Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder

Atmospheric Chemistry Program Seminar

Gas Phase Oxidation of Campholenic Aldehyde and Lactones as an Intermediate to SOA formation by William Dresser,
ANYL 1st year, CU Boulder

"This study investigated the oxidation of campholenic aldehyde(CA) and a series of lactone compounds and their derivatives using flow tube chemical ionization mass spectrometry (FT- CIMS) to try and understand the reaction mechanisms and identify potential intermediates between the gas and secondary organic aerosol (SOA) phase. Oxidation was induced with both hydroxide and chlorine radicals and proton transfer reaction (PTR) detection as well as Iodide detection were used in the spectra analysis. Oxidation pathways were determined for both studies at low pressures and product percentages were found for the major species. In the case of CA, the expected epoxide intermediate was identified at 5-20% abundance, which was the major intermediate of interest. The lactone pathways were used to predict the reactivity of a previously identified intermediate, hydroxymethyl-methyl-α-lactone (HMML), between isoprene and SOA."

and

Determination of the Active Agents in Commercial Pygeum Products Sold for the Treatment of Benign Prostatic Hyperplasia by Daniel Katz,
ANYL 1st year, CU Boulder

"Benign Prostatic Hyperplasia (BPH) or enlarged prostate is a common condition in older men and may be a precursor to prostate cancer. Dietary supplements made from the powdered bark of Prunus africana are marketed as pygeum to treat BPH, but they are only loosely regulated by the U.S. FDA. Commercial pygeum products were tested for N-butylbenzenesulfonamide (NBBSA), ferulic acid, atraric acid, atranorin, and β-sitosterol (BSST), components of pygeum that are thought to be effective in treating BPH. Two parallel liquid-solid extractions were conducted for each product. A direct extraction used acetone:hexane to extract NBBSA, atraric acid, and atranorin. The other extraction followed saponification that released ferulic acid and BSST from their natural esters and used dichloromethane solvent. After evaporation and reconstitution, the extracts were analyzed by liquid chromatography–tandem mass spectrometry (LC-MS/MS). The amount of ferulic acid, atraric acid, atranorin, and BSST varied widely among the products, but no NBBSA was detected in any product. The levels of each active compound found in the products can be used to evaluate their possible effectiveness for the treatment of BPH."

Date

Monday, October 28, 2019
2019 - 12:00 to 13:00

Host

  • CU Boulder

Audience

  • CIRES employees
  • CU Boulder employees
  • General Public
  • NOAA employees
  • Science collaborators

Type

  • Seminar
  • Open to Public

contact

Anne.Handschy@Colorado.EDU

Location

Ekeley S274