Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder

Study: As Alaska Warms, Methane Emissions Appear Stable

Fate of carbon stored in permafrost remains subject of intense research

Analysis of nearly three decades of air samples from Alaska’s North Slope shows little change in long-term methane emissions despite significant Arctic warming over that time period, according to new research published in Geophysical Research Letters.

Scientists estimate that Arctic permafrost, a thick layer of frozen soil that encircles the globe, contains two and a half times as much carbon as has been emitted since the dawn of the Industrial Revolution. As the region warms, this carbon will be released from the permafrost’s icy grip.

Scientists need to know where that carbon will go and what form it will take. This has become more critical since the Arctic is warming faster than other regions of Earth, with corresponding losses in sea ice coverage. Some models suggest that a portion of that carbon will be released as methane, a potent greenhouse gas that has almost 28 times the warming influence of carbon dioxide over a 100-year timescale.

Birds-eye view of the NOAA Barrow Atmospheric Baseline Observatory from the top of the 18-m sampling tower. Photo: Matthew Martinesen/NOAA

In the new study, researchers from the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder, NOAA, NASA and other university partners examined 29 years of continuous, precision measurements of atmospheric methane and other gases from the NOAA Barrow Atmospheric Baseline Observatory, which is part of NOAA’s Global Greenhouse Gas Reference Network.

“There has been a huge increase in Arctic warming, and while we do see spikes in methane due to short-term temperature changes, we’re not seeing a long-term change in methane levels,” said lead author Colm Sweeney, a CIRES scientist working at NOAA’s Earth System Research Laboratories in Boulder. 

But that doesn’t mean thawing permafrost isn’t releasing carbon, Sweeney said. “It’s happening. It just isn’t showing up as methane.”

Arctic permafrost contains an estimated 1,000 gigatons (1,000 billion tons) of carbon. Besides being emitted as methane, carbon stored in thawing permafrost could be released into the atmosphere as carbon dioxide, carried off by meltwater into river systems or taken up by vegetation as plant communities expand their range.

Trends in temperature and methane are not consistent over the 29-year record at Barrow, suggesting that very large temperature changes in this region have not influenced methane emissions coming from the North Slope region. 

The team supplemented the continuous measurements from the Barrow observatory with measurements made by a five-year, NASA-led airborne campaign known as CARVE (Carbon in Arctic Reservoirs Vulnerability Experiment), which helped them nail down methane's seasonal and long-term trends in the region. They saw an uptick in methane levels in late fall and winter, but no long-term signal across Alaska’s North Slope.

“Bacteria that produce methane and bacteria that consume methane will both become more active as temperatures get warmer,” said co-author Steven Wofsy of Harvard University. “Our study suggests that over the past 30 years, these processes have balanced out in the study area.” 

The researchers conclude that observed short-term methane spikes from the Arctic will likely have little impact on global atmospheric methane levels in the long-term. 

This finding is critical to science’s understanding of how the Arctic is responding to the unprecedented disruption of its climate and the degradation of permafrost. The lack of significant long-term trends indicates that processes regulating North Slope methane emissions need more study.

With little observed change in methane emissions, researchers are further examining the Barrow observatory’s dataset for signs that the permafrost has been emitting carbon dioxide, by far the most significant of the greenhouse gasses, as it may be more affected by large temperature changes (and by extension, melting permafrost) in the Arctic. The Barrow dataset features in an upcoming paper on Arctic carbon dioxide levels co-authored by Sweeney. Several other research efforts are also examining this hypothesis.

CIRES is a partnership of NOAA and CU Boulder.

Authors of "No significant increase in long-term CH4 emissions on North Slope of Alaska despite significant increase in air temperature," in Geophysical Research Letters are Colm Sweeney (CIRES and NOAA), Ed Dlugokencky (NOAA), Charles Miller (NASA), Steve Wofsy (Harvard University), Anna Karion, Steve Dinardo (NASA), Rachel Y.-W. Chang (University of Dalhousie), John Miller (NOAA), Lori Bruhwiler (NOAA), Andrew Crotwell (CIRES and NOAA), Tim Newberger (CIRES and NOAA), Kathryn McKain (CIRES and NOAA), Robert Stone, Sonja Wolter (CIRES and NOAA), Patricia Lang (NOAA), Pieter Tans (NOAA).

This is a joint news release from CIRES, NOAA, and the American Geophysical Union. 

Download high resolution images here


Colm Sweeney
CIRES scientist
Karin Vergoth
CIRES communications
(303) 497-5125
Theo Stein
NOAA communications
(303) 497-6288




Recent Stories