Cooperative Institute for Research in Environmental Sciences
Wednesday, March 9, 2022

Study shows banned ozone-depleting chemicals came from broad areas of Asia

Increased CFC-11 emissions from eastern China, temperate western Asia, and tropical Asia

Sunrise at Mount Batur
Sunrise at Mount Batur, Indonesia.
- Thiago Palia/Unsplash

A follow-up investigation by CIRES and NOAA scientists into the sudden increase in emissions of an ozone-destroying chemical between 2010 and 2018 has determined that three regions of Asia—not just one—were responsible for rising emissions of the banned chemical.

In a paper published in the journal Atmospheric Chemistry and Physics, the research team’s analysis of air samples, including those taken during two major airborne research campaigns, not only confirmed increased emissions of CFC-11 from eastern China, but also found significant increasing emissions from temperate western Asia and tropical Asia.

Lead author Lei Hu, a CIRES scientist who studies CFCs and other trace gasses at NOAA’s Global Monitoring Laboratory, said her team analyzed a large set of high-quality, well-distributed air samples collected by the scientific community during that time period. 

“Once we analyzed NOAA measurement data from samples collected all around the world and at different elevations in the atmosphere, we were able to account for most of the observed increase in emissions,” Hu said. 

Engineering triumph turned planetary scourge

Chlorofluorocarbons, or CFCs, were once considered a triumph of modern chemistry. Stable and versatile, these chemicals were used in hundreds of products, from military systems to the ubiquitous can of hairspray. 

In 1987, NOAA scientists were part of an international team that proved the chemicals were damaging Earth’s protective ozone layer and creating the giant hole in the ozone l  ayer that has formed over Antarctica every year. The Montreal Protocol, signed later that year, committed the global community to phasing out their production. Production of the second-most abundant CFC, CFC-11, would end completely by 2010. Except that it didn’t.

In 2018, Hu’s NOAA colleague Stephen Montzka published a paper in the journal Nature that rocked the scientific world by describing what turned out to be the first known violation of the Montreal Protocol’s ban on the production and use of CFC-11. Based on analysis of data collected at the Global Monitoring Laboratory’s worldwide network of sampling sites, scientists were able to demonstrate that emissions of CFC-11 had increased by 25 percent, suggesting the presence of new production in violation of the protocol. 

Montzka, with NOAA and CIRES colleagues, contributed to a 2019 companion study led by scientists with the Advanced Global Atmospheric Gases Experiment (AGAGE) which determined that at least 40 to 60 percent of the CFC-11 global emissions increase came from eastern mainland China. However, it remained unclear where the rest of the emission increase came from.

In this new work, by augmenting NOAA’s ongoing sampling network at Earth’s surface with measurements from the two short-term airborne campaigns, ATom and HIPPO, NOAA’s continuous in-situ air measurements and regular aircraft profiling, the researchers were able to better quantify emissions on regional to continental scales, particularly from Asia. 

With the additional data, time and the help of NOAA’s HYSPLIT atmospheric transport model, which allowed scientists to track air motions back in time and identify upwind source regions, Hu’s research team from NOAA’s Global Monitoring Laboratory, Chemical Sciences Laboratory and CIRES was able to attribute nearly all of the 2012-2017 emission rise to the three regions in Asia. 

Despite the success in detecting the rising CFC emissions, there are still substantial uncertainties in the estimates of regional and continental emissions derived by the researchers, as significant gaps remain in global sampling networks, Hu said. 

Additional sampling locations and frequency, particularly downwind of under-sampled regions such as Asia, Africa and South America, would improve scientists’ understanding of global atmospheric composition changes, and make mitigation of associated ozone layer and climate impacts more timely, efficient and effective. 

On the other hand, failure to address the substantial sampling gaps means that unexpected future global changes could go unattributed, making in-time recovery of the ozone layer more difficult.

This research was funded by NOAA, NASA and the National Science Foundation, with support from CIRES. 

This story was written by NOAA Communications


Recent News