle-killed stands may parallel the blowdown areas in some ways, because in both cases the overstory is dead,” she said. Ultimately, however, she hopes that her research will inform some of the questions faced in a climate of unpredictable change brought about by warming temperatures.

“How resilient are our forests to more frequent, and perhaps more extreme, disturbances? And how do we (humans) have to adjust to accommodate those changes?”

The research has provided a really good example of the cumulative and interactive effects of the disturbances. The various permutations of the disturbances interact quite differently and produce quite different measurable results,” said Wessman.

CIRESe offers two graduate fellowships, ranging in support from a summer or single semester to four years. The ESRL-CIRES fellowship allows students to work with world-class researchers at NOAA’s Earth System Research Laboratory while earning a degree at the University of Colorado at Boulder.
Contrary to conventional belief, as the climate warms and growing seasons lengthen, subalpine forests will soak up less carbon dioxide (CO2) than they used to, according to research by CRES Fellow Russell Monson and his graduate student, Jia Hu.

As a result, more of the greenhouse gas will be left to concentrate in the atmosphere. “Our findings contradict studies from other ecosystems that conclude longer growing seasons actually increase plant carbon uptake,” said Jia Hu, a graduate student in CU’s Department of Ecology and Evolutionary Biology.

Working with biology professor and CRES Fellow Russell Monson, Hu found that while smaller snowpacks tended to advance the onset of spring and extend the growing season, they also reduced the amount of water available to forests later in the summer and fall. The water-stressed trees were then less effective in converting CO2 into biomass. Summertime rains were unable to make up the difference. “Snow is much more effective than rain in delivering water to these forests,” said Monson.

“If a warmer climate brings more rain, this won’t offset the carbon uptake potential being lost due to declining snow packs,” he said.

Drier trees also are more susceptible to beetle infestations and wildfires, Monson said. The researchers found that even as late into the season as September and October, 60 percent of the water in stems and needles collected from subalpine trees along Colorado’s Front Range could be traced back to spring snowmelt. They were able to distinguish between spring snow and summertime rain in plant matter by analyzing slight variations in the water molecule’s hydrogen and oxygen atoms.

The results suggest subalpine trees such as lodgepole pine, subalpine fir, and Engelmann spruce depend largely on snowmelt throughout the growing season.

“As snowmelt in these high-elevation forests is predicted to decline, the rate of carbon uptake will likely follow suit,” said Hu.

Subalpine forests currently make up an estimated 70 percent of the western United States’ carbon sink. Their geographic range includes much of the Rocky Mountains, Sierra Nevada, and high-elevation Pacific Northwest.

“The question is how,” said DeGouw. DeGouw is working with CRES Fellows Russ Monson and Noah Fierer to take advantage of a decade-long history of forest experiments at the University of Colorado’s Mountain Research Station near Nederland, CO. Mountain Pine beetle outbreaks are just beginning to arrive at the site, but Monson’s group has been working there for more than 10 years, trying to understand how climate change alters the carbon dioxide cycle in forests.

Part of the ecological research has involved girdling groups of trees—removing wide strips of bark to break the link between trees’ needles, where sugars are produced, and their roots, which normally receive some of those sugars as nutrients. The idea was to distinguish between CO2 emissions by tree roots—which would be affected by girdling—and emissions by soil microbes, which would not.

Serendipitously, the research created a timeline of beetle-like disturbances, with some of the trees girdled a decade ago they’re now dead; and others girdled just last year (stressed, but still alive).

It seemed like an ideal setup for studying how VOC emissions change as trees die, Monson said. “Joost (deGouw) had pioneered the development of an instrument that pretty much captures the whole range of VOCs, and he had the experience with similar data. We had the site, and Noah (Fierer) had a graduate student who was interested...”

The three Fellows applied for and received an Innovative Research Grant from CRES, and set up a proton transfer reaction mass spectrometer to collect emissions data from mountain forests during the summer of 2009. CRES graduate student Chris Gray is beginning to pore through the data. In theory, he said, one might expect VOC emissions from soils to spike up as trees drop needles and branches and microbes in the soil begin to decompose some of that litter. There’s some evidence, from other studies, that plants under certain kinds of stress emit more VOCs.

Within a few years, as the “easy-to-decompose” material is broken down, VOC emissions may drop back down again, Gray hypothesized. “But this is all kind of new research, so we’re not sure,” he said.

Monson said it’s still not certain that the current beetle outbreak is a result of climate change, “but there is strong reason to believe that trees that are more stressed are more vulnerable to attack by beetles.” He and others suspect that increasing temperature and decreasing moisture availability in the mountains are stressing the trees—and girdling clearly has stressed them, too, Monson said.

During the summer of 2009, he and a graduate student found beetles “zeroed in on the trees that had just been girdled...those trees acted like magnets.”

The researcher team expected to be able to report their findings in mid-2010.

The Science

CRES researchers study how a pine beetle outbreak may affect gas emissions by trees, litter, and soil microbes.

Although Reagan was widely derided for misunderstanding science, his statement contained a kernel of truth: Trees and the soil surrounding their roots do produce volatile organic compounds, VOCs. And VOCs can interact with anthropogenic emissions—nitrogen compounds from car tailpipes and power plant stacks, for example—to form lung-damaging ozone smog.

CRES researchers are trying to understand how VOC emissions from Colorado’s high-country forests will change as mountain pine beetles invade, killing lodgepole pines and dropping needles and branches to the ground.

“When you have a significant part of the state overrun with beetles, as Colorado is, it’s going to affect the atmosphere,” said CIRES Fellow Joost deGouw. “The question is how.”

DeGouw is working with CRES Fellows Russ Monson and Noah Fierer to take advantage of a decade-long history of forest experiments at the University of Colorado’s Mountain Research Station near Nederland, CO. Mountain Pine beetles are just beginning to arrive at the site, but Monson’s group has been working there for more than 10 years, trying to understand how climate change alters the carbon dioxide cycle in forests.

Part of the ecological research has involved girdling groups of trees—removing wide strips of bark to break the link between trees’ needles, where sugars are produced, and their roots, which normally receive some of those sugars as nutrients. The idea was to distinguish between CO2 emissions by tree roots—which would be affected by girdling—and emissions by soil microbes, which would not.

Serendipitously, the research created a timeline of beetle-like disturbances, with...
How will mountain pine beetles—and attempts to control them—affect aquatic ecosystems?

Tiny beetles barely the size of a grain of rice have wreaked havoc on western forests in the United States and Canada during the last decade. An outbreak of mountain pine beetles, *Dendroctonus ponderosae*, has turned whole mountainsides of once-green forests brown, brittle, and dead.

CIRES ecologists Jimmy McCutchan (Associate Director of CIRES’ Center for Limnology) and Suzanne van Drunick (CIRES’ Associate Director for Science) are trying to understand how those changes—and people’s attempts to control the beetle outbreak with chemicals—are affecting regional water quality and ecosystems.

Their work is funded by the Western Water Assessment, a joint project of CIRES and NOAA.

“Vegetation in a watershed affects the quality and quantity of water,” McCutchan said. “If the pine beetles kill the trees, then one link in a complex system has been taken out. We’d like to understand what that means.”

Growing forests intercept some of the precipitation and nutrients that fall within a watershed. Tree and other plant roots pull up water that percolates through soil, and remove phosphorous, nitrogen, and other nutrients. As trees die, more nitrogen or carbon may flow downstream, for example, affecting communities of aquatic algae, plants, insects, and even fish. If more phosphorous flows downhill, McCutchan said, it could affect drinking water quality downstream. Some mountain reservoirs—such as Dillon Reservoir—are required to keep phosphorous below certain levels, and often come close.

When human activities add chemical insecticides to the mix—carbamates or pyrethroids are the key ones used to fight pine beetles—there may be further effects on aquatic systems, van Drunick said.

McCutchan and van Drunick will focus their research in Rocky Mountain National Park, for two key reasons:

The park is home to the headwaters of many river basins critical for drinking water in Colorado, and working in the relatively pristine park eliminates some potentially confounding effects—septic systems, for example, which can add nutrients to a system.

For the pesticide work, van Drunick and her colleagues will pull water samples in May 2010—the peak of the tree-spraying season—from areas immediately downstream of treated trees. The park has focused its limited spray campaign to less-toxic carbamate in high-priority areas, such as near campgrounds. Homeowners living in scattered private inholdings within the park may also be spraying trees, with consequences on aquatic ecosystems.

“Initially, we’ll look at areas likely to have the highest concentrations of pesticides,” van Drunick said. If samples collected this May turn up high levels of carbamate or other pesticides, then she and her colleagues can plan further sampling.

“We certainly don’t expect to see enough carbamate to flat-out kill fish,” van Drunick said, “but we can begin looking for sublethal effects such as changes in biochemical or enzymatic parameters, respiration, or swimming performance, or changes in the composition of aquatic invertebrate communities, which could, in turn, affect fish.”

McCutchan will measure a suite of nutrients in water samples collected from montane streams in the park during several times of year—including samples from the 2009 “Water Blitz,” a collaboration with Rocky Mountain National Park scientists interested in monitoring water quality in the park. The single-day Blitz, conducted with the help of dozens of Park Service employees and volunteers, generates a water quality “snapshot in time,” McCutchan said.

“We hope that by putting together snapshots with more intensive time sampling, we can go beyond monitoring to analysis, and to understanding the system in a more complete way,” he said.

TheScience

How is Colorado’s drinking water, and the ecosystems in the watersheds that provide it, impacted by beetle kill and chemicals meant to mitigate it?

Dead trees don’t drink

Pine beetles could imperil crucial processes in watersheds

How will mountain pine beetles—and attempts to control them—affect aquatic ecosystems?

Tiny beetles barely the size of a grain of rice have wreaked havoc on western forests in the United States and Canada during the last decade. An outbreak of mountain pine beetles, *Dendroctonus ponderosae*, has turned whole mountainsides of once-green forests brown, brittle, and dead.

CIRES ecologists Jimmy McCutchan (Associate Director of CIRES’ Center for Limnology) and Suzanne van Drunick (CIRES’ Associate Director for Science) are trying to understand how those changes—and people’s attempts to control the beetle outbreak with chemicals—are affecting regional water quality and ecosystems.

Their work is funded by the Western Water Assessment, a joint project of CIRES and NOAA.

“Vegetation in a watershed affects the quality and quantity of water,” McCutchan said. “If the pine beetles kill the trees, then one link in a complex system has been taken out. We’d like to understand what that means.”

Growing forests intercept some of the precipitation and nutrients that fall within a watershed. Tree and other plant roots pull up water that percolates through soil, and remove phosphorous, nitrogen, and other nutrients. As trees die, more nitrogen or carbon may flow downstream, for example, affecting communities of aquatic algae, plants, insects, and even fish. If more phosphorous flows downhill, McCutchan said, it could affect drinking water quality downstream. Some mountain reservoirs—such as Dillon Reservoir—are required to keep phosphorous below certain levels, and often come close.

When human activities add chemical insecticides to the mix—carbamates or pyrethroids are the key ones used to fight pine beetles—there may be further effects on aquatic systems, van Drunick said.

McCutchan and van Drunick will focus their research in Rocky Mountain National Park, for two key reasons:

The park is home to the headwaters of many river basins critical for drinking water in Colorado, and working in the relatively pristine park eliminates some potentially confounding effects—septic systems, for example, which can add nutrients to a system.

For the pesticide work, van Drunick and her colleagues will pull water samples in May 2010—the peak of the tree-spraying season—from areas immediately downstream of treated trees. The park has focused its limited spray campaign to less-toxic carbamate in high-priority areas, such as near campgrounds. Homeowners living in scattered private inholdings within the park may also be spraying trees, with consequences on aquatic ecosystems.

“Initially, we’ll look at areas likely to have the highest concentrations of pesticides,” van Drunick said. If samples collected this May turn up high levels of carbamate or other pesticides, then she and her colleagues can plan further sampling.

“We certainly don’t expect to see enough carbamate to flat-out kill fish,” van Drunick said, “but we can begin looking for sublethal effects such as changes in biochemical or enzymatic parameters, respiration, or swimming performance, or changes in the composition of aquatic invertebrate communities, which could, in turn, affect fish.”

McCutchan will measure a suite of nutrients in water samples collected from montane streams in the park during several times of year—including samples from the 2009 “Water Blitz,” a collaboration with Rocky Mountain National Park scientists interested in monitoring water quality in the park. The single-day Blitz, conducted with the help of dozens of Park Service employees and volunteers, generates a water quality “snapshot in time,” McCutchan said.

“We hope that by putting together snapshots with more intensive time sampling, we can go beyond monitoring to analysis, and to understanding the system in a more complete way,” he said.

TheScience

How is Colorado’s drinking water, and the ecosystems in the watersheds that provide it, impacted by beetle kill and chemicals meant to mitigate it?
Mystery of the smelly purple lake

TheScience
Unpleasant as it may be, discovering the ecology at work in Little Gaynor Lake could have positive implications for biofuel production.

Ah! The sun is shining. The day is warm, and a friendly breeze sweeps by just enough to tease at your hat. On days like these, there’s nothing like a nice spring or summer afternoon by the lake. But wait. Something else came in on the breeze, something that doesn’t go with good times or fresh air and summer swims. It smells like rotten eggs. And the lake ripples purple across the way, looking like Kool-Aid gone bad.

This is Little Gaynor Lake, a small, naturally occurring basin called a “prairie pothole.” The lake is one of two potholes in Boulder County. Periodically as ice melts and water warms, the lake turns purple and begins to emit an unsavory odor, an odor that so offended the neighbors that Boulder County Open Space asked CIRES researchers Prof. William Lewis and Dr. James McCutchan to figure out what is going on with this watering hole. The answer might not be welcome news for the surrounding residents, but could bode well for biofuel research.

The source of the dilemma appears to be a natural and rare phenomenon. “As far as we know, there’s no overland source of pollution because there’s no tributary to this lake,” said Dr. Lewis. “So even if there were no people around, the lake would probably still be doing this.”

A lake with only a small amount of groundwater flowing through it has become a sulfur-rich environment. With that distinguishing character comes an unusual ecology. Organisms specially adapted to exploit oxygen-poor waters have colonized the lake. One bacterium, *Chromatium*, uses sulfide for photosynthesis and is responsible for the lake’s occasional purple color. An alga, *Anabaenopsis elenkenii*, produces organic matter that uses up oxygen near the lake bottom and leads to the formation of sulfide. When wind churns the water, the smelly sulfide rises to the top, and, coupled with light, fuels photosynthesis by the purple-colored bacteria.

That the unusual lake is natural raises uncertainty about what, if anything, Boulder County should do to fix it. The upside is that the organisms responsible for the smelly, purple lake could offer clues to a new form of biofuel production. The alga is hardy, continuing to grow and release energy even in environments deprived of light and oxygen. That makes it a good candidate for biofuel.

The fact that the alga is so abundant is another plus. The theoretical cap on chlorophyll concentrations, an indicator for algae densities, for a lake of this size is about 300 mg/L. Little Gaynor Lake showed concentrations upwards of 2,000 mg/L. “When we saw that we said, ‘Wow!’ We haven’t seen concentrations that high before,” said Dr. McCutchan.

Need another reason to like this odorous environment? The alga’s affinity for salty waters could aid biofuel production in places where agriculture is otherwise off-limits.
Migrating birds could put the most state-of-the-art TomTom™ to shame with their arsenal of built-in navigation sensors. These frequent flyers use tools like Earth’s magnetic field, the sun’s orientation, visual cues, and weather to navigate migration routes sometimes spanning thousands of miles and multiple continents. Now a new study in progress looks at the possibility that waterfalls might offer another clue as to how birds stay on track. Waterfalls display an individualistic sound signature, so CIRES and NOAA/ESRL scientist, Alfred J. Bedard, is comparing the soundscape of Niagara Falls with the hearing power of pigeons and migration patterns of birds traveling along the Atlantic Flyway. If Bedard’s suspicions prove correct, this would be the first evidence that birds use waterfalls as navigation beacons while on migration.

Stay tuned for the unveiling of Bedard’s results, coming soon.

North American flyways

There are four major geographic routes along which birds migrate north and south over North America.
Field biologists tend to collect fascinating stories. The time a gorilla charged. The time someone stepped on a wasps’ nest. That harrowing flight to the research station. It can be difficult to keep tabs on living things, particularly when they live in very remote areas, yet doing so is often critical for conservation decisions. CIRES Senior Scientist Betsy Weatherhead is helping NOAA use unmanned aircraft systems (UAS), originally developed for military use, to meet NOAA’s mission involving ecology of ice seals in the Arctic.

The seals—ringed, ribbon, spotted, and bearded—all fall under NOAA’s protection, and they each rely in some way on floating patches of sea ice—for breeding, foraging, or to escape predators. That makes the animals potentially vulnerable to climate change, which is whittling away at Arctic sea ice. And it makes the seals difficult to study, Weatherhead said. “Seals occur over vast areas of the Arctic, and accessing these areas safely is challenging using current vessel-based and aerial survey technologies.”

So Weatherhead and several other NOAA colleagues, including Robyn Angliss, Deputy Director of NOAA’s National Marine Mammal Laboratory, in Seattle, Washington, spearheaded the development and support of a project to send a UAS over sea ice, to see if the technique could be used to identify ice seals and monitor populations.

In May and June of 2009, years of planning culminated in the launching of a Scan Eagle UAS, with a 10-foot wingspan, from the NOAA vessel MacArthur II in the Bering Sea west of Alaska. The UAS, which is owned by the University of Alaska-Fairbanks and operated by Greg Walker, carried a video camera and a digital still camera, which captured about 25,000 images during 10 flights over sea ice in the Bering Sea. Viewed from 300 feet above the surface, a ribbon seal can look like a shadow, or a puddle of dark water on a light-colored floe of ice, and the sheer number of images that require processing is daunting. Now, Weatherhead and her colleagues are trying to figure out how to quickly and automatically retrieve data from the images they obtained. They’re beginning to talk with image processing companies—groups that write face recognition software, for example—to help pick out seals from shadow.

The researchers have poured through enough of the images to know that they will be useful, Angliss said. “We have been impressed by the quality of the digital still images,” said Angliss. “Based on preliminary review, we can determine ice seal species, relative age, and seal gender for some ice seal species. This technology may be useful in the future to monitor ice seal populations across the Arctic. Occasionally, it’s possible to learn even more about the seals’ environment. “In some images collected using UAS in other parts of the Arctic, you can see the footprints of polar bears,” Weatherhead said. Weatherhead, an atmospheric physicist who studies climate change and variability, especially in the Arctic, said she’s delighted to be working closely with population biologists on the project. “Here we have ecologists counting animals and physicists studying sea ice in the same places,” Weatherhead said. “It’s terrific to have physicists and biologists working together on these same images.”
The pernicious chemical pentachlorophenol, or PCP, is still widely used to treat wood for telephone poles or railroad ties. Can an enzyme be engineered to reduce PCP’s environmental impacts?

Evolving a speedy microbe to clean up a chemical mess

Evolution zooms into the fast lane as a microbe develops an appetite for the hazardous man-made chemical pentachlorophenol (PCP). The “bug” is one of only a few well-described bacteria known for breaking down the pollutant. One problem though: it’s not particularly good at its job, yet.

CRES fellow Shelley Copley is leading a research team that aims to engineer a more efficient form of the bacterium. “The goal is not just to make a better bug, but to understand what it took to make it happen,” said Copley. “How do you evolve new enzymes and new metabolic pathways? We want to understand the process on a molecular level.”

If Copley can do that, pentachlorophenol, long considered difficult to destroy, may have reason to start shaking in its chlorine bonds. Introduced in 1936, pentachlorophenol worked as an herbicide, algicide, fungicide, and pesticide, and was a widely used wood preservative and disinfectant until it was largely banned in the United States in 1987. Today it’s used for mainly utility poles, railroad ties, and in the United States in 1987. Today it’s used for mainly telephone poles.

pentachlorophenol worked as an herbicide, algicide, fungicide, and pesticide, and was a widely used wood preservative and disinfectant until it was largely banned in the United States in 1987. Today it’s used for mainly telephone poles.

Sphingomonas chlorophenolicum, which likely developed its pathway for breaking down PCP in the few decades since the chemical’s introduction. The process is cumbersome, requiring several enzymes that run into problems along the way. One intermediate product is even more toxic than the original pollutant and can be harmful to the bacterium. “The enzymes don’t do a good job, probably because they just haven’t had enough time to evolve,” said Copley. “They don’t have good control over the chemistry.”

Some genetic engineering could smooth out the process. Students and post-docs from Copley’s group are cloning the genes that encode the chomping enzymes and putting them into the bacterium E. coli. They are using in vitro evolution techniques to generate tens of thousands of variations of the enzymes to identify which ones do the best job. Through this process, Copley hopes to evolve better enzymes that can then be put back into the original bacterium. If Copley and her team succeed, Sphingomonas chlorophenolicum may become the PCP-eating champion of the world.

“This is a novel pathway that has evolved very recently, offering a rare glimpse into evolution in action,” said Copley. “It represents an exciting opportunity for both study evolution and help solve a human health and environmental problem.”

The Catholic Church and life beyond planet Earth

In 2009, CRES Fellow Shelley Copley was among the scientists invited to discuss life and its possibilities outside our solar system during a unique meeting in Vatican City.

This was a gathering to discuss astrobiology. Can you tell us about this relatively new area of scientific study and how you became involved in it?

NASA defines astrobiology as “the study of the origin, evolution, distribution, and future of life in the universe.” It’s a fascinating interdisciplinary endeavor that brings together astrophysicists, planetary scientists, geologists, chemists, biologists and even philosophers.

My interest in astrobiology stemmed from my work on the evolution of enzymes and metabolic pathways. Thinking about the origin of the sophisticated protein enzymes and robust metabolic networks found in extant life inevitably led me to thinking about the characteristics of the earliest life forms on earth, and then to thinking about how they arose from the collection of small organic molecules available on the early Earth.

What was it like giving a talk of this nature in a place like Vatican City?

It was surreal. In many ways, it was a typical scientific meeting. There were excellent talks from top scientists in diverse areas of astrobiology, and fascinating discussions over coffee and meals.

Our hosts were priests, but the meeting wasn’t about religion, or the relationship between religion and science—it was all about the science. The Vatican has a long history of interest in astronomy. The idea that life might be found elsewhere in the Universe is quite acceptable to the Church, and indeed would be considered as evidence of God’s magnificence.

You spoke about catalysts as essential for life to emerge. Can you tell us a little more about this relationship?

Almost every reaction that occurs in living organisms is catalyzed by an enzyme.

This is critical for life because these reactions would otherwise be terribly slow. Catalysts were also critical for the emergence of life, not only because they accelerated the rates of certain reactions, but because they dictated the types of reactions that would be incorporated into modern metabolic networks.

Were there any other topics that stood out for you?

The topic that really grabbed my interest was the amazing increase in the rate of discovery of extra-solar planets—there are now several hundred known extra-solar planets! Also, the ability to detect planets in the habitable zones is improving. This is harder because it requires detection of smaller planets closer to stars, but it is starting to happen, so we can now be sure that there are habitable planets out there.

What did you get out of this experience?

I came away with a renewed sense of excitement about working on a Really Big Question, and a profound respect for the power of interdisciplinary science.

Where do things go from here? Life on other planets?

There are so many important unanswered questions. We know of only one example of life at this point, and we have a poor understanding of how life originated on this planet. That makes it difficult to predict what life might look like on other planets, what types of planets (and moons) might support life, and how we should look for life elsewhere. There is a lot of interest in what exotic forms of life might look like. A big challenge is figuring out how best to look for life, given the uncertainties about what we’re looking for, the vast distances involved, and the high cost of big telescopes and the higher cost of space missions.
Why are microbes cool?

“Microbes are cool because they’re tiny little people!” — Gaddy

“Microbes are cool because they’re everywhere, they’re ancient, and 99% of described species are unculturable which means no feeding, no tanks to clean, and no poop to pick up” — Garrett

“Microbes make the world go round, some give us the runs while others give us a buzz!” — Bob

“Microbes are cool because they’re EVERYWHERE” — Donna

“The immense number of microbes, although individually small, affect chemical cycles on a global scale.” — Chris G.

“Because microbes are everywhere, I will never feel alone” — Kelly

“I like bacteria because there aren’t many things that can produce both cheese and diarrheas” — Chris L.
The Cooperative Institute for Research in Environmental Sciences is a research institute dedicated to better understanding the Earth system.

Our research is essential for understanding the processes and feedbacks in many Earth science disciplines, and to foster cross-disciplinary understanding of the cryosphere, biosphere, atmosphere, geosphere, and hydrosphere. CIRES scientists are identifying and quantifying changes in a warming climate, providing baseline data against which to measure change, and informing the public and the policy makers about these changes.

CIRES is a joint institute of the University of Colorado at Boulder and the National Oceanic and Atmospheric Administration.

http://cires.colorado.edu
twitter.com/theCIRESwire